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Uniform Convergence and Uniform Continuity

Note. From IA: z,, — z as n — oo (in R or C) if

Ve >03IN eNVn > N |z, — x| <¢

) ) >
{ I { g

Ve >03IN €Nz, € (r—¢g,z+¢)

ie. x, is e-close to z. We say (z — e,x + €) is the e-neighbourhood of z.
We aim to define “ f,, — f” for functions

v

Definition. Let S be a set, f, : S > Rn € N, f:S — R be functions. Say (f,) converges to f
unformly on S if
Ve > 03N € NVn > NVz € S |fo(x) — f(x)] <e

Notes.
(i) N depends only on €, not on any x € S (hence “uniform”)
(ii) Can replace R with C
(iii) Equivalently:
Ve > 03N € NYn > N sup |fn(z) — f(z)| <e
z€S

or
sup | fn(z) — f(X)| = 0 asn — o
€S
(iv) For each z € S, (fn()),—, converges to f(z). So f is unique (ie. if f, — fand f, = g
uniformly on S, then f = g). We call f the uniform limit of f,,) on S

Definition. S, (f,), f as before. Say (f,) converges pointwise to f on S if (f,(z)),—, converges
to f(z) for every x € S ie

Ve € SVe > 03N € NVn > N |fo(x) — f(x)] <e




Notes.
(i) N depends on € and x
(ii) Again f is unique - call it the pointwise limit of (f,) on S

Remark. Uniform converge = pointwise convergence

Example. f,(r) = 2%e™ " x € [0,00),n € N. Does (f,,) converge unformly on [0, c0)?

Fix > 0. Then 2%e™"® — 0 as n — o0 so f, — 0 pointwise on [0, 00). Does (f,,) converge to 0 (the
zero function) unfiromly on [0, c0), i.e.

sup |fn(z) =0/ = sup fu(z) = 0asn— o?
z€[0,00) z€[0,00)

We could differenitable but a much better way to find an upper bound on |f,(z) — f(z)| that does
not depend on x. In our case:

0 <z’ ™ = 1t n?a? | < %V@“ZO
TLLI’,‘—I——Q n

Example. f,(z) =z",2z €[0,1],n € N. Does (f,) converge unfiromly on [0, 1]?

" 0 0<zx<1
T —
1 z=1

So f,, — f pointwise on [0, 1] where

f(:r)={(1) e

sup [fn(z) = f(z)| = sup fu(z) =1

z€[0,1] z€([0,1)

as fn(x) — 1 as  — ¢ for each n)
So fn # f uniformly on [0, 1] and hence (f,) does not converge unfiromly on [0, 1] or

1\ /" 1
. () !
z€[0,1)] ( 2 2

Remark. “f,, /4 f uniformly on S” means:

Je >0VN € NIn > N3z € S |fo(z) — f(zx)] > €




Theorem 1.1 (The uniform limit of continuous functions is continuous). Let S be a subset of R or
C. We're given functions f, : S — R (or C),n € Nand f: S — R (C). Assume f,, is continuous for
every n € N and f,, — f unfiromly on S. Then f is continuous.

Proof.

Idea: Fix a € S. Want z ¥~ a = f(X) ~ f(a). Choose n s.t. f, ~ f everywhere.
Then as f, is continuous, z ~ a = f,(z) ~ f,(a) so

f(@) = fu(@) = fn(a) =~ f(a)

Fixae€ S;e >0. Weseek 6 >0s.t. Vz €S |z —a| <d = |f(z)— f(a) <e.
Choose n € N s.t. Vo € S|fn(z) — f(z)] <e.
Fix such an n. Since f,, is continuous, there exists § > 0 s.t. Vo € S

[z —al <6 = [f)n(z) - fu(a)| <e
SoVz € S if |x — a| < & then

[f(@) = f(a)] < [f(@) = fula)| + [fn(z) = fn(a)| + [ fn(a) = fla)] < 3e

Remarks.
(i) This is called a 3e-proof.
(ii) Not true for pointwise convergence e.g. f,(x) = 2™ for x € [0,1], n € N and f(z) =
0 0<x<1
1 z=1
fn — f pointwise on [0, 1], f, continuous Vn but f is not continuous on [0, 1]
(iii) Not true for differentiability (see example sheet)

(iv)
lim lim_ f,(z) = lim f(z) = f(a)

T—a n—o0
= lim f,(a) = lim lim f,(a)
n— oo n—oo r—a

(swapped the limits)

Lemma 1.2 (The uniform limit of bounded functions is bounded). Assume f,, — f uniformly on
some set S. If f,, is bounded for every n, then so is f.

Proof. Fix n € Ns.t. Vo € S |fn(x) — f(x)| < 1. Since f, is bounded, there is m € R s.t.
Vo € S|fn(x)] < M. SoVx € S

|f (@) < |f(X) = fu(@)| + |fu(x)| <1+ M




From TA: Let f : [a,b] — R be a bounded function. For a dissection D :a =29 < 21 < -+ -

of [a,b] we define the upper and lower sums of f w.r.t D by

Up(f) = Z(xk —xp_1)- sup f
k=1

[Th—1,2k]

Lp(f) = Z(Q«“k —Zp-1)- inf f
o [Th—1,2k]

Reimann’s criterion: f is intergrable iff Ve > 03D s.t. Up — Lp < €.
Easy exercise: for any I C [a, b]

sgpf—ir}ffz sup (f(x) — f(y)) = sup |f(z) — f(y)l

z,yel z,y€el

This is called the oscillation of f on [

<xT,=0b




Theorem 1.3 (We can swap limit and integral for uniform convergence). Let f, : [a,0] — R be
integrable for all n € N. If f,, — f uniformly on [a, b] then f is integrable and moreover

/abfn—>/abfasn—>oo

Proof. We prove that f is is bounded and satisfies Riemann’s criterion.
f bounded: by definition each f, is bounded, so by the lemma, f is bounded.
Now fix € > 0. Fix n € N s.t.

Vz € [a,b] | fn(z) — f(2)] <€

Since f,, is integrable, 3 dissection D = x,, < 21 < --- < zy = bof [a,b] s.t. Up(fn)—Lp(fn) <
E.
Fix k€ {1,...,N}. For =,y € [rx_1,xk]

[f(@) = )] < 1f(@) = fu(@)| + [fu(2) = fu()] + |fn(y) = F(y)]
< [fol@) = fuly)] + 2¢

hence

sup [f(2) = f(Y < sup [fu(2) = ful(y)] + 2¢

z,Y€[Tp—1,7] [Tr—1,2k]

Multiply by (z; — zx_1) and take Zgzl
Up(f) — Lo(f) < Up(fn) — Lp(fn) +2c(b—a) <e(2(b—a)+1)
So f is integrable.

[o-]s

b
S/ |fn—f|S(b—a)sully)lfn—f|—>0asn—>oo

a’?

Note.




Corollary 1.4 (We can swap infinite sum and integral for uniform convergence). Let f,, :

be integrable for every n.
If >°° | fn(x) converges uniformly on [a,b], then z — >"°° | f,(x) is integrable and

Lan dx—Z/ fula

[a,b] = R

Proof. Let .
Fo(z) =) fi(x) v € [a,b], n €N

k=1

:i ) x € [a,b]
k=1

By assumption, F,, — F uniformly on [a,b]. From TA: F,, is integrable and

b
/F— fr
k=172

which follows from the previous theorem




Theorem 1.5 (Can differentiate term by term if derivative sum converges uniformly). Let f,, :
[a,b] — R be continuously differentiable for every n. Assume:

(i) >3, fi.(z) converges uniformly on [a, b]

(ii) There exists ¢ € [a,b] s.t. Y2 fn(c) converges
Then ;7 | fi(z) converges uniformly on [a,b] to a continuously differentiable function f and more-

<Z fk) (@) = f'(2) = Y _ filx)
k=1

k=1

Proof. Let -
@)= fi(@) @ € [,

k=1

Solve f’ = g with initial condition f(c) = >, fn(c)
Let A=>""", fn(c) and define f : [a,b] — R by

flzx) = )\—I—/zg(t)dt

Since >"p=, f1.(z) converges uniformly to g on [a,b], g is continuous and hence integrable. By
Fundamental Theorem of Calculus (FTC) f’ = g on [a,b] (so f’ is continuous) and f(c) = A.
Also by FTC:

fr(e) = fu(z) + /w fi.(t)dt k € N z € [a,b]

Fix ¢ > 0. By assumption, 3N € N s.t.

A= file)

k=1

<eVn>N

g(t) =Y fi()

k=1

<eVn> NVt € a,b

Now for « € [a,b],n > N, we have

/\+/C19(t)dt—zn:<fk(6)+/zfé(t)dt>

=S a@|+| [ (f(t) -3 f,;<t>> ar
k=1 ¢

<et+|lz—cle<(b—a+1)

|f(x) -3 fil@)
k=1

< +

From TA: a scalar sequence (z,) is Cauchy if Ve > 03N € NVm,n > N|x,, — x,| < ¢
General Principle of Convergence (GPC): every Cauchy sequence converges

Definition. A sequence (f,,) of scalar functions on a set S is uniform Cauchy if

Ve > 03N eNVm,n>NVz eSS |fn(z)— fulz) <e




Theorem 1.6 (General Principle of Uniform Convergence, GPUC). If (f,) is a uniformly Cauchy
sequence of functions on a set S, then it converges uniformly on S to some function

Proof. Fix x € S. Wel'll show (f(z))S2, is convergent.
Given € > 0, we have N € N s.t.

Vm,n > NVEE S |fm(t) — falt)] < e

In particular,
Vm,n 2 N |fm(z) = fu(z)] <€

So (fn(z))22, is Cauchy and hence convergent by GPC.

Let f(z) = lim,—c fn(z). Doing this for every x € S, we obtain f : S — scalars s.t. f, — f
pointwise on S.

Claim: f,, — f uniformly on S

Fix € > 0. There’s n € N s.t.

Vm,n > NV € D |f(x) — fu(z)] <e

We now show that Yn > N Vx € S |f,(z) — f(z)| < 2¢. Then done.
Fix x € S, fix n > N. Sincef,(x) — f(x) as m — oo, we can choose m € N s.t.

|fm(z) — f(x)] < e and m > N

(m depends on z). Now

|[fn(@) — f(2)] < |fo(@) = f(@)| + | frn(z) — f(2)| <e+e=2¢

————————————

Note. Alternative end of proof:
Fixx € S, n > N. Then
|fn(®) = frn(®)| <e Vm > N

Let m — oo:

[fn(z) = f(@)| < e




Theorem 1.7 (Weierstass M-test). Let (f,,) be a sequence of scalar functions on a set S. Assume
that for every n € N there is an M,, € RT s.t.

|fn(z)] < M, for all z € S

If >° | M,, < oo then Y2 | fn(z) is uniformly convergent on S

Proof. Let F,(z) =Y _; fu(z) x € S;n e N.
For x € S, n > m in N, we have

n

|Fal@) = Fu(@)| < )0 Iful@) < D My

k=m+1 k=m+1
Given € > 0 choose N € Ns.t. Y77 | My <e.
Then Vo € S Vn > m > N we have
|Fn(z) — Frp(2)] < Z My, <e
k=m+1

So (F},) is uniformly Cauchy on S and hence uniformly convergent on S by previous theorem

Consider the power series >~ | Cp(z — a)"
Here C), € C (n € N), a € C fixed and z € C variable
Let R € [0, 00] be the r.o.c. (radius of convergence) of this power series. Recall

R
|z —a| <R = Z Cp(x — a)™ converges absolutely
n=0
R
|z —a| >R = Z Cy(z — a)" diverges
n=0

Let D(a,R) = {z € C||z — a| < R} (the open disc centre a, radius R). Define
f:D(a,R) — C with f(z) = Z Cp(z—a)"
n=0

f is the pointwise limit on D(a, R) of the power series. We ask: is the convergence uniform? In
general, it is not.

10




Examples.

() ~
Z 2—2 has R=1
n
n=1
Let f, : D(0,1) — C be f,(2) = 2"/n?
1
Vz € D(0,1) |fn(2)| < e
Since > o7 | 1/n? is convergent, by the M-test, the power series converges uniformly on D(0, 1)

(i)
o0
Z has R=1
n=0

and we know

> 1
nz:%z zl—z

N
|} 2" < N+1Vz € D(0,1)

n=0

By lemma 2, the series does NOT converge uniformly on D(0,1) (1/(1 — z) is not bounded on
D(0,1))
OR

n

1
1—,2'_ZZIc

k=0

ZnJrl
sup
|z|<1

= sup
|z|<1

=0

1—=z2

Theorem 1.8 (Power series converges uniformly on disk smaller than r.o.c.). Assume the power
series > 2 Cp(z — a)™ has r.o.c R. Then for any r with 0 < r < R the power series converges
uniformly on D(a, r)

Proof. Fix w e Cs.t. r < |w—a|l < R e.g. w:a—i—rgR. Set p =

so p € (0,1).

_r
[w—al
Since >-7° , Cp(w — a)™ converges, we have

Cp(w—a)* - 0asn— oo

. 3AM € RY|Cp(w — a)”| < M for all n € N

(“convergent = bounded”)
For z € D(a,r),n € N we have

|@wwm=mm—w«0“”Y3M(r Y:Mw

|w — al |w — al

Since ZZO:O Mp™ is convergent, by M-test:

Z Cp(z —a)" converges uniformly on D(a,r)

n=0

11




Remarks.
() )
f:Da,R— C, f(2) Z Cn(z —a)”
n=0

is, by previous theorem, the uniform limit on F'(a,r) of polynomials for any r with 0 < r < R,
and hence f is continuous on D(a,r) by theorem 1.1, since D(a, R) = Up<r<rD(a,r), it follows
that f is continuous on F'(a, R)

(i) >0, Cp-n-(z—a)" ! has ro.c. R, ie. same as the original series (from IA) so converges
uniformly on D(a,r) if 0 <7 < R.
By a result analagous to theorem 1.5, we have that > C,(z — a)™ is complex differentiable on
F(a, R) with derivarive Y C,, - n(z — a)" ! (see Complex Analysis)

(iii) Fix w € D(a,R). Fixrs.t. lw—a|<r <R, fixd>0st. w—a|+d<r

If |z — w| < 0 then
|z —al <|z—w|+|w—al] <d+ |w—al

So D(w,d) C D(a,r). Hence Y Cp(z — a)™ converges uniformly on D(w, d)

Definition. A subset U of C is open if

Yw € U3) >0 D(w,d) CU

Definition. Let U be an open subset of C and (f,,) a sequence of scalar functions on U. Say (f,)
converges locally uniformly on U if Vw € U3§ > 0 s.t. (f,) converges uniformly on D(w,d) C

Remarks.
(i) The third remark alone shows that a power series converges locally uniformly inside the r.o.c.
(i.e. on D(a, R))
(if) We'll return to this when discussing compactness

12




1.1 Uniform Continuity

Definition. Let U be a subset of R or C. Let f be a scalar function on U. For x € F, f is
continuous at z if:

Ve>036 >0y eUly—z|<d = |f(y)— f(z)|<e
f is continuous on U if f is continuous at x for every z € U

Ve e UVe >030 >0Wy e Uly—z| <6 = [f(y) — f(x)| <e

Note. § depends on € and z

Definition. Let U, f be as before. Say f is uniformly continuous on U if

Ve>030 >0,y eUlz —y|<d = |f(z)— fly)| <e

Note. § depends on ¢ only. We have that uniform continuity implies continuity

Examples. (i) f:R — R, f(z) = 22+ 17 is uniformly continuous. Given ¢ > 0, let § = £/2. Then
Ve,y € Rif |z —y| < 0 then |f(z) — f(y)| =2|z —y| <20 =¢
(i) f:R — R, f(z) = 22, is continuous but not uniformly continuous. Let e = 1. Given § > 0 let
z>0and y =2+ /2. Then |y — x| < § and |f(z) — f(y)| = (z +6/2)? — 2% = dx + §2/4 so
forz =1/§ and y = x + §/2 we have |z — y| < § but |f(z) — f(y)|=1+6*/4>1=¢€. So f is
not uniformly continuous.

Note. For U, f as in definition above, f is NOT uniformly continuous on U means:

Je > 0V > 03z, y € Ulz —y| < d and |f(z) — f(y)| > €

13



Theorem 1.9. Let f be a scalar function on a closed, bounded interval [a,b]. If f is continuous on
[a, ], then f is uniformly continuous on [a, b]

Oneidea: fixe > 0. For all z € [a,b] 3§, > 0s.t. Vy € [a,b] if |[y—x| < d, then |f(y)—f(z)| < e.
Let
0= inf 6,
z€|a,b]

but we have the problem that § = 0 is possible.

——————————————————

Proof. We argue by contradiction. Assume theres an € > 0 s.t. Vo > 03z,y € [a,b] s.t
Jz —y| < é and |f(z) — f(y)| > e. In particular, Vn € N3z, y, € [a,b] s.t. |z, —yn| < 1/n
and | f(X,) — f(yn)| > . By Bolzano Weierstass 3 subsequence (z,, ) of (z,) that converges.
(k1 < ko < ks < ... and so k, > nVn). Let © = lim,_,o 2%, . Then x € [a,b]. Then

1
1Yk, — 2| <Yk, — Tk, | + |2, — 7| < 5+|$kn —z| =0

So yk, — . Since f is continuous, we have f(zy,) — f(z) and f(yr,) — f(z). Now

e < [f(@r,) = flyr)| = |f(z) = f(2)| =0 X

Corollary 1.10. A continuous function f : [a,b] — R is integrable

Proof. Since continuous function on closed bounded interval is bounded, we have f is
bounded. Fix ¢ > 0. By theorem 1.9, f is uniformly continuous so 36 > 0 s.t. Vz,y € [a,b]
if |z —y| < & then |f(z) — f(y)| < e. Choose dissection D of [a,b] s.t. all intervals in ¢ have
length < 6 (e.g. choose n € N s.t. I’_Ta < 4 and let D consist of a + k - }’_T“, k=0,1,...,n)
If T is one interval of D then Va,y € I, we have |z — y| < d, and so |f(z) — f(y)| <e

wosup [f(z) = fy)l <e

x,yel

multiply by the length of I and sum over all I to get

Up(f) = Lp(f) < (b—a)e

So f satisfies Riemann’s critereon

2 DMetric Spaces

Remark. In R and C we measured “closeness” of a point z,y by the expression |z — y|. The most
important property of this “distance” was the A-inequality.
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Examples. (i) M =R or C and d(z,y) = | — y|. This is the standard metric on M

(i)

(i)

M =R"™ or C". We define the Euclidean norm (Euclidean length) of € M by

n 1/2
]l = llzll2 = (Z kal2> (& = (zk)i=1)

k=1

This satisfies
lz +yll < llz| + llyll Vz,y € M

It follows that
n 1/2
d(z,y) = da(z,y) = llz — yll2 = (Z |z — yk|2>
k=1

defines a metric on M, called the Euclidean Metric.
E.g. Vx,y,z € M

d(z,2) = [l& =zl = [(z =) + Iy = )| < |z =yl + lly — 2| = d(=,y) + d(y, 2)

This will be the standard metric on M = R™ or C”. The metric space (M,d) is called: n-
dimensional real or complex Euclidean space. We sometimes denote this by (3, the euclidean
norm is also called the ls-norm and the Euclidean metrix is also called the I metric.

M =R"™ or C", the [; norm of x € M is

n
Izl =D |l
k=1

which defines the [;-metric

n
di(z,y) = Z |2k — Ykl = |z —yll
k=1

(M, d) is denoted by 7.

In fact, you can do this for p € R,1 < p < oco. In this course we will only work with p = 1,2
and (p = o0)

M = R" or C™. We define the [,.-norm of x € M by

|7llo0 = masx ||

This defines the [, metric

Qoo (2,Y) = |2 = Ylloo = max |zx — yil
We denote (M, d) by I
Let S be a set. Let [(S) be the set of all bounded scalar functions on S. We define the
loo-norm of f € [ (S) by
11 = 11 flloc = sup]f(z)

(also called sup norm or uniform norm)

16




Note. For f,g € [(S),x € S, we have

|f(z) + g(2)] < [f(@)] + lg(@)| <[l fII + llgl

So ||f+gll < I£]l+llgll. It follows that d(f,g) = ||f —g|| defines a metric on I (S), called the uniform
metric on loo(S)

Examples. [({1,2,...,n}) in {7 . IfS = N, then we will write /o for [oo(N). This is the space of
scalar sequences with uniform metric.

Examples. (vi) (Cla,b]) is the set of all continuous functions on the closed, bounded interval [a, b].
For p = 1,2 we define the Ly-norm of f € Cla, b by

b 1/p
11 = ( / If(w)lpdx>

dp(f,g) =|f _ng

This defines the L,-metric
e.g.

b b
2
1 +glI3 =/ |f +9? S/ |12 +1g” +21f1 - 19l < 113+ lgll3 +20fll2llgll2 = (If1l2 + llgll2)
a a

So
1f+gll2 < Ifll2 + llgll2

This easily implies the triangle inequality for ds
(vil) Let M beany set. Then
0 ifz=y
d(z,y) = {

1 ifzs#y

defines a metric called the discrete metric and (M, d) is called a discrete metric space
(viii) Let G be a group generated by S C G. Then

d(z,y) = min{n > 0: 3s1,592,...,8, €S s.t. Yyrs185...5n}

with z € § = 27! € S defines a metric called the word metric (Geometric group theory)
(ix) Fix a prime p € Z. Then

d(z,y) 0 ifx=y
:I:7 = .
Y p " ifx#ywherex—y=p"-m, n>0,m€eEZ,p# m

defines a metric on Z called the p-adic metric (Number Theory)

2.1 Subspaces

Definition. Let (M,d) be a metric space and N C M then d|yxn is a metric on N. N with this
metric is a subspace of M. We usually use d to denote the metric on N

17



Examples. (i) Q with the metric d(z,y) = |z — y| is a subspace of R
(ii) Since every continuous function on a closed, bounded interval is bounded, it follows that C|[a, b]
is a subset of I ([a,b]). So X|[a,b] with the uniform metric is a subspace of I (a, b]).

2.2 Product Spaces

7~

Let (M,d) and M',d’) be metric spaces. Then any of the following defines a metric on M x M
d1((, 1")7 (Y, yl)) =d(z,y) + d/(m/, yl)

da((2,2"), (y,y")) = (d(z,y)* + d' (¢, y)*)"/?
doo((z,2), (y,9')) = max{d(z,y),d'(z',y')}

Notation. We denote the metric space (M x M’,d,) by M &, M’ (p =1,2,00)

Note.

Can generalise: for n € N and metric spaces My, pi) k= 1,2,...,n we define

() =anoy s,y
k=1 »

to be the metric space (M7 X Ma x --- X M,,d,) e.g.

N 1/2
dQ((xh e 717”)’ (ylv o 7yn)) = <Z pk(zkayk)2>

k=1

Example.
R& R = l%,R@z Régr = lg

RBoo RPoo -+ Poo R =17,

n

Note. R ¢; R @2 R makes no sense since (R @1 R) @2 R, R@®; (R &5 R) are different metric spaces

18



2.3 Convergence

Definition. Let M be a metric space and (z,,) a sequence in M. Given z € M, say (z,) converges
to x in M (write 2, = x as n — o0) if

Ve > 03N € NVn > Nd(z,,z) < &

Say (z,,) is convergent in M if 3z € M s.t. x,, — x as n — oo, otherwise we say (x,) is divergent

Note. z, - 2z in M < d(x,,z) > 0in R

Lemma 2.1. Assume z,, — z and x,, — y in a metric space M. Then x = y.

Proof. Assume z # y.Let ¢ = d(z,y)/3. Then € > 0, so since z,, — = and z,, — ¥,
dN; e NVn > Ny d(xp,x) < €
AN, e NVn > Ny d(xn,y) <€

Dixn € Ns.t. n > N; and n > Ny then

d(w,y) < d(z,70) + d(n,y) < 2% = 2d(a,y) %

Definition. Given a convergent subsequence in a metric space M, the limit of (z,,) is the unique
rz € N s.t. x, — x as n — 00, denoted lim,, o, T,,
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Examples. (i) This has the usual meaning in R or C
(ii) Constant sequences converge. More generally, let (z,,) be an eventually constant sequence in a

metric space M
dr € MAN e NVn > N x, =«

Then x,, — x as n — co. The converse is false (consider 1/n in R).
However, assume x,, — x is a discrete metric space:

dN € NVn > Nd(z,,z) < 1
soVn>N z, =x
(iii) In the 4-adic metric 3™ — 0 as n — oo since d(3™,0) =3"" — 0 as n — o0

(iv) Let S be a set. Then f, — f in [oo(S) in the uniform metric iff

d(fnaf):||fn_f||oozsgp|fn_f|_>Oasn_>00

iff f,, — f uniformly on S.

Note. For f,(x) = 2+ 1/n, x € R, n € N with f(z) = 2, + € R. Then f, — f
uniformly on R. However, f,, f € l«(R)

(v) Euclidean space R™ or C™ with ls-metric
® = (z} () xgk),...,:zzglk)) EMEkeN

x = (x1,2Z2,...,&,) E M

n
o) — 2] < |2® — zlls < o - i
=1

So () — 2 <= for every 1, x( ) - 2, coordinate wise convergence

(vi) fu(z) = 2™ 2 € [0,1], n € N so (f,) is a sequence in C[0,1]. We know that (f,) converges
pointwise on [0, 1] but not uniformly. So not convergent in the uniform metric. However in the
L1-metric:

(fnv )_”anl—/ fn=?—>()asn—>oo

So fn — 0in C[0,1] in the L;-metric

(vii) Let N be a subspace of a metric space M. If (x,) is a convergent sequence in N (ie z,, € NVn
and dx € N s.t. x, — x), then (z,,) is also convergent in M. However, the converse is false e.g.
M =R, N = (0,0)

1
(—) is divergent in /N but convergent in M
n n

viii) Let (M, d) and (M’,d") be metric spaces and N = M@, M’ (p = 1,2 or oo). Let a,, = (2, yn) €
P
N Vn € N anda = (z,y € N) Then
ap —ain N < z, — 2 in M and y, — y in M’

Indeed, we have

max{d(mmx)) (yna )} doo (ana )
Sdp(ana )Sdl(anaa)

= d(xnv JL‘) + d/(yna y)
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2.4 Continuity

Definition. Let f : M — M’ be a function between metric spaces (M, d) and (M’,d’). For a € M,
we say f is continuous at a if

Ve > 030 > O0Vx € M d(z,a) <6 = d'(f(x), f(a)) <e
We say f is continuous if f is continuous at a for every a € M. Le.

VaVe > 036 > OVx € M d(z,a) < § = d'(f(x), f(a)) <e

Note. ¢ depends on ¢ and a (and f)

Prop 2.2. Let f: M — M’ be a function between metric spaces and let a € M. Then TFAE:
(i) f is continuous at a
(i) if ¢, — a in M then f(x,) — f(a) in M’

Proof. (i) = (ii): Assume z, - a in M. Let € > 0. We seek N € N s.t.
Vn = N d'(f(zn), f(a)) <e
Since f is continuous at a, there is a § > 0 s.t.
Vo € Md(z,a) <§ = d'(f(z), f(a) <e)

Since z,, — a, there is N € N s.t. Yn > N d(xy,,a) <. So Vn > N d'(f(z,), f(a)) < e
(i) = (i): We argue by contradiction. Assume f is not continuous at a. This means:

Je > 0V6 > 03x € M d(z,a) < 6, d'(f(x), f(a)) > ¢

Fix such a “bad” ¢ > 0. Then Vn € N dz,, € M
1
d(zn,a)M — and d'(f(zn), f(a)) > €
n

Then z, — a in M but f(z,) 4 f(a) in M X

Prop 2.3. Let f, g be scalar functions on a metric space M. Let a € M. If f, g are constant at a,
then so are f + g and f-g. Moreover, letting N = {z € M : g(z) # 0} and assuming a € N, we gave
f/g: N — C is continuous at a. So if f, g are continuous, then so are f + g, f - g and f/g

Proof. Assume z,, — a in M. Then

(f - 9)(@n) = fzn) - g(2n) = f(a) - g(a) = (f - 9)(a)

This uses previous proposition plus TA analysis. So by Prop 2 again, f - g is continuous at a.
Similar argument for f 4+ ¢g and f/g

21



Note. If f : M — M’ is continuous then for any sequence (z,) in M, if (z,) is convergent in M,
then f(x,)) is convergent in M’ and

n— oo n—oo

Prop 2.4. Let f: M — M’ and g : M’ — M" be functions between metric spaces. Let a € M. If
F is continuous at a and g is continuous at f(a) then go f : M — M" is continuous at a. If f, g are
continuous, then so is g o f

Proof. Fix ¢ > 0. We seek § > 0 s.t. Vz inM if d(x,a) < § then d’(g(f(z)),g(f(a))) < e.
Since g is continuous at f(a), there is n > 0 s.t.

Vy € M'd'(y, f(a)) <n = d"(9(y),9(f(a))) <e
Since f is continuous at a, there is § > 0 s.t.
Vo € M d(z,a)M§ = d'(f(x), f(a)) <n

SoVx € M,d(z,a)Mé —> d"(9(f(x)),9(f(a))) <&

Examples. (i) Constant functions: f: M — M', f(z) =bVx € M Then d'(f(z), f(a)) =0 Vz €

M. So Va € MVe > 0, any § > 0 will do

(ii) Identity functions f: M — M, f(z) = . Then d(f(z), f(a)) = d(z,a) so Va € M,¥e >0 =¢
will do

(iii) Using prop 3 and the two examples above, we get all real and complex polynomials are constant
as are rational functions. Using uniform convergence, uniform limits of such functions are also
continuous e.g. exp, sin, cos etc.

(iv) Let (M,d) be a metric space. Then d is itseld a function between metric spaces:

d:Me&, M >R (p=1,2, or o)
Given v = (z,2') nad w = (y,y') in M &, M,

d(v) — d(w) = d(z,2") — d(y,y') < d(z,y) + d(z',y) = d1(v,w) < 2dp(v, w)

Definition. Let f: M — M:; be a function between metric spaces. Then f is
(i) Isometric if

Va,y € M d'(f(z), f(y)) = d(=,y)
(i) Lipscitz 3C € R Vz,y € M
d'(f(x), f(y)) < Cd(z,y)

(iii) Uniformly continuous if

Ve > 036 > 0Vz,y € M d(z,y) <d = d'(f(z), f(y)) <e

Note. (i) Isometric = Lipschitz = uniformly continuous = continuous E.g. if N C M,
the inclusion i : N — M, i(z) = z is isometric but not surjective (unless N = M). An isometric
and surjective map is an isometry. If 3 isometry f: M — M’, say M and M’ are isometric
(or M; is an isometric copy of M)
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Examples. (v) Let (M,d),(M’,d") be metric spaces, fix y € M'. Define f: M — M &, M', z —

(z,y)
M’y
(z,y)
—y. @ M x {y}
. d

dp(f(x>7f(z)) = dp((mvy)? (Zay)) = d({E,Z)
so f is isometric and M X {y} is an isometric copy of M in M &, M'.
E.g fixa = (a,...,a,) € R,

T (a1, A1, Ty Qi 1y - -, Q) i R 5 R?

is isometric
(vi) Consider the projections
q: M@, M = M, q(z,y) =z

¢ Mo, M - M, ,{(z,y)=y
d(q(x,y),q(m’,y/)) = d(:l?,:L‘/) S dp((xyv (x/,y/)))

So g is 1-Lipschitz, as is ¢’
E.g. C" = C, (z1,...,2n) = 2i is continuous therefore polynomials in any number of variables
are continuous (prop 3)

2.5 The Topology of a Metric Space

Definition. Let M be a metric space, x € M,r > 0. The open ball in M of centre z and radius r
is the set
D,.(z)={ye M :d(y,z) <r}

Note. z,, = x in M iff Ve > 03N € NVn > N z,, € D.(z). Given f: M — M’

f is continuous at x <= Ve > 030 > 0 f(Ds(z)) C D:(f(z))

Definition. The closed ball in M of centre z and radius r(r > 0) is the set

B (r)={y € M :d(y,x) <7}
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Examples. (i) InR
D,.(z)=(x—r,z+7)

IE5: ) = | = 77,40 == i
(ii) In (R?,d,) p=1,2 or co) consider

AN
W,

2

B1(0) = {z € R?|d,(x,0) = [lzfl, < 1

la| + o] < 1

dq
max{|z], |y|} <1

Note.
D, (z) C By(x) C Ds(x)Vr < s

(iii) If M is a discrete metric space then for x € M

Dy(z) = {z}, Bi(z) =M

Definition. Let M be a metric space and U C M. For € M say U is a neighbourhood of z in
M if3r >0 D,(z) CU

(<= )3r>0B,(z) CU

We say U is open in M (or that U is an open subset of M) if

Ve e Udr >0 D.(x) CU

(i.e. U is neighbourhood of all its points)
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Examples. (i) D,(z) nad B.(z) are neighbourhoods of z
(i)
H={zeC: Imz >0}
Let w € H then 6 = Imw.
If § > 0 then Ds(w) C H.
If § =0 then Vr > 0 D, (w) ¢ H. H is not open.

Lemma 2.5. Open balls are open

Proof. Consider D, (x) in a metric space M. Need:
Yy € D,(x)30 > 0: Ds(t) C D,(x)
Let y € D,(z). Set 6 =7 — d(z,y). Then § > 0. If 2z € Ds(y) then

d(z,x) <d(z,y) +d(y,z) <d+d(y,z) =7
So x € D, (x). This shows Ds(y) C D,(z)

Corollary 2.6. Let M be a metric space, U C M,z € M. Then U is a neighbourhood of x <= 3
open subset V of M st. x eV C U

Proof. = : B by definition 3r > 0 D,.(z) C U. By lemma 5 V = D, () is open in M and
zxeV cl.

—:ifx € V C U and V is open, by definition 3r > 0

D.(z)CV

So D,(z) C U and so U is a neighbourhood of =

Prop 2.7. In a metric space M, TFAE
(i) zp —
(ii) V neighbourhoods U of z € M3AN € NVn > N z, € U
(iii) V open subsets U of M with x € U, IN e NVn > N z,, € U

Proof. (i) = (ii): Let U be a neighbourhood of = in M. By definition 3¢ > 0 D.(z) C U.
Since x,, = AN e NVn > N d(x,,z) < € ie. x, € D.(x) soVn > N z, € U.
(ii) = (iii) Clear since any open set U with = € U is a neighbourhood of z.

(i) = (i) Fix e > 0. By lemma 5 U = D.(z) is open and z € U. By (iii) 3N € N ¥n >
N z)n €U ie.

d(xn,z) <e
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Prop 2.8. Let f: M — M’ be a function between metric spaces.

(i) For x € M TFAE
(a) f is continuous at z
(b) V neighbourhoods V of f(z) in M’ 3 neighbourhood U of z in M s.t. f(U) CV
(¢) V neighbourhoods V of f(x) in M’. f~1(V) is a neighbourhood of = in M.

(i) TFAE
(a) f is continuous
(b) f=1(V) is open in M V open subsets V of M’

Proof. (a) (if = (ii) Let V be a neighbourhood of f(z) in M’. By definition
Je > 0 D(f(z)) C V. Since f is constant at &, 30 > 0 f(Ds(z)) C D.(f(z)). Then
U = Ds(z) is a neighbourhood of x € M and f(U) C V.
(i) = (iii): Let V be a neighbourhood of f(z) in M’'. By (ii) 3 neighbourhood
Uof zin M st. f(U) C V. Then U C f~1(V) and since U is a neighbourhood of
x € M, dr > 0.

D,(z) cUC f(V)

Thus f~1(V) is a neighbourhood of z in M.
(iii) = (i): Given ¢ > 0, V = D.(f(z)) is a neighbourhood of f(x) in V. By (iii)
f~1(v) is a neighbourhood of z in M. So 35 > 0

Ds(x) € f7H(V)

Thus
f(Ds(x)) CV = Dc(f(z))

(b) (i) = (ii) Let V be open in M’. Let ¢ € f~1(V). Then f(z) € V. Since V is open
Je > 0 D.(f(z)) C V. Since f is continuous at , 36 > 0 f(Ds(z)) C D.(f(z))

. Ds(e) C fTHDe(f(x))) € f7HV)
Then f~1(V) is open in M.
(i) = (1): Let x € M, let € > 0. Then V = D.(f(x)) is open in M’ by lemma 5.
By (ii) f~1(V) is open in M. Also, z € f~*(V) as f(z) € V. By definition 3§ > 0 s.t.
Ds(z) C f7H(V)

= f(Ds(x)) €V = De(f(2))

Definition. The topology of a metric space M is the family of all open subsets of M
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Prop 2.9. The topology of a metric space satisfies the following
(i) @ and M are open
(ii) If U; is open in M Vi € I, then | J,;.; U; is open in M
(iii) U,V openin M = U NV open in M

Proof. (i) Clear

(ii) Given = € U;c; Ui, Jio € I s.t. x € Us,. Uy, is open so by definition, Ir > 0 s.t.

D,—(l‘) C Uio C U U;
el

(iii) Given z € UNV, since U is open and & € U, Ir > 0 s.t. D,(z) C U and since V is open
and x € V, 3s > 0s.t. Dg(x) C V. Let t = min(r, s) then ¢ > 0 and

Dy(xz) = D,(x) N Ds(x) cUNV

Definition. A subset A of a metric space M is closed in M (or is a closed subet of M) if for
every sequence (z,) in A that is convergent in M, we have lim,_, . z, € A

Lemma 2.10. Closed balls are closed
Leinina- LS al

Proof. Consider V,.(z) ={y € M : d(y,z) < r} in a metric space M and a sequence (z,) in
B, (z) s.t. , = zin M. We need z € B,.(z). We need z € B,.(z)

d(z,z) < d(z,2n) + d(xn,x) < d(z,2,) + T — T asn — 00

cSod(z) <7

and hence z € B,(x)

Examples. (i) [0,1] = B;/5(1/2) is closed in R. [0, 1] is not open e.g. D,.(0) ¢ [0,1] for any » > 0
(ii) (0,1) = Dy/5(1/2) is open (Lemma 5). (0, 1) is not closed:

1

n_—|—1 € (0, 1)Vn eN

but

in R 1
n+1—>01n ,0& (0,1)

(iii) R is opena nd closed in R.
(iv) (0,1] is neither open nor closed. Trivial check
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Lemma 2.11. Let A be a subset of a metric space M. Then A is closed in M <= M\A is open
in M

Proof. = : Assume A closed, M\ A is not open. So 3z € M\A Vr >0
D,.(z) ¢ M\A, D.(x)NA#@

Hence Vn 3z, € Dy/,(z) N A. Then d(z,,z) < 1/n — 0, so ,, — z on M and z, € A Vn.
Contradiction as A is closed.

< : Assume M\A is open but A is ot closed. So 3(z,) in A s.t. z, — = in M but = € A.
Since z € M\ A and M\ A is open

3 > 0D.(z) C M\A

Since z, — z,AN € NVn > N x,, € D.(z) and hence z,, € M\A

Example. Let M be a discrete metric space. Let A C M. Then Vx € A
Di(z)={z} C A

So A is open. So every subset of M is open in M, and hence every subset of M is closed in M by
lemma 11

Definition. A map f : M — M’ between metric spaces is a homeomorphism if f is a bijection
and f and f~! are both continuous. Equivalently, f is a bijection and V open sets V in M’, f=(V)
is open in M and V open sets U in M, f(U) is open in M’ (prop 8). If 3 a homeomorphism between
M and M’', we say M and M’ are homeomorphic

L

Example. (0,00) and (0,1) are homeomorphic. x — =5,

Tz 1 -1
x

Note. (i) Every isometry is a homeomorphism. Converse is false
(if) Id:(R, discrete) — (R, euclidean) is continuous bijection whose inverse is not continuous

Definition. Let d and d’ be metrics on a set M. We say d and d’ are equivalent (write d ~ d') if
they define the same topology on M. (i.e. for U C M, U is open in (M, d) iff U is open in (M, d’)).
Sod~d <= 1d: (M,d — M,d") is homeomorphism.

Note. If d ~ d’ then (M,d) and (M,d’) have the same convregent sequences and the same
continuous maps.
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Definition. Let d and d’ be metrics on a set M. Say d and d are uniformly equivalent if
Id:(M,d) — (M,d") and Id: (M,d') — (M, d) are uniformly continuous. We write d ~,, d’. Say d and
d' are Lipschitz equivalent if Id:(M,d) — (M,d’) and Id: (M,d’) — (M,d) are Lipschitz maps.
We write d ~r;p d’

Note. d ~rip d’ iff 3a > 0,b > 0 s.t.

ad(z,y) < d'(z,y) < bd(x,y) Yo,y € M

Note. d~pipd = d~pd = d~d

Examples. (i) Given metric space (M, d)

d'(z,y) = min{1, d(z,y)}

defines a metric on M and d’ ~,, d.
(ii) On a product space M x M’, dy,ds and d, are pairwise Lipschitz equivalent
(iii) On C[0,1], the Ly-metric and the uniform metric are not equivalent, e.g. fn(z) = 2™, n € N,z €
[0,1] has d,, — 0 in the L;-metric but (f,) is not convergent in C[0, 1] in the uniform metric.
(iv) The discrete and euclidean metrixs on R are not equivalent
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3 Completeness and the Contraction Mapping Theorem

Remark. Recall: in R and C, every Cauchy sequence is convergent. A sequence (z,) in R or C is
bounded if 3C € RT Vn € N |z,| < C.

Definition. A sequence (z,) in a metric space M is Cauchy if
Ve > 03N € NVm,n > N d(xpm,z,) < &

bounded if
dz € M3r > 0¥n x,, € B,.(2)

Note. (x,) is bounded <= Vz € M3r > 0Vnz, € B)r(z). Assume there is z € M,r > 0
s.t. Vnx, € B.(z). Given w € M, let R =r + d(z,w). By A-inequality

B,(z) C Br(w)

o e.g. in R*,C" or Cla,b] if the metric comes from a norm || - ||, then (x,) is bounded
< 3C e R" ||z,|| S C Vn

Lemma 3.1. Convergent —> Cauchy = bounded

Proof. Let (x,) be a sequence in a metric space M. If (x,) is convergent in M, let x =
lim,, o . Given € > 0, we have N € N s.t.

Vn > N d(zy,,z) <e

Then
Vm,n > N d(zm, zn) < d(@m,z) + d(x, z,) < 2

So (z,) is Cauchy.
Now assume (z,,) in M, there is N € N s.t.

VYm,n > N d(zm,z,) <1

Let r = max{d(z,zn),d(z2,2N),...,d(xN-1,2N),1}. Then x, € B,.(zn) for all n € N. So
(z,) is bounded

Note. Bounded does not imply Caucy e.h. 0,1,0,1,0,1,... in R.
Cauchy does not imply convergeny e.g. x,, = 1/n in (0, 00)

Definition. A metric space M is complete if every Cauchy sequence in M converges in M

Example. R and C are complete
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Prop 3.2. If M, M’ are complete metric spaces, then so is M &, M’ (p=1,2,00
j2

Proof. Let (a,) be a Cauchy sequence in M &, M'. Write a,, = (2, x},) where z,, € M,z €
M’ (neN).
Given ¢ > 0, there is N € NVm,n > N d,(am, an) < e. Then Ym,n > N

d(Tm, Tn) < max{d(Tm,xn),d (z,,2)} < dp(am,a,) < e

So (xy,) is Cauchy in M, similarly (z},) is Cauchy is M’.

n
Since M, M’ are complete, (z,) and (x],) are convergent in M, M’ respectively to, say, « and
a’ respectively. Set a = (z,2’). Then
dp(an,a) < di(an,a) = d(zy,z) +d'(z),z') = 0asn — oo

So a, = ain M @&, M’

Note. (a,) is Cauchy in M &, M’ < (z,) Cauchy in M and (z},) Cauchy in M’

Corollary 3.3. R™ and C" are complete in the /,-metric for p = 1,2, co. In particular, n-dimensional
real or complex euclidean space is complete.

Theorem 3.4. Let S be any set, then [, (.5) is complete in the uniform metric D

Proof. Let (f,) be a Cauchy sequence in [, (S). Given € > 0, there is N € N s.t. Vm,n > N
D(fm7fn) = Sup |fm(x) - fn(m)| <e
€S

ie. Vm,n > NV € S |fm(xz)— fu(z)| <e. So (f,) is uniformly Cauchy as defined in Chapter
1. By Theorem 1.6, (f,) is uniformly convergent. So there’s a calar function f on S s.t.
fn — f uniformly on S. By lemma 1.2, f is bounded, i.e. f € I,(S). Given € > 0, there is
NeN

Yn> NV e |fulz)— flz) <e

SO
Vn > N sup|fn(z) — f(2)| = D(fn, f) <€

€S

So fn = f in (I (S), D)

Prop 3.5. Let N be a subspace of a metric space M.

(i) If N is complete, then N is closed in M

(i) If M is complete and N is closed in M, then N is complete
So in a complete metric space, a subspace is complete iff closed.

Proof. (i) Let (z,) be a sequence in N and assume x,, — x in M. We need: = € N.
(x) is convergent in M, so (x,) is Cauchy in M (Lemma 1) so (z,) is Cauchy in N.
Since N is complete z,, — y, say in N. So x,, > yin M. Thusz =y € N
(ii) Let (z,,) be a Cauchy squence in N. Then (z,) is Cauchy in M. Since M is complete,
Ty, — x in M for some x € M. Since N is closed in M, we have x € N so x,, — x in N.
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Definition. Let (M, d) be a metric space. Define
Cp(M) ={f € lo(M) : f is continuous}

This is a subspace of I (M) in the uniform metric D.

Theorem 3.6. Cy(M) is complete in the uniform metric

Proof. By Theorem 4 and Prop 5 (ii), it is enough to show that Cy(M) is closed in I (M).
So let (f) be a sequence in Cp(M) and assume f, — f in loo(M). We need: f is continuous.
Fix a € M and € > 0. Same 3¢ proof works as in section 1.

Corollary 3.7. Cfa,b], the space of continuous functions on the closed bounded interval [a,b] is
complete in the uniform metric

Proof. Cla,b] = Cy[a,b] from IA Analysis

Definition. Let S be a set and (IV, e) be a metric space. Let
loo(S,N) ={f:S — N : f is bounded}

f is bounded if 3y € N,r > 0s.t. Vo € S f(x) € B, (y).
If g: S — N is aother bounded function, say Vz € S g(z) € Bs(z) for some z € N,s > 0 then Vx € S

e(f(2), 9(z)) < e(f(2),y) +e(y,2) +e(z,9(2) <7 +e(y,2) +s

So sup,cge(f(x), g(z)) exists and we denote this by D(f, g). It’s routine to verify that D is a metric,
called the uniform metric on I (S, N).

Definition. Now assume S = M, where (M, d) is a metric space. We define
Co(M,N)={f: M — N : f is continuous and bounded}

Note that C,(M, N) is a subspace of lo (M, N) with the uniform metric
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Theorem 3.8. Let S be a set, (M, d) and (NN, e) be metric spaces. Assume (NN, e) is complete. Then
(i) loo(S, N) is complete in the uniform metric D.
(ii) Cy(M, N) is complete in the uniform metric D

(i)

Proof. (i) Let (f,) be a Cauchy sequence in I (S, N). We show (f,,) is pointwise Cauchy.

Fix x € §. Given € > 0, there is K € Ns.t. Vi,j > K

D(fi, fJ) <e

In particular, e(f;(z), fj(z)) < D(f;, f;) <e fori,j > K.
So (fx(z))ken is Cauchy in N. Since N is complete, it’s convergent in N. This holds for
every x € S, so we can define f: S — N

f(z) = lim fi(x)

k—o0

First we show f is bounded, i.e. f € lo(S, N). Since (fx) is Cauchy in D, there is a
K e Nst. Vi,j > K D(f;,f;) < 1soVi > K D(fi, fx) < L.
fx is bounded so Jy € N,r > 0Vz € Sfg(x) € B.(y). Fix x € S. Vi >
K e(fi(x), fx(z)) < D(fi, fx) < 1. Letting ¢ — oo

e(f(z), fr(x)) <1

So e(f(x),y) < e(f(x), fx(x)) + e(fr (x),y) <1 +7.

Hence f(z) € By41(y). This holds for every = € K, so f is bounded.

Finally, we prove fi, — f in D. Given e > 0 ,thereis K € Ns.t. Vi,j > K, D(f;, f;) < e.
Fixi > K, fix x € S. Then

Vi > K e(fj(x), fi(x)) < D(fi, f3) <e

Letting j — o0,
e(f(z), fi(z)) < e
x was arbitrary so D(f, f;) < e. This holds for every i > K.
By part (i) and prop 5 (ii), enough to show that C,(M, N) is closed in (M, N).
So let (fx) be a sequence in Cy(M, N) and assume fx — f in (M, N). We need: f is
continuous. Fix a € M, and use 3¢ proof.

Definition. A function f : M — M’ between metric spaces is a contraction mapping if 3,0 <

A <1s.t.

Voz,ye M d(f(z), f(y)) < Ad(z,y)

i.e. f is A-Lipschitz, so contraction
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Theorem 3.9 (Contraction mapping Theorem, CMT, or Banach’s fixed point theorem). Let M be
a non-empty, complete metric space and f : M — M a contraction mapping. Then f has a unique
fixed point, i.e., 3 unique z € M s.t. f(z) =z

Proof. Let X be such that 0 < A\ < 1 and

Vo,y € M d(f(x), f(y)) < Ad(z,y)

. Uniqueness: If f(z) = z and f(w) = w, then
d(z,w) = d(f(2), f(w)) < Ad(z,w)

Since A < 1, we have d(z,w) =0 ie. z=w.
Existence: Fix xg € M and set z,, = f(z,—1) for n € N, i.e.

zn = (S (.- (f(20))))
———

n times

(Our idea is to have z = f°°(z) then f(z) = z)
FixneN

d(Tn, Tnt1) = d(f(@n-1), f(@n)) < Ad(Tn-1,T5) < -+ < A"d(20,71)

For m >n

n

1—A

mi m—1
d(Tp, Tm) < Zd(mk,ka) < Z Md(xg,21) < d(zo, 1)
k=n k=n

Since A" /(1 — AN)d(zg, 1) — 0, given € > 0, IN e NVn > N

)\n
1—A

d(l’o,xl) <eg

SoVm >n > N, d(xy, Tm) < . We proved (x,,) is Cauchy.
M is complete so x,, — z, say, in M as n — oco. f is continuous, so f(z,) — f(z)
Also f(xn) = Tpe1 — 2 thus f(2) = 2.

Remarks.
(i) Letting m — oo in the inequality for d(z, z, ), we get

)\TL

1-A

d(l’n,Z) S d(iﬂo,l’l)

So z,, — z exponentially fast.
(i) f:R\{0} — R\{0},  — 5 is a contraction (A = 1/2), but has no fixed point
(iii) f:R = R, ¢+ z+1 is isometric (A = 1), but not fixed point f : [1,00) = [1,00], z— z+1/z

Vr,y € [1,00),z #y, |f(x) = fy)] < |z -yl

[1,00) is closed in R therefore complete
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Example. An application: let yg € R. The initial value problem
F'(t) = f(t%), f(0)=yo

has a unique solution on [0,1/2] i.e. 3 unique differentiable function f :[0,1/2] — R s.t. f(0) = yo
and f'(t) = f(t?) Vt € [0,1/2].
e If f is a solution, then f € C0,1/2] and FTC, it satisfies

f@=m+£f@ﬂs

(note: f’(s) = f(s?) is continuous)
Conversely, if

f € X[0,1/2] and f(t) = tg +/0t f(s*)ds Vt € [0,1/2]

then f is a solutoin to the initial value problem.
e Let M = C]0,1/2] with the uniform metric. This is non-empty and complete (cor 7). Define
T:M — M, g— Tg where

H@@=m+éﬂﬁ®J€MUﬂ

Tg is well-defined as s + g(s?) is continuous and by FTC we have Tg differentiable and
(Tg)'(t) = g(t?). So Tg € M. Step 1 says: f is a solution to the IVO <= fe M and Tf = f
e T is a contraction. Let g,h € M. For ¢t € [0,1/2],

I(Tg)(t) — (Th)(t)] = I/ g(s*) —h(s®)ds| <t- sup |g(s®) — h(s%)| < %D(g,h)
0 5€[0,1/2]

sup over t yields
1
D(Tg,Th) < 5D(g,h)

e By CMT, T has a unique fixed point, so by step 2, IVP has unique solution

Remark. The above shows that for any ¢ € (0,1), there is a unique solution to the IVP on [0, d] -
call this f. For 0 <0 < p <1, fulj0,5) = fs by uniqueness. So the IVP has unique solution on [0, 1).
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Theorem 3.10 (Lindelof-Picard). We are given n € N, a,b, R € R with a < b, R > 0 and a continuous
function
¢ : [a,b] x Br(yo) = R"

where yg € R™. We assume that 3K > 0 s.t.
vt € [a,b] Va,y € Br(yo), llo(t,x) — ¢(t,y)|| < Kllz -yl
Then Je > 0 s.t. for any ¢y € [a, b] the IVP
f'(t) = o(t, £(t)) and f(to) = yo

has a unique solution on [¢,d] = [ty — &,t0 + €] N [a, ]
In other words, there is a unique differentiable function f : [¢,d] — R™ s.t. f'(t) = @(¢, f(t)) Vt € [z, d]
and f(to) = yo

Proof. By lemma 2.10, Br(yo) is closed subset of R™ so ¢ is a continuous function on the
closed and bounded set [a,b] X Br(yo), and hence ¢ is bounded.

Set C' = sup{||p(t,z)|| : t € [a,b], x € Br(yo)} and set ¢ = min(R/C,1/(2k)). We will show
this works. Fix ¢y € [a,b] and let [¢,d] = [to —¢,to+¢] N[a, b] We need: 3 unique differentiable
e, d = R™ st f(to =yo) and f/(t) = (¢, f(t)) Vt € [c,d]

Since Vg (yo) is closed in R™ and since R™ is complete, by prop 5 (ii), Br(yo) is complete.
By theorem 8, M = C([c,d], Br(yo)) is complete in the uniform metric D. Also M # @&. Then
f is a solution of the IVP avove iff f € M and

f@=m+/¢@ﬂm®

to

This follows from the FTC (applied coordinate wise)
We define T: M — M, g~ Tg where

am@=%+lw@mmmweMﬂ

We show that T is well defined: s — ¢(s, g(s)) is continuous so integrable and by FTC, Tg is
differentiable and

(T9)'(t) = ¢(t,9(t)) Vt € [c,d
so in particular T'g : [c,d] — R™ is continuous. Finally, for ¢ € [c, d]

1(Tg)(®) — yoll = II/t p(s,9(s)) ds|| <[t —tol| sup [o(s,9(s))| <e-C <R

s€c,

So T'g € M. By the earlier observation, f is a solution of the IVP <= f & M and Tf = f.
T is a contraction: Let g,h € M. For t € [c,d]

(ITg)(#) = (Th)B)I| = | t p(5,9(s)) = p(s, h(s)) ds|

Note
lo(s,9(s)) — @(s, k()| < K - [lg(s) — h(s)|| < K - D(g,h)

So
[(Tg)(®) — (Th)()|| < [t —to| - K - D(g, h) < eLD(g,h)

Take sup over all ¢ € [c, d]

D(Tg,Th) < eKD(g,h) < 5D(g,h)

N | =

Finally by CMT, T has unique fixed point in 3.




Notes.
(i) Tosay f is a soltion of the IVP above implicitly includes the assumption that f(¢) € Br(yo)Vt €
[c,d]
(ii) Given a function f : [¢,d] — R", let f : [c,d] — R be the kth component of f, 1 < k < n. Le.
fk Z(Ikof7 where dk :R™ _>R7 (ylv"'7yn) = Yk-
S0 £(t) = (F1(8), folt)s- - fal£)) ¥t € [1.d].
f is differentiable iff each fy is differentiable and

@) = (F1@®),d5(t), ..., fu (1)), T € [e,d]

If f is constant, then so are fr and hence each fj is differentiable. We define fcd f(t)dt to be
the elment v = (v1,va,...,v,) € R™ where

d
’UkI/ fk(t) dt

n n d d n
||v||2zzvzzzvk-/ fk(t)dtz/ > v fu(t)dt
k=1 k=1 ¢ ¢

k=1

d d
— ol < [ el = ol [ s
We proved that

d d
I [ s < [l <@-o- s 70l

t€le,d]

Remarks.
(i) For any S € (0, 1), taking e = min(R/C,d/K) works. It follows that with ¢ = min(R/C,1/K),
the IVP f/(t) = ¢(¢, f(t)) and f(to) = yo has unique solution on ({9 — &,%o + ) N [a, b]
(ii) In general there’s no solution on [a, b]
(iii) Theorem 10 can handle nth order ODEs for any n € N (see pdf on lecturer webpage)
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4 Topological Spaces

Definition. Let X be a set. A topology on X is a family 7 of subsets of X (i.e. 7 C P(X)) s.t.
(i) g, Xer
(i) if U; € 7 Vi € I (I is some index set), then

UUiGT

(iii) U,V erthenUNV e
A topological space is a pair (X, 7) where X is a set and 7 is a topology on X. Members of 7 are
called open sets of the topology. So U C X is open in X (or is an open subset of X) if U € 7. We
sometimes say that U is 7-open

Note. If U; e 7 for i = 1,...,n then

n
ﬂUz eET
i=1

Examples. (i) Metric topologies: Let (M, d) be a metric space. Recall U C M is open in the
metric sense if Vo € U Ir > 0 B,.(x) C U. We sometimes say U is d-open. Prop 2.9 we proved
that the family of d-open sets is a topology on M

Definition. Let (X, 7) be a topological space. Say X is metrisable (or 7 is metrisable) if 3 metric
d on X s.t. 7 is the metric topology on X induced by d.

ILe. U C X is T-open <= U is d-open. If d’ is another metric equivalent to d then d’ also induces
the same topology I on X

Examples. (ii) The indiscrete topology on a set X is 7 = {@&, X}. If | X| > 2, then this is not
metrizable. Let d be a metric on X. Fix z # y in X and set r = d(z,y) and U = D,.(x). By
lemma 2.5, U is d-open, z € U but y € U so U & 7

Definition. If 71,75 are two topologies on a set X say 77 is coarser than 75 or that 75 is finer than
T1 if
71 C To

e.g. The discrete topology on X is the coarsest topology on X.

Examples. (iii) The discrete topology on a set X is P(X). This is the finest topology on X.
This is metrisable: by the discrete metric.
(iv) The cofinite topology on a set X is

7={@}U{U C X : U is cofinite in X}

When X is finite, 7 = P[X]. When X is infinitem then 7 is not metrisable. Let z # y in X and
assume x € U,y € V and U,V are open in X. Then U,V are cofinite, and hence U NV # &
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Definition. We say a topological space X is Hausdorff if Va # y in X 3 open sets U,V C X s.t.,
xeUyeV,UNV =g. (Wesay z,y are separated by open sets)

Note. The cofinite topology on an open set is not Hausdorff

Prop 4.1. Metric spaces are Hausdorff

Proof. Let x # y be points in a metric space (M,d). Let » > 0 be s.t. 2r < d(z,y). Set
U= D,(z), V= D,(y). Then U,V are open (lemma 2.5\m z € U,y € V andif z€c UNV
then

d(z,y) < d(z,z)+d(z,y) <7471 =2r <d(z,y)X

SoUNV =g

Note. This shows that the cofinite topology on an co is not metrisable

Definition. A subset A of a topological space (X, 7) is closed in X (or is a closed subet of X or
7-closed) if X\ A is open in X

Note. In a metric space, this agrees with the earlier definition by Lemma 2.11

Prop 4.2. The collection of closed sets in a topological space X satisfy the following:
(i) @, X are closed
(i) If A; is closed in X Vi € I, where I # @ index set, then )
(iii) If A, B are closed in X, then AU B is closed

i Ai is closed in X

Examples. (i) In a discrete topological space, every set is closed
(ii) In the cofinite topology on a set X, a subset A is closed iff A = X or A is finite

Definition. Let X be a topological space, U C X,z € X. We say U is a neighbourhood of z in X
if Jopenset Vin X s.t. z € V C U

Note. In a metric space, this agrees wiht the earlier definition by Corollary 2.6

Prop 4.3. Let U be a subset of a topological space X. Then U is open iff U is a neighbourhood of
x for every x € U

Proof. —: Let x € U. Then set V =U. Then V is open, x € V C U.
<= For each x € U, we can take an open set V, in X s.t. x € V,, C U then

U= U V. is open
zeU
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Definition. Let (z,) be a sequence in a top space X and let z € X. We say (2,) converges to x
(write x, — ) if
V neighbourhoods U of z in X, AN e NVn > N z,, € U

Equivalently (prop 3): V open sets U with x € U 3N e NVn > N x,, € U

Note. In a metric space, this agrees with the earlier definition by prop 2.7

Examples. (i) Eventually constant sequences: if 32 € X AN € N Vn > N x,, = z then z, — 2
(ii) In an indiscrete top. space, every sequence converges to every point
(iii) Consider a set X with the cofinite topology. Assume z, — z in X. If y # x then X\{y} is a
neighbourhood of z, so N, = {n € N : z,, = y} is finite.
Conversely, assume (z,,) a sequence in X s.t. for some € X Vy # x N, is finite. Then z,, — x.
Thus, if N, is finite Vy € X, then z, =y Vy € X

Prop 4.4. If z,, — z and x,, — y in a Hausdorff space, then = = y.

Proof. Assume x # y. Choose open sets U,V s.t. x € U,y € V,UNV = @. Since z, — x,
there is Ny e NVn > Ny x, € U. Since z,, — y, there is No € NVn > N5 z, € V. For any
n > max(Ny, N3), we have ,, e UNV

Remark. If z,, — x in a Hausdorff space, then we sometimes write x = lim,, o Zy,

Note. In a metric space, for a subset A, we have A is closed <= whenever z,, — x in the space
with x,, € A for all n, we have z € A
In a general topological space, “ = 7 is true, but “ <= " is not

Definition. Let X be a topological space and A C X. The interior of A in X (denoted A° or
int(A)) ot be
A® = int(A) = U{U C X :Uisopenin X,U C A}

We define the closure of A in X (denoted A or cl(A)) to be the set

f_l:ﬂ{FCX:FclosedinX,FDA}

Note. (i) A% is openin X, A° C A, moreover U is open in X and U C A, then U C A°. So A° is
the largest (wrt inclusion) open set contained in A
(ii) A is closed, A D A, moreover if F is closed in X and F' D A, then FF D A. So A is the smallest
closed set containing A
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Prop 4.5. Let X be a topological space and A C X. Then
(i)
A® = {z € X : Ais a neighbourhood of x}
(ii) ~
A = {z € X :V neighbourhoods U of z,U N A # @&}

Proof. (i) A is a neighbourhood of # <= Jopenset Ust. x €U C A > z¢€ A°
(i) Suppose z ¢ A. Then 3 closed set F D As.t. x ¢ F. Set U = X\F. Then U is open
and x € U. So U is a neighbourhood of z and U N A = &.
Suppose 3 neighbourhood U of x s.t. U N A = &. There is open set V s.t. x € V C U.
Then VNA=@. Set F = X\V. Then F is closed and A C F. Then A C F and so
g A

Examples. In R let A =[0,1) U{2}. Then A° = (0,1), A= [0,1] U {2}.

Q=0,0=R. Z2°=92,Z2=17

Note. In a metric space, for a subset A, we have r € A <= 3(x,) in A s.t. z,, — z. In a general
topological space, “ <= " is true, but “ =" is false

Definition. A subset A of a topological space X is dense in X if A = X. We say X is separable
if 3 countable A C X s.t. A is dense in X

Examples. R is separable as Q is dense in R and R™ is separable as Q™ is dense in R™. An
uncountable discrete topological space is NOT separable

4.1 Subspaces

Definition. Let (X, 7) be a topological space and Y C X. The subspace topology or relative
topology on Y induced by 7 is the topology

{VNY :V is an open subset of X}

on Y. We sometimes deonite this by 7|y. So for U C Y, U is open in U <= 3 open set V in X
such that U =V NY

Example. X =R, Y =10,2],U = (1,2]. UCY C X. UisopeninY eg. (1,3)is open in X and
U=vnY.
U is not open in X:

Vr>0{yeX:|ly—-2/<rtgU
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Remarks.

(i) A subset of a topological space will always be given the subspace topology unless written
otherwise stated

(ii) Let (X, 7) be a topological space and Z C Y C X. Two natural topologies on Z:
Think Z C X, Z has 7|z. Or think Z C Y, Z has (7|y)|z. These are the same.

(iii) Let (M,d) be a metric space and N C M. There are two natural topologies on N: think of N
on a metric subspace of (M, d) with the metric d|yxy which induces the metric topology on
N. Or, d induces the metric topology on M, which in turn induces the relative topology on N.
Reason: for z € N,r >0

{yeN:d(y,z)<r}, {ye M:d(y,z) <r}NN

Prop 4.6. Let X be a topological space, A CY C X.
(i) Aisclosedin Y <= 3 closed subset B of X s.t. A=BNY
(i)
Cly(A)=Cix(A)NY
(closure of A in Y)

Remark. (ii) is false for interior in general e.g. X = R,A =Y = {0}, inty (4) = A,
int x (A) =g

Proof. (i) If Ais closed in Y, Y\A is open in Y. So by def Y\A =V NY for some open
Vin X. Then B = X\V is closed in X and A= BNY.
If A=BnNY, B closed in X, then X\B is open in X, and hence Y\A = (X\B)NY is
open in Y.

(ii) Clx(A) is closed in X, so by (i), Clx(A)NY is clsoed in Y. Also, A C Clx(A)NY. So

Cly(A) C CL)((A) ny.
Also, Cly (A) is closed in Y, so by (i), Cly (A) = BNY for some closed set B in X. Then
A C B and B is closed in X, so Clx(A4) C B, and hence Cly (A) = BNY D Clx(A)NY

Note. U CY C X, Y isopen in X. Then U is open in Y <= U is open in X

4.2 Continuity

Definition. A function f: X — Y between topological spaces is continuous if V open sets V in Y,
f~1(V) is open in X.

Note. For functions between metric spaces, this agreeswith the e- definition of continuity by prop
2.8
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Examples. (i) Constant functions f : X — Y, for some yy € Y, we have Vo € X, f(z) = yo. For

any V C Y, we have
_ g y eV
=49 WF
X yeV

so f is continuous

(i) Identity f: X — X, f(x) =z. For VC X, f~Y(V) =V

(iii) Inclusion Y C X, i:Y — X, i(y) =y Vy € Y. For open set V in X, i~1(V) =V NY which is
open in Y by definition. If g : X — Z is continuous, then gy = g o4 is continuous (see next
prop)

Prop 4.7. Let f: X — Y be a function between topological spaces
(i) f is continuous <= V clsoed sets B in Y, f~!(B) is closed in X
(ii) If f is continuous and g : Y — Z is another continuous function, then g o f is continuous

Proof. (i) Forany D C Y, f~}(Y\D) = X\f~ (D). Now use the fact that A C X (or Y)
is open in X (resp V) <= X\A (resp Y\A) is closed in X (resp Y)
(ii) If W is an open subset of Z, then g~!(W) is open in Y since g is continuous, and
f~1(g=*(W)) is open in X since f is continuous. So f~ (g~ (W)) = (go f)"1 (W) is
open in X. Thus g o f is continuous

Remark. There is a notion of continuity at a point (Kelly: General Topology)

Definition. A function f : X — Y between topological spaces is a homeomorphism if f is a
bijection and both f and ! are continuous. If such f exits, we say X and Y are homeomorphic.
A property P of topological spaces is a topological property or topological invariant if V pairs
X,Y of homeomorphic topological spaces X has P <= Y has P

Examples. (i) Being metrizable
(ii) Being Hausdorff
(iii) Being complete metrixable is NOT a topological invariant. E.g. on R3 metrics d,d’ s.t. d ~ d/,
d is complete, d’ is not

Note. If f: C — Y is a homeomorphism, then for an open set U in X, f(U) = (f~1)~*(U) is open
in Y since f~!:Y — X is continuous

Definition. A function f: X — Y between topological spaces is an open map if V open sets U in
X, f(U) is open in Y

Note. f: X — Y is a homeomorphism <= f is a continuous and open bijection
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4.3 Product Topology

Moral. Let X,Y be topological spaces, we want to define a topology on X x Y. We want if
U open in X, V open in Y, then U x V open in X XY Have & = g x @, X XY = X xY,
UxVnU xV' =UnU)x VNV’

A
QT T T T
~— R I
| | | ]
| |__|___J
| |
A e — == = 1
e e >
{ { -

We also declare unions Uiel Ur x V; where U; open in X, V; open in Y Vi € I open in X XY

Definition. The product topology on X x Y consists of all sets of the form J;.; U; x V;, where
I is arbitrary, Vi € I U; open in X and V; open in Y. This is a topology on X x Y

Note. For W C X x Y, we have W is open <= Vz € W3 open sets U in X, V in Y s.t.
ZeUxV CcW. For WcC XxY and z = (z,y) € X xY, W is a neighbourhood of z < 3
neighbourhood U of z in X, Vofyin Y st. UxV CW

Example. Let (M,d), (M’',d") be metric spaces. We have a metric do, on M x M:

doo((.iL’, 1’/), (Y, yl)) = max{d(ac, ), dl(xlv yl>}

This induces the metric topology on M x M’'. Also M and M' are topological spaces with their
metric topologies, which in turn gives the product topology on M x M'. For z = (z,z') € M x M’
and r >0

D, (2)

{(y,y") e M x M" : dos((y, 1)), (2, 2")) < 1}
{(y,v) € M x M' : d(z,y) <r,d(z',y) <r}
D, (z) x D,(z")

Remark. Let W C M x M’. Then W is open in the product topology < Vz = (z,2') € W 3
open sets U in M, U" in M’ s.t. (z,2') e U xU' CW <= Vz=(x,2') € W Ir >0 s.t.

D, (z) x D.(z') c W

<= W is ds-open
E.g. the product topology on R x R is the Euclidean topology on R2
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Prop 4.8. Let X,Y be topological spaces and let X x Y be given the product topology. Then the
coordinate projections
gx : X XY = X, (z,y) — z

and
@y X XY =Y, (z,y) =y

satisfy the following;:
(i) gx, gy are continuous
(ii) if Z is any topoogical space and g : Z — X x Y is a function, then g is continuous <=
gx © g,qy © g are continuous

Proof. (i) If U is open in X then ¢' (U) = U x Y is open in X x Y so gx is continuous.
Similarly, gy is continuous
(ii) “ =7 follows from (i) and the fact that composite of continuous functions are contin-
uous.
“<="Leth=qxo0g9g:Z—>X,k=qyog:Z—Y so

9(z) = (M2),k(z)), z€ Z
we assume that h, k are continuous. For open sets U in X, V in Y, we have

2€g U XV) < gz) eUxV
<~ h(z) €U, k(z) eV
= zeh N U)NE (V)

Sog Y (UxV)=h"Y({U)Nk~1(V) is open in z as hk are continuous. Given an arbitrary
open set S in X x Y, we have W = U;c;U; x V; where U is an index set, U; is open in
X, Viisopenin Y Vi € I

gt (W) = U g1 (U; x Vj is open in X x Y by above
i€l

Remark. Givenn € N and topological spaces X7, ..., X, the product topology on X = X7 x---x X,
consists of all unions of set sof the form U; x --- x U,, where Uj is open in X forall j =1,...,n. If
X is metrisable with metrice;, 1 < j < n, then the prfuct topology on X is metrisable e.g. with

doo((24), (y5)) = e ej (x5, 95)

Tje ama;pgie prop 8 holds

45




4.4 Quotient Spaces

Definition. Let X be a set and R an equivalence relation on X. This means R C X x X (write
xy instead of (z,y) € R) s.t.
(i) R is reflexive Vz € X,z ~ z

(ii) R is symmetric: Yo,y € X,z ~y = y~x

(iii) R is transitive: Va,y,z € X,z ~y,y ~ 2 = x ~ 2
For z € X, let q(z) = {y € X : yz} called the equivalence class of x. These partition X. Let X/R
denote the set of all equivalence classes. The ¢ : X — X/R, = — ¢(z) is called the quotient
map.

Definition. Now assume X is a topological space. The quotient topology on X/R is
{V.c X/R:q (V) is open in X}

Indeed this is a topology
(i) ¢ *(2) = @ is open in X, so & is open in X/R

¢ 'X/R= X isopen in X = X/R is open in X/R

(if) Suppose V; is an open subset of X/R Vi € I, then

qfl(U Vi) = U g *(V;) is open in X

i€l i€l

since by definition, each ¢~1(V;) is open in X
(iii) ¢ 2 (UNV)=q¢ Y U)Ng (V) is open in V if U,V are open in X/R

Remarks.
(i) ¢: X — X/R is continuous
(ii) Let z € X,t € X/R. z €t < t=¢q(z). For V.C X/R

V) ={z e X :q(x) eV}
={zeX:FHeVit=qx)}
={zeX:FHeVret}

:Ut

teV

X/R
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Examples. (i) R is also a group under +. Z < R, have the quotient group R/Z. This is the set
of equivalence classes where © ~ y <= x —y € Z. What is R/Z with the quotient toplogy?

VeeR Iy e0,1] z~y

Va,y € [0,1]z ~y iff z =y or {z,y} = {0,1}

. MO

we “glue” 0,1 together
So R/Z is homeomorphic to

S'={(z,y) €R? : ||(z,y)]| = Va2 +12 =1}

This requires proof.

(i) Q <R, R/Q. What is the quotient topology?
Let V.C R, W, V open, V # @. Then ¢~(V) is open and # @@ (q surjective). Ja < b s.t.
(a,b) € ¢~ (V) (a,b € R). Given x € R choose r € (a—x,b—2)NQ, then r+z € (a,b) C ¢~ (V)
sog(xz) = q(r+z) € V. SoV =R/Q. SoR/Q has the indiscrete topology which is not metrisable
and not Hausdorff.

(iii) @ = [0,1] x [0,1] C R?. Define

(3317962) = (y1,y2) or
(z1,22) ~ (Yy1,Y2) <= {21 =y1,{z2,92} = {0,1} or
Ty = y2,{z1, 31} = {0,1}

and (0,0),(1,0), (0,1),(1,1) are equivalent.

(R2/7?)
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Claim. Let X be a set, R an equivalence relation on X, ¢ : X — X/R the quotient map. LetY be
another set, f : X — Y a function. Assume f respects R:

Ve,ye X e~y = f(z) = f(y)

Then 3 unique map f : X/R—Y st. f= fogq,ie. the diagram

X > Y

X/R "

Proof. For z € X/R, write z = q(z) for some 2 € X and define f = f oq™?

Note. (i) im f=im f (as ¢ is surjective)
(i) f is injective if Va,y € X f(q(z)) = f(q(y)) implies ¢(z) = q(y) So Vz,y € X f(z) - f(y) =
T~y

Definition. Say f fully respects R if
Vo,ye X v~y <= f(z)=f(y)

In this case f is injective

Prop 4.9. Let X be a topological space, R an equivalence relation on X, ¢ : X — X/R the quotient
map with X/R given the quotient topology. Let Y be another topological space, f : X — Y a
function that respects R. Let f: X/R — Y be the unique map s.t. f = fogq. Then

(i) f continuous = f continuous

(ii) f an open map — f is an open map _
In particular, if f is a continuous, surjective map that fully respects R, then f is a continuous
bijection. If in addition, f is an open map, then f is a homeomorphism

Proof. (i) Let V be an open set in Y. Is f~'(V) open ni X/R
Look at ¢~ (f~*(V)) = ()f o q)"*(V) = f~'(V) is open in X as f is continuous. So by
definition f~1(V) is open in X/R
(ii) Let V be an open set in X/R. Is f(V) open in Y?
Let U = ¢~ (V). Then U is open in X by definition. As ¢ is surjective, q(U) =
aq(V)) =V 50

F(V) = fa©) = (foa)(U) = (V)

is open in U =Y since f is an open map.
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Example. R/Z is homeomorphic to
St={zcR?:|z|| =1}
Define f(t) = (cos(2nt),sin(2nt)), t € R. Then s —¢t € Z <= f(s) = f(t). f is surjective, and

continuous.

R > Sl

R/Z <~

By prop 9, 3 unique f :R/Z — Stst. f= fo q and f is a continuous bijection. It remains to show
that f is an open map. Assume not: there is an open set U in R s.t. f(U) is not oen in S'. So
S\ f(U) is not closed, so 3(zy,) in S*\f(U) and z € f(U) s.t. z, — 2.

Vn € N choose z,, € [0,1] s.t. f(zn) = 2, By B-W wlog z,, — x € [0, 1] (after passing to subsequence).
f is continuous so z, = f(z,) = f(z) = 2. Since z, & f(U), we have z,, € R\U. Since R\U is closed
and x,, — x, we have x € U. Since z € f(U), Jy € U s.t. z= f(y) sp k =y — x € Z. Now

flxn+ k)= f(z,) =2, — 2

Also
Tpt+tk—o>z+k=yelU

Since z, & f(U), xn, +k & U. Since R\U is closed and z,, + k — y, we have y € R\U X

Prop 4.10. Let X be a topological space and R an equivalence relation on X
(i) If X/R is Hausdorff, then R is closed in X x X
(ii) If R is closed in X x X and ¢ : X — X/R (the quotient map) is an open map, then X/R is
Hausdorff.

Proof. Set W =X x X\R
(i) Given (x,y) € W, we have z # y, i.e. g(x) # q(y). Since X/R is Hausdorff, there are
open sets S,T s.t. SNY =@ and q(x) € S, q(y) € T. Set U = ¢~ 1(S), V = ¢ (7).
Thn U,V are open in X and z € U and y € V.

V(a,b) € U x V, gq(a) € S,q(b) €T

so q(a) # q(b), i.e. (a,b) € R. So (z,y) €e UxV C W. So W open in X x X so R is
closed

(ii) Let z # w be in X/R. Choose z,y € X s.t. ¢(x) = 2z, ¢(y) = w. Then (z,y) € W. Since
R is closed, W is open, so 3 open sets U, V in Xs.t.

(x,y) eUXV CW
Since ¢ is an open map, q(U), ¢(V') are open in X/R, z = q(x) € q(U), w = q(y) € ¢(V)
YVaeUbeV, (a,b) eUXxV CW

so (a,b) € Ri.e. g(a) # q(b). Soq(U)Nqg(V) =9
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5 Connectedness

Recall the intermeiate value theorem (IVT): If f : I — R is continuous, I is an interval and = < y in
I, c € R is strictly between f(x) and f(y) then 3z, z < z <y s.t. f(z) =c¢

Note. I an interval means Vo < y < zin Rif z,2 € I then y € I. So IVT says: continuous image of
an interval is an interval

Example. f:[0,1)U(1,2] - R
fa) = {0 z€0,1)

1 ze(1,2]

is continuous but im(f) is not an interval.

Definition. A topological space X is disconnected if 3 subsets U,V of X s.y.
Unv=g

UuVv =X

U,V are # @ and U,V are open.
We say U, V disconnect X.
Say X is connected if X is not disconnected.

Theorem 5.1. For a topological space X, TFAE:
(i) X is connected
(ii) f:X — R continuous = f(X) is an interval
(i) f:X — Z continuous —> f is constant

Proof. (i) = (ii): assume f(X) not an interval: 3a < b < cinRs.t. a,c € f(X), b & f(X).
Choose z,y € X st. f(z) = a, f(y) = c. Let U = f~1(—0c0,b). Then U,V are open as
f is continuous, U,V are # g asxz € Uy € V. UNV = & as (—o0,b) N (b,o0) = &,
UUuV =f"1R\{b}) =X as b ¢ f(X). So U,V disconnect X 3.

(i) = (iii): immediate.

(ili) = (i): Assume U,V disconnect X. Define f: X — Z

0 U
ﬂx)z{l iiv

for any Y C R

0,1€Y
0eY,1¢Y
0eY,leY
0,1€Y

f7UY) =

M QR

is always open. So f is continuous, but f is not constant 3
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Corollary 5.2. Let X C R. Then z is connected <= X is an interval

Proof. “ =" The inclusion map ¢ : X — R is continuous so by theorem 1, its image, X is
an interval
“ <= "V continuous f : X — R, f(X) is an interval by the IVT. So by Theorem 1, X is
connected

Note. Direct proof of “ <= " Assume U,V disconnect X. Fix x € U,y € V. Wlog z < y. Set
z = supU N [z,y], which contains z and bounded above by u. Note z € [z,y] C X. We’ll show
z € UNV, which is a contradiction.

VneNz—1/n<zs03x, €UN[z,y]st. z2—1/n <z, <280z, = 2 Also, U = X\V is closed,
so z € U. Thus, z < y. Choose N € N with 2z +1/N < y. Then Vn > N z < z+ 1/n < y hence
z+1/neV. Nowz+1/n— zand V = X\U is closed, so z € V X

Examples. (i) Any indiscrete topological space is connected
(ii) Any cofinite topology on an co set is connected
(iii) The discrete topology on a set of size > 2 is disconnected.

Lemma 5.3. Let Y be a subspace of a topological space X. Y is disconnected <= 3 open subsets
UVofXst. UNVNY =2, UUVDOY UNY #A#gand VNY #

Proof. = : Assume U’, V' are open subsets of Y that disconnect Y. Then 3 open sets U, V/
in Xst. U'=UNY and V' =V NY. These U and V work.

< : Assume U,V are as given. Then U' =UNY, V=V NY are open sets in Y and they
disconnect Y

Remark. In the above situation, we say that the open subsets U,V of X disconnect Y

Prop 5.4. Let Y be a subspace of a topological space X. Then if Y is connected, then so is Y, the
closure of Y in X

Proof. Assume Y is disconnected: 3 open sets U,V in X that disconnect Y. Then
unvnycunvnY =g

o)
unvny =o

Also
UUuVOY DY

So U,V would disconnect ¥ unless UNY =@ or VNY = &. But Y is connected, so wlog
VNY =g. Then Y C X\V and X\V is closed, so Y C X\V. So VNY = &, which is a
contradiction since U, V' disconnect Y.
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Remark. More generally, if Y € Z C Y and Y is connected, then Z is connected. This follows from
Prop 4
Clz(Y)= Clx(Y)YNnZ=Z

by Prop 4.6

Theorem 5.5. Let f : X — Y be a continuous function between topological spaces. If X is
connected, then so is f(X)

Proof. Let U,V be open subsets of Y and assume they disconnect f(X). For x € X, f(z) €
f(X)cUUV so

oy i(v)=x
Also if z € f~1(U) N f~1(V) then

flz)yeUnVnf(X)=oX

S0
fFlonfi(v)=9

Since f is continuous, f~1(U) and f~1(V) are open in X. Since UNf(X) # @ and VN f(X) #
@, we have f~1(U) # @ and f~1(V) # @. So f~1(U), f~1(V) disconnect X

Remarks.
(i) Connectedness is a topological property: if X,Y are homeomorphic topological spaces, then X
is connected <= Y is connected
(ii) If f : X — Y is continuous and A C X and A is connected, then f(A) is connected. Apply
Theorem 5 to fla: A—Y

Corollary 5.6. Any quotient of a connected topological space is connected

Example. Let Y = {(,sin(1/z) : x > 0)} C R?. The function f : (0,00) — R?

f(z) = (z,sin(1/z))

is continuous, so by Theorem 5 (and Corollary 2), we have Y = imf is connected.
By Prop 4, Y is also connected. Let Z =Y U{(0,y): -1 <y <1}
Claim: ¥ = Z
Proof of claim:
Given y € [—,1,2],Vn € N (0,1/n) is mapped to (n,o0) by z — 1/, so by IVT Jz,, € (0,1/n) s.t.
sin(l/zn) =y

(zn,sin(1l/zs)) = (2, y) = (0,y) €Y
SoY C Z C Y. So enough to show Z is closed. Assume (z,,,y,) € Z ¥n € N and (z,,,y,) — (2,y) in
R2. Since y,, € [-1,1] Vn and y,, — y so y € [—1,1]. So if x = 0 then (z,y) € Z. If  # 0, then since
Zn — x, we have x +n # 0 V large n, so sin(1/x,) = y, V large n so (z,,yn) — (z,sin(l/x)) € Z
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Lemma 5.7. Let X be a topological space and A be a family of connected subsets of X. Assume
ANB# @ VA, B € AThen |J 4 A is also connected

Proof. Set Y =(J, .4 A. Let f:Y — Z be a continuous function. VA € A fla: A = Zis
continuous and hence constant by Theorem 1 as A is connected. VA, B € A ANB # & so f|a
and f|p have the same constant value. So f must be constant. By theorem 1, Y is connected

Theorem 5.8. Let X,Y be connected topological spaces, then X X Y is connected in the product
topology

Proof. Wlog X # @,Y # @.

YA {xo} xY
_y.  J X x{y}

% "

Fix g € X. Define f : Y — X xY, y — (20,y). The components of f are the functions
y — x9,Y — X is continuous as it’s constant. y — y : Y — Y is continuous as it’s the
identity. So f is continuous by Prop 4.8. By Theorem 5, im f = {x¢} x Y is connected.
Similarly, Vy € Y X x {y} is connected. For y € Y’

{zo} x Y N X x{u} = {(z0,y)} # @

is connected. So by lemma 7, A, = {zo} x Y UX x {y} is connected

Vy,z€Y A, D{zo} xY " Ay NAz £

By lemma 7
U4, =xxy
yey

is conntected

Example. R" is connected Vn € N
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5.1 Components

Definition. Let X be a topological space. We define a relation ~ on X on X
x ~ 1y <= 3 connected subset A of X s.t. z,y € A

Ve € X © ~ z as {z} is connected. Symmetry is clear from definition. If x ~ y,y ~ z then 3
connected sets A, B in X s.t. xz,y € A, y,z € B. Then AN B # &, so by lemma 7, AU B is
connected. Since x,z € AU B, we have xz ~ z

Notation. For x € X, write C, for the equivalence class containing x. It’s called the connected
component of x in X. The equivalence classes are called connected components of X

Prop 5.9. The connected components of a topological space X are # &, maximal connected subsets
of X, are closed and they partition X

Proof. Let C be a connected component of X. So C = C,, for some x € X. Then z € C, so
C #@. Assumd C C A C X, A is connected. Then Vy € A, since z,y € A, we have y ~ z, so
yeC.SoAcC Candso A=C. Vy e C, we have y ~ x, so there is a connected subset A, of
X st. z,y€ Ay. Then, A= Uyec A, is connected by Lemma 7 and A D C so A= C and C

is connected. By Prop 4, C is connected and C' D C, so C = C' is closed

Definition. Let X be a topological space. For z,y € X, a path from z to y in X is a continuous
function ~ : [0,1] = X s.t. v(0) =z, v(1) = y. X is path-connected if Vz,y € X 3 a path from x
to y in X.

Example. In R, D, (z) is path-connected: given y, z € D,.(x), let
() =1 —t)y+tz, t €10,1]
Then + is continuous (components are continuous) and takes values in D,.(z) since
Iv(@®) =zl = A=)y +tz —z| = [A =)y +tz = (1 - )z +ta)| < A =)y —zl| + tz —z]| <7

Similarly, every convext subset of R™ is path-connected

Theorem 5.10. Path-connected = connected

Proof. Assume X is not connected and let U,V disconnect X. Fix x € U,y € V. Assume
v :[0,1] = X is continuous with v(0) = x and (1) = y. Then yv~1(U) x y~1(V) disconnect
[0,1]
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Example. Converse is false in general. Recall
X = {(z,sin(1/x)) : . > 0} U{(0,y) : -1 <y <1}

is connected. We show X is not path connected. Assume 7[0,1] — X is continuous, v(0) = (0,0)
nad y(1) = (1,sinl). Write v = (y1,72). Assume ¢t € (0,1] is s.t. 11 (t) > 0 e.g. t = 1. Then
7((0,)) > (0, 7lt]) by IVT.

1

1
3 S 3 = —
neN Gy € (0,71(t)) = s € (0,t) n(s) Gy

and so y1(s) = 0. Similarly, 1/(2wn + 7/2) € (0,v1(¢)) so 3s € (0,1) s.t.

71(8) = y(s)=1

2n + 5

In both cases, y1(s) > 0. We inductively find

1>t >t > ...
s.t.
0 nodd
72(tn) =
1 neven

tn — t, some t € [0,1], 7o is continuous so o (t,) — Y2 (t) X

Lemma 5.11 (Gluing lemma). Let X be a topological space. Assume X = AU B where A, B are
closed in X. We are given continuous functions g : A — Y, h: B — Y (where Y is a topological
space) s.t. on ANB, g=h. Then f: X - Y

Jglz) zecA
f(x)_{h(x) x€B

is well defined and continuous

Proof. First observe: if F¥ C A and F is closed in A, then F' is closed in X. Indeed by
Proposition 4.6, 3 closed set G in X s.t. F'= ANG. Since A is also closed in X, it follows
that F' is closed in X (same holds for F' C B).

Now let V be a closed set in Y. Then

FHV) = (VN U V)N B)
=g (V) urTV)

and g~ (V) is closed in A, h=1(V) is closed in B by continuity of g, h thus f~1(V) is closed
in X. Hence f is continuous by Proposition 4.7.
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Definition. Let X be a topological space. For x,y in X. Write x ~ y is 3 path from z to y in X.
This is an equivalence relation:
e The continuous function shows that z ~ z Vo € X
e If v:[0,1] — X is continuous and v(0) = z, y(1) = y then ¢ — (1 —¢) is a path from y to z.
e Assume z ~ gy, y ~ z. Let 7,4 : [0,1] — X be continuous functions s.t. ¥(0) = z, (1) = y and
0(0) =y, 6(1) = z. Define

°
() = v(2t)  telo,3]
62t—1 te3,1]
1 1
[0? 1] - [07 5] U [57 1]
at 1/2, n(1/2) = v(1) = 6(0) = y. By lemma 11, 5 is continuous and 7(0) = «, n(1l) = z so
T~z

We call equivalence classes, path-connected components of X

Theorem 5.12. Let U be an open subset of R"™. Then U is connected <= U is path-connected

Proof. <—: Theorem 10.
— : wlog, U # @. Fix zg € U. Let

P={xeU:x~ao}

We will show that P is both open and closed in U. Then, P and U\P disconnect U unless
P =@ or U\P = @. Since xy € P, we have U = P and so we are done.

Fix ¢ € U. Since U is open 3r > 0 D,(z) C U. Recall Vy € D,(x) y ~ x. If x € P, then
Yy € D.(z), y ~ x,2 ~ x0 S0 Yy ~ Zg. So D,.(x) C P. So P is open.

If z € U\P and y € D, (v) has y ~ xo then since y ~ =, we have x ~ x¢ . So D,.(z) C U\P.
So U\P is open, and P is closed

Claim. For n > 2, R and R™ are not homeomorphic

Proof. Assume f : R — R” is a homeomorphism and g = f~! : R» — R. Then flr\{o} is a

homeomorphism
R\{0} = R"\{f(0)}

with inverse g|g\{r(0);- R\{0} is disconnected, R™\{f(0)} is connected (e.g. because it is path
connected) X
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Compactness

Recall: continuous function on a closed bounded interval is bounded and attains its bounds. We ask
for what topological spaces X is every continuous function f : X — R bounded?
Some answers:

(1) If X is finite

(ii) If V continuous f : X — R In € N and subsets Ay,..., 4, of X s.t.

s
j=1

and ff is bounded on A; Vj, then the property holds

Note. If f: X — R is continuous then Vz € X, U, = f~1((f(z) — 1, f(z) + 1)) is open, = € U, and
f is bounded on U,. X = J, ¢y Uy If 3 finite ' C X s.t. |J,cp Us = X then f is bounded on X.

Definition. Let X be a topological space. An open cover for X is a family ¢/ of open subsets of
X st. Uy U = X. A subcover of U is a subset V C U s.t. Uy U = X. This is called a finite
subcover if V is a finite set. X is compact if every open cover for X has a finite subcover.

Theorem 6.1. Let X be a compact topological space and f : X — R continuous. Then f is bounded
E}_Ild attains its bounds

Proof. For n € N, let U,, = {& € X : |f(z)] < n}, then U, is open since x — |f(z)| is
continuous and (—n,n) is open. It is clear that X = J,,c5 Un. So {U, : n € N} is an open
cover for X. Since X is compace, 3 finite F' C N s.t.

X=JU.=0Uy
nelr

where N = max F. So Va € X |f(z)| < N, so f is bounded.
Let o = infx f (exists as f is bounded). Assume Ar € X f(x) = a. Then Vz € X f(x) > a
soIn €N f(z) > a+ L. So letting

Vn:{xeX:f(a:)>a+%}=f_1((a+%,oo))

we have V,, is open and |J,,c Vo = X. So 3 finite F' C N such that | J,.r X = Vi, N = max F.
SoVz € X, f(z) > a+1/N soinfx f > a+ + X. Similarly, 3z € X f(z) =supy f

Lemma 6.2. Let Y be a subspace of a topological space X. Then Y is compact <= wherever U
is a family of open sets in X satisfying |J;;¢;; D Y, there is a finite V C U s.t. Jyepy UDY
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Theorem 6.3. [0,1] is compact

Proof. Let U be a family of open sets in R s.t. [0,1] C [y, U. For A C [0, 1], say U finitely
covers A if 3 finite V C U st. (Jy ¢, U D A. Note: if A= BUC, A, B,C C [0,1] and U finitely
coveres B and C, then U finitely covers A.

Assume that U does not finitely cover [0,1]. Then one of [0,1/2] and [1/2,1] is not finitely
covered by U, call that [a1,b;]. Let C = 2(a1 +b1). Then one of [a1,c] and [c, b1] is not finitely
covered by U — call it [ag, bo]. Continue inductively to obtain

[al,bl] D) [ag,bg] D) [a3,b3} ...

s.t. VYn [an,b,] is not finitely covered by U and b, — a, = 27". Then a, — z for some
xz € [0,1] and so b, = a, + 27" — x. Can choose U € U s.t. € U. U is open in R so
Je >0 (x —e,x+¢) C U. Since ay,,b, — x, can choose n s.t. a,,b, € (x — e,z + €), then
[an,by] C U X

Examples. (i) Any finite set is compact

(ii) On any set X, the cofinite topology is compact. Wlog X # &. Let U be an open cover for X.
Choos U € U s.t. U # @. Then F = X\U is finite. For « € F pick U, € U s.t. © € U,. Then
{Uy : x € FU{U} is a finite subcover.

(iii) Assume x +n — z in a topological space X. Let Y = {z,, : n € N} U{z}. Then Y is compact.
Let Ube a family of oepn sets in X s.t. Uy, U D Y. Choose U € U s.t. x € U. Since U is
open and z, — x, we have N € NVn > N z,, € U. As in (ii), it is clear 3 finite subcover

(iv) The indiscrete topology on any set is compact

(v) An infinite set X with the discrete topology is not compact:

{{z} 2z € X}

is an open coer with no finite subcover
(vi) R is not compact:
{(-=n,n) :n € N}

is an open cover with no finite subcover
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Theorem 6.4. Let Y be a subspace of a toplogical space X.
(i) X compact, Y closed in X = Y compact
(ii) X Hausdorff, Y compact = Y closed in X.

Proof. (i) Let U be a family of open sets in s.t.

Uuoy

veu

Then U U {X\Y} is an oepn cover for X. So 3 a finite V C U s.t.

U ux\y)=x
Uev
Then (Jyey, DY
(ii) Fix z € X\Y. For y € Y, we have = # y so 3 open sets U,,V, in X st. x € U,y €V},
and U, NV, = @ (X is Hausdorff)
{Vy 1y € Y}is a cover of Y by open sets in X. So 3 finite ¥ C Y s.t. U,epVy D Y.
(Y compact). Then U =, Uy is open and z € U and

vny c(NU)n(Jv) =2
yeF yeF

Sox € U C X\Y. So X\Y is a neighbourhood of all of its points, so it’s open. Hence
Y is closed

Theorem 6.5. Let f: X — Y be a continuous function between topological spaces with X compact.
Then f(X) is compact

Proof. Let U be a family of open sets in V. s.t. ey D f(X). Then Uy, f71(U) = X,
and f~1(U) is open in X VU € U as f is continuous. X is compact so 3 finite V C U s.t.

x=U ro
Uey
Hence
fxyclJu
Uey
Remarks.

(i) Compactness is a topological property
(ii) If f: X — Y is continuous and A C X, A is compact, then f(A) is compact

Corollary 6.6. Any quotient of a compact space is compact

Corollary 6.7. If a < b in R, then [a, b] is homeomorphic to [0, 1], and hence compact.
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Theorem 6.8 (The topological inverse function theorem, TIFT). Let f : X — Y be a continuous
bijction form a compact space X to a Hausdorff space Y. Then f~! is continuous (i.e., f is an open
map, or f is a homeomorphism)

Proof. Let U be an open subset of X. Then K = X\U is closed. By Theorem 4, K is compact.
By Theorem 5, f(K) is compact. By Theorem 4, f(K) is closed in Y. So f(U) = Y\ f(K) is
open in Y. So f(U) =Y \f(K) is openin Y

Example. R/Z is homeomorphic to S = {x € R? : ||z| = 1}

Proof. Define
f:R—= S f(t) = (cos(2nt), sin(27t))

Vs,t f(s)=f(t) <= s—teZ
f is continuous and surjective. Let f : R/Z — S* be the unique map s.t. foq=7F.

R d > Sl
b
7
4 ~
q o
R/Z -

By prop 4.9, f is a continuous bijection.
R/Z = q(R) = q([0,1])

is compact by Thoerem 5. S! is Hausdorff since it’s a metic space. By Thoerem 7, f is a
homeomorphism.

60




Theorem 6.9 (Tychonov’s theorem). If XY are compact topological spaces, then so is X X Y in
the product topology

Proof. Let U be an open cover for X x Y
o WLOF every member of U is of the form U x V where U is open in X and V is open in
Y. Indeed for z € X x Y, choose W, € U s.y. z € W,, and in turn 3 open sets U, in
Xand X, inY st. z€U, xV, CW, so {U, x XV, :z€ X x Y} is an open cover for
X xY. If 3 finite F C X xY s.t. U, xV,=XxY, then W, : z € F is a finite
subcover of U.
o Fix x € X. Recall {z} x Y is the continuous image of Y under

zeF

y = (2,y)

And hence {z} x Y is compact by Theorem 5. Since {z} xY C X xY = U, W,
U finitely covers {z} x Y. So In, € N open sets Uy 1,Uz2,...,Upn, in X and
Ved, Va2, Vo, inY st

Upj x Vo €U and {2} x Y C | Usj % Vo

=1

Wlog z € U, ; Vj. Set U, = m;‘lianw* Then x € U,, U, is open in X, and

Us XY C | JUsj x Vi

j=1
e {U,:x € X} is an open cover for X. So 3 finite ' C X s.t. X =J,cp Uz so
XxY=JUxYc | UsjxVay
ceF zEF j=1

So{Uy; xVp;:x€F, 1<j<mn,}is a finite subcover of U

Remark. More generally, if X;,..., X, are compact spaces, then so is X; X --- x X,

Theorem 6.10 (Heine-Borel). A subset K of R™ is compact <= K is closed and bounded

Proof. “ = 7. R” is a metric space, and hence Hausdorff. By Theorem 4,K is closed in R"™.
x +— |lz|| is continuous (|||lz|| — ||yll| < |l — yl|), .. by Theorem 1, bounded on K. So K is
bounded. ¢ <=": As K is bounded, 3IM > 0Vz € K |jz|| < M. So K C [-M, M]".

[—M, M]™ is compact (it’s homeomorphic to [0, 1]). By Tychonov, [—M, M]™ is compact. Now
K is a closed subspace of a compact space and hence compact by Theorem 4.

Example. [0,1], B.(z) C R". Now the start of the proof of Linelof-Picard makes sense.
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6.1 Sequential Compactness

Definition. A topological space X is sequentially compact if every sequence in X has a convergent
subsequece. Le. given (z,,) in X, 3k <k < ... n NIz € X s.t. 25, »>

Notation. Given a sequence (z,)52; and an infinite set M C N, we write (2, )men for the subse-
quence (Z,, )5 ; where m; < my < mg < ... are the elements of M. Note that if L ¢ M Cc N, L, M
infinite, then (z,),cr is a subsequecne of (,)nenm

Examples. (i) Any closed, bounded subset of R™ is sequentially compact by Bolzano-Weierstass
(ii) Similarly, a closed, bounded subset K of R™ is sequentially compact.

Let (@m)r—; be a sequence in K. Write @, = (@m.1,.--,Tmn). K bounded = (z,)
bounded = Vj (2, ;)5_, is bounded. By Bolzano Weierstass pplied to (2,,1)5e_;, 3 infinite

M; C Ns.t. (%,1)men, convergent in R. (,,2)menr, is bounded in R so by B-W exists infinite
My C My st. (Tm,2)men, convergent in R. Note that (@m,,1)mens, Still converges. Continue:
dM; D My D -+ D M, infinte sets such that (7, j)men; converges in R for j = 1,...,n. Then
(m,j)mem, converges Vj and hdnce (2,,)mens, converges in R™ and the limit is in K as K is
closed

Remark. This shows that in R™, compact = sequentially compact. Converse is also true.

Aim: compactness and sequential compactness are the same in metric spaces. For the rest fo the
section, we fix a metric space (M, d)

Definition. For ¢ > 0 and F C M, say F is an e-net for M if Vo € M Jy € F d(y,z) < e (i.e.
M =U,cr V=(y)). This is called a finite e-net if F' is finite. Say M is totally bounded if Ve > 0 3
finite e-net for M

Example. Given € > 0, choose n s.t. 1/n < e. Then {1/n,2n,...,(n —1)/n} is an e-net for (0,1)

Definition. For non-empty A C M, the diameter of A is
diamA = sup{d(z,y) : z,y € A}

(infinite if set not bounded in R)
So diam A < co <= A is bounded

Example. diam B,.(z) < 2r
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Lemma 6.11. Assume M is totally bounded, and let A C M, A # &, and closed, and let ¢ > 0.
then K € N, # & closed set By, Bs,...,Bg s.t. A= Uszl By, and diam By, < ¢ Vk

Proof. Let F' be a finite £/2-net for M. So M = |J,.p B./2(z) and hence A = |J,p[AN
B.js(z)]. Let G ={x € F: AN B j3(v) # @} and for v € G, let B, = AN B, /5(x). Then for
r € G, By # @, By C B.j5(x) and so diam B, < ¢ and B, is closed. Finally

UBm:A

zeG
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Theorem 6.12. For a metric space (M, d), TFAE
(i) M is compact
(ii) M is sequentially compact

(iii) M is complete and totally bounded

Proof. (i) = (ii): Let (x,) be a sequence in M. For n € N let T}, = {x : K > n}. Note

the limit of any convergent subsequence is in (7, T,,. First we prove [, _nTn # . Assume

otherwise. Then -
neN

neN

Since M is compact, IN € Ns.t. M\Ty = M (we are using VYm < n T,, D T,,). Contradiction,
as Ty # @.

Fix € NpenTy. © € Ty, so Di(z) N Ty # @ so 3k; > 1 s.t. d(zg,,7) <1

x € Ty, 80 Dyjo(x) N T, # @ s0 Fky > ky st d(wg,,e) < 1/2

x € Ty, so Dy3(x) N Ty, # & so k3 > ky s.t. d(wp,,z) < 1/3. Continue inductively to get
k1 < kg <...st. d(xg,,z) < 1/nVn,so z,, — .

(i) = (iii): To show M is complete, let (z,) be a Cauchy sequence in M. Choose
k1 < ky < ...st. (xp,) is convergent in M and let

r = lim zp,
n—oo

We show x,, — x. Fix e > 0. There is N € NVm,n > N d(x,,z,) < e. Then Vm > N, k,, >
m > N and Vm > N have

d(xn,z) < d(xp,xg,,) + d(ag,,,z) <e+d(zg, ,x)

Let ,— oo: d(zp,z) <e. So x, — x.
Assume M is not totally bounded, then 3¢ > 0 s.t. M has no finite e-set. Fix x; € M.
Assume we picked z1,...,2,_1 in M. Then

n—1

U Bs(mj) #M

=1

Can pick z,, € Mn\U;L;ll B.(x;). Inductively obtain (z,)52; s.t. d(@m,z,) > e Vn > m in
N. So (z,) has no Cauchy subsequence therefore no convergent subsequence.

(iif) = (i): Let U be an open cover for M. Assume that & does not finitely cover M. We
construct non-empty closed subsets

AyD A1 DAy D ... of M

such that Vn > 0 U does not finitely cover A,,, and that ¥n > 1 diam A,, < 1/n. Set Ay = M.
Suppose for some n > 0 we have already found A,_;. By Lemma 10 (since M is totally
bounded) we can write 4,,_1 = Uszl By where K € N, By,..., Bg are non-empty, closed
and diam By <1/nVk=1,... K.
Since U does not finitely cover A,, 1, Jk s.t. U does not finitely cover By. Set A, = By. Now
for each n pick z,, € A,

VN Vm,n > N xp,, 2z, € AN

S0
. 1
d(Tm,Tn) < dlam Ay < i
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Proof. It follows that (x,) is Cauchy. M is complete, so x,, — x for some z € M. Choose U € U st,
x €U. U is open, so Ir > 0 D,.(z) C U. Choose n s.t. d(z,,x) <r/2 and diam A, <r/2Vy € A,

d(y,z) < d(y, zn) + d(zn, )
< diam A4,, + g <r

A, C D,(x) C UX as U does not finitely cover A,

Remarks.
(i) We can deduce Heine-Borel (closed and bounded = compact only) from B-W
(ii) The product of sequentially compact topological space is sequetially compact in the product
space. This yields a new proof of Tychonov for metric spaces
(iii) There exists topological spaces that are compact but not sequentially compact. There exists
topological spaces that are sequentially compact but not comapct
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7 Differentiation

Let m,n e N
LR™ R") ={T :R™ — R" : T linear} = M, ,, ZR™"

Let ey, ..., e be the standard basis (S.B.) of R™. Let €], ..., e., be the standard basis (S.B.) of R".

s Em

Then T € L(R™,R") is identified with the n x m matrix (T} ;)1<j<n,1<i<m Where
Tjﬂ; = <T6i, eS)

here (-, ) is the standard inner product in R™)

n n n
( ol ) /> — s
zj€}, yje;) = T5Yj

Jj=1 j=1 j=1

We can view L(R™,R™) as the (mn) dimentional vector space R™” which has the euclidean norm:
1Tl = QoD Ti)2 = (O ITeal?)'?
i=1 j=1 i=1
So L(R™,R™) becomes a metric space with the euclidean distance

d(S,T) = |S — T|| for S,T € L(R™, R™)
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Lemma 7.1. (i) For T € L(R™,R") and x € R™
Tl < T - [l

So T is a Lipschitz map and henc continuous
(ii) If S € L(R™,R?), T € L(R™,R™) then

ST < IS]l - 11T

Proof. (i) Write X =" | z;e;. Then

m
[T = | inTeiH
il
m
|z:| - [|Tes|
=1
m

m
< Q@)Y Qo ITel)'?
i=1 i=1
<[ - [l
For z,y € R™
d(Tz,Ty) = |Tx = Tyl| = |T(z —y)| < 1T - |z — yll = | Tlld(=,y)

So T is Lipschitz and hence continuous
(i)
15T = ZIISTG )12 < ZIISII 1Tes|%)Y2 = IS IIITl

Remark. Recall from TA: A function f : R — R is differentiable at a € R if the limit
L flath) — f(@)

h—0 h

exists. The limit is called the derivative of f at a and denoted f’(a). Have f differentiable at
a <= FANeR Je:R - Rs.t. ¢0) =0 ¢ is continuous at 0 and

fla+h) = f(a)+ A+ h+h-e(h)

(trivial to show)

Note. If f is continuous at a, then

fla+h)= f(A)+n(g)

where n(h) — 0 as h — 0. More generally, in TA Analysis, we showed that if f is n-times differentiable
at a then

fla+h)=fla)+ > = —h"+o(h")
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Definition. Let m,n € N and f: R™ — R™ a function, a € R™. We say f is differentiable at a if
3T € L(R™,R") Je : R™ — R" s.t. £(0) = 0 and ¢ is continuous at 0

and
fla+h) = f(a) + T(h) + ||hlle(h)

Note.
0 h=0
e(h) = {f(a+h)f(a)T(h)
= h#O
So f is differentiable at a <= 3T € L(R™,R") s.t.

fla+h) = fla) = T(h)

—0ash—0
IRl

Notation. Can also write
fla+h) = f(A)+T(h)+ o(||h])

Claim. T is unique

Proof. If S, T € L(R™,R™) both satisfy
fla+h)— f(a) —T(h)

T -0
and
flath) = f@ =50 o
I
Then
%HT(IZ) —0ash—0

Fix x € R™, z # 0, then 2/k — 0 as k — oo. So

Sr—Tx  S(z/k)—T(x/k)
N

So Sz = Tz. It follows that S =T.

Definition. If f is differentiable at a then the unique T' € L(R™,R"™) s.t.

fla+h)— f(a)—Th
Al

— 0

is called the derivative of f at a denoted f’(a) or Df(a) or Df|,
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Definition. If f : R™ — R" is differentiable at a € R™ for every a € R™ then say f is differentiable
on R™. The function
f'=D:R"™ — LR™R"), > f(a)

is called the derivative of f on R™

Examples. (i) Constant functions f : R™ — R™, f(z) =b Vx € R" (some b € R"). At a € R™:
fla+h)=b=f(a)+0+0

So f is differentiable at @ and f’(a) = 0. So f: R™ — L(R™,R™), a0
(ii) Linear maps. If f: R™ — R™ is linear, then for a € R™

fla+h) = f(a) + f(h) +0

So f is differentiable at @ and f'(a) = f. So f': R™ — L(R™,R™), a+ f. So f’ is a constant
function
(iii) f:R™ =R, f(z)=|z|*> ForaeR™:

fla+h)=lla+h|* = |lal® + 2(a,h) + |IA]?
—— =

f(a) linear in h  error

It follows that f is differentiable at a and
f'(@)(h) = 2(a, k)

Note that f/: R™ — L(R™,R) is linear.
(iv) My = My, 2R f: M, — M,, f(A) = A2 Fix A € M,

_ 2 _ 2 2
FA+H)=(A+H)? = fz:lA)—l—AH—FHA—l—H
linear in H

BY lemma 1, ||[H?| < ||H||? and so

IH|*
THI| <||H| as H—0

So f is differentiable at A and f'(A)(H) = AH + HA
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Examples. (v) Suppose f: R™ x R™ — RP? is bilinear. Fix (a,b) € R™ x R”
f((G'?b) +(h7k)) = f(a+hab+k) = f(a’b)+f(a’k)+f(h7b)+f(h7k)

The map R™ xR" — RP, (h, k) — f(a,k)=+ f(h,b) is linear. We show that f(h, k) = o(||(h, k)||).

Write . .
h=> hie,, k=Y kje]
i=1 j=1
Then o
S hikif(eire]
i=1 j=1

1f (R, )] ZZ |l s 11 f (es, €Il < C - Nl (B, )2

Where we use that |h;| < ||(h, k)| for all ¢ and |k;| < ||(h, k)] for all j and

:ZZU ei, €;)

So
ILf (h, )l
| (R, )|

So f is differentiable at (a,b) and f’(a,b)(h, k) = f(a, k) + f(h,b)

< C||(h,k)|| = 0 as (h, k) — (0,0)

Remark. So far our maps had domain the whole of R™ or M,, etc

Definition. Let U be an open subset of R™, f : U — R" a function and let a € U. Say f is
differentiable at ¢ if 3T € L(R™,R") s.t

fla+h) = f(a) + T(h) + [|hlle(h)

where €(0) = 0, ¢ is continuous at 0 (i.e. e(h) — 0 as h — 0)

Notes.
(i) € is defined on {h € R™ : a+h € U} = U — a which is open and 0 € U —a so 3r > 0
D, (0) C U —a. Then

0 h=0
e(h) = Hethf@=T0) } 10 g4heU

(i1) f is differentiable <= 3T € L(R™,R"™) s.t

fla+h) = fla) = T(h)
1]

—0ash—0

(iii) The T above is unique and is called the derivative of f at a denoted f’(a). So f(a + h) =
f(a) + f'(a)(h) + o(|[R])
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Remark. For m =1, L(R,R") 2 R", T + T(1) putting v = T'(1), we have T'(\) = Av VA € R. Let
U C R be open, f:U — R™ a function, a € U. f is differentiable at « <= Jv € R" s.t.

flath) = fla)=h o . 5 cgeflath) = f(0)
|h| h

— v

< limp_o w exists, then this limit is the derivative of f at a

Prop 7.2. We have open set U C R™, f : U — R™,a € U. f differentiable at a = f continuous

at a

Proof. Have
fla+h) = f(a) + f'(a)(h) + ||Al - e(h)
So for x € U
f(@) = f(a) + f'(a)(x —a) + ||lz — al| - e(z — a)

x — f(a) is constant, so continuous. x — x — a is continuous. f’(a) is linear, so continuous
and || - || is continuous so f/(a)(z —a) and ||z — al| are continuous in z. Finally, ¢ is continuous
at 0, so  — e(x — a) is continuous at a by composition
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Prop 7.3 (Chain rule). We have open set U in R™ and V in R™ functions f : U — R" with
fU)CV,g:V = RP aeU. Assume f is differentiable at a, g is differentiable at b = f(a) then

g o f is differentiable at a and
(g0 f)(a) =g'(f(a))o f'(a)

Proof. Let S = f'(a), T = ¢'(f(a)). We have

fla+h) = f(a) + S(h) + [l - £(h)
9(b+k) = g(b) + T(k) + [|K]| - <(¥)

for suitable ¢, C.

(9o f)(a+h)=g(f(a)+S(h) + ||hll -£(R))
e i

We put k = k(h) = S(h) + ||h| - e(h) so

(9o f)(a+h)=g(b) +T(S(h) + [|hll - e(h)) + [|k][ - S(k)
= (9o f)(@) +TS(h) + AT (e(h) + [[K] - C(k)

n(h)

We claim

@—H)ash—ﬂ)
(IRl

Then this shows g o f is differentiable at a and

(g0 f)'(a) =TS =g'(f(a)) o f'(a)

IRITER) _ p(hyy = 0 as b= 0
Il

as
[T (DI < TNl - lle(r)]| = 0 as b =0

by Lemma 1.
B _ 1SR+ (IR - e
T < < ISl + lle®)ll
(172 17l
k= S(h) + ||h|le(h) — 0 as h — 0 and hence ((k) — 0 as k — 0. So
n(h) I

Tl =T(e(h)) + ”hHC(k) —0ash—0
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Prop 7.4. U, f,a as before. Let f; be the jth component of f (1 < j <n). Then f is differentiable
at a <= each f; is differentiable at a and then

Proof. Let ¢; : R™ — R be the jth coordinate projection g;(y1,...,yn) =y, so f; = ¢q; o f
and f(l’) = (fl(x)a cocg fn(l?))

= : Assume f differentiable at a. So by chain rule f; = ¢; o f is differentiable at a and

fi(a) = g;(f(a)) o f'(a) = gj o f'(a)
So

f'(a)(h) = qu(f’(a)(h))€3

= fi@(h)e]
j=1

<= : We have
fila+h) = f;(a) + fi(a)(h) + |[hlle; (R)

for suitable €;.

[
NE

fla+h) fila+h)e;

=Y (@) + fi@®) + [Ihll - 5(h))e;

n

=Y fila)ej+ ) fila)(h)e; +|In] Z gj(h)ej

J=1 Jj=1

Since €;(h) — 0 as h — 0 Vj, we have ¢(h) — 0 as h — 0 so f is differentiable at a
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Prop 7.5. We have open set U C R™, functions f,g: U — R", ¢ : U — R, a € U. Assume f,g,p
are differentiable at a. Then so are f + g and ¢ - f and (f + g)'(a) + f'(a) + ¢'(a) and

(o ) (@)(h) = ¢(a) - [f'(@)(R)] + [¢'(a) (R)] - f(a)

Proof. Have
fla+h) = f(a)

gla+h) = g(a)
pla+h) = ¢(a)

+ f'(a)(h) + [|hlle(h)
+g'(a)(h) + [[RIIC(R)
+¢'(a)(h) + [[Rlin(h)
(f +9)(a+h)=fla+h)+g(a+h)
= (f+9)(a) + (f'(a) + g'(a))(h) + [|All - ((h) + ((h))

Since h — e(h) 4+ ¢(h) is 0 at 0, continuous at 0, it follows that f + g is differentiable at a and

(f +9)(a) = f'(a) + ¢'(a)

(p-flla+h)=wplath)- flath)
= (¢ N)la) +[e(a) - [f (a)(W)] + [¢'(a)(h)] - f(a)]
+ f'(a)(h) - p(a)(h) + |[P]16(h)

where 6(h) = (f'(a)(R) - n(h) + ¢ (a)(h)e(h) + n(h) f(a) + p(a)e(h) + [|Al - n(h)e(R))
¥ (a)(h) - f'(a)(h) _ |¢'(a)(B)] - [If'(a)(W]
121 151

< 1L @I - IRl - [ (@)l - (7]
- 2]
= '@l - 117 (A - |7l = 0 as b — 0

d(h) — 0 as h — 0 since the same is true for e(h),n(h), f'(a)(h), ¢’ (a)(h)

7.1 Partial Derivatives

Definition. We have an open set U C R™, a function f : U — R™ and a € U. Fix a direction u in
R™, i.e. u € R™\{0}. If

- fla+ 1)~ f(a)

t—0 t

exists, we call it the directional derivative of f at a in direction u and denote it D, f(a)
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Notes.
() Duf(a) € R" and f(a+tu) = £(a) + tDuf(a) + o(?)
(i) Let v : R — R™ by v(t) = a + tu. Then f o+ is defined on v~ (U) which is open since 7 is
continuous and 0 € y~1(U)

flattu) = f(a) _ (fon)(t) = (f7)(0)

t t
So D, f(a) exists <= f o g is differentiable at 0 and then
Dy f(a) = (f°7)(0)

Special case: u=-¢;, 1 <i<m. If D, f(a) exists, we call it the ith partial derivative of f
at a denoted D; f(a)

Prop 7.6. Let U, f,a be as before. If f is differentiable at a, then D, f(a) exists Vu € R™\{0} and
D, f(a) = f'(a)(u). Moreover

f,(a)(h) = Z thzf(a) Yh = Z hiei cR™

=1

Proof. Have
fla+h) = f(A)+ f'(a)(h) + ||R]| - £(h)
for suitable e. Put h = tu:
fla+tu) = f(a) +t- f'(a)(u) + [t|||ulle(tw)
So
et 1@ _ playy + 8 pulettw) (@)

So D, f(a) = f'(a)(u). Now for h =", he; € R™, we have

m

f(a)(h) = Zhif/(a)(ei) = ZhiDif(a)

i=1

Proof (Alternative). Let v(t) = a + tu. Then f o~ is defined on the open set v~1(U). Note
that + is differentiable and +/(¢) = u Vt. BY Chain rule, f o+~ is differentiable at 0. So D,, f(a)
exists and

Duf(a) = (fo7)(0) = f'(v(0)(~'(0)) = f'(a)(w)

Remarks.
(i) If D, f(a) exists, then so does D, f;(a) (f; = g;j o f as in Prop 4). Indeed,

filaww) — fia) _ ql(f(athu) — f(a)

t ; 2 —2%) 5 4;(Duf (@)

(ii) Converse of Prop 6 is false in general
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7.2 Jacobian Matrix

Definition. Let U, f,a be as before. Assume f is differentiable at a. Then the Jacobian matrix
of f at a, denoted Jf(a), is the matrix of f’(a) w.r.t. the SBs of R™ and R™. For 1 < i < m, the
ith column of Jf(a) is

f'(a)(e;) = Dif(a)
For 1 < j < n, the (j,4) entry of Jf(a) is

8$i

[Jf(a)lji = (Dif(a),€e}) = ¢;(Dif(a)) = D;f;(a)

Theorem 7.7. U, f,a as before. Suppose 3 open neighbourhood V of @ with V. C U s.t. D, f(x)
exists Vo € V V1 <4 < m, and moreover  — D; f(z) : V — R™ is continuous at a V1 < i < m. Then
f is differentiable at a

Proof. By considering components of f, wlog n = 1. We now take m = 2 purely for
notational convenience. Let a = (p, q)

(p+h,q+k)
(P, q) (p+h,q)
Want
f'(p,q)(h,k) = kD1 f(p,q) + kD2(p, q)
Let

Y(h, k) = f(p+ h,q+ k) — f(p,q) — hD1f(p,q) — kD2 f(p, q)
] We need 9 (h, k) = o(||(h, k)||). Then done.

Y(h,k) = f(p+h,q+ k)= f(p+h,q) —kDa2f(p,q) (I

IT: this is o(h) and hence o(||(h, k)||) by def of Dy f(p, q)
I: Let p(t) = f(p+ h,q + tk) (fix (h,k)). Then ¢ is differentiable and

¢'(t) =Daf(p+h,q+th) -k
(Chain Rule). By MVT, 3t = t(h, k) € (0,1) s.t.

So (I) = ¢(1) = ¢(0) — kD2 f(p,q) = ke[D2f(p + h,q + tk) — D2 f(p,q)]. As (h, k) = (0,0),
(p+ h,q+tk) — (p,q) so by continuity of Dy f at a, I is o(k) and hence o(||(h, k)||)
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Theorem 7.8 (Mean Value Inequality, MVI). Let U € R™ be open, f : U — R"™ be differentiable at
every z in U. Let a,b € U s.t. the line segment

[a, 0] ={(1—=t)a+th:0<t<1}CU

Assume IM > 0 Vz € [a,b] ||f/(2)|| < M. Then || f(b) — f(a)]| < M -|b—al

Proof. Let u=b—a, v= f(b) — f(a). Wlog u # 0. Let y(t) = a + tu, t € R. Then fo~is
defined on v~!(U) and is differentiable by Chain Rule:

(feon)'®) = F (@) (#) = f'(a + tu)(w)

1£(6) = f(@)II* = (f(b) = f(a),v)
= ((f o)1) = (f 27)(0),)

Let us define ¢(t) = ((f o ¥)(t),v). Since y — (y,v) : R™ — R is linear, by Chain Rule ¢ is
differentiable and

' (t) = ((fo)(t),v) = (f'(a + tu)(u),v)
By MVT 360 € (0,1) s.t. (1) —¢(0) = ¢'(0) so

1£(8) = f(@)II* = (1) — ¢(0) = ¢'(6)
= (f'(a+ 6u)(u),v)
1f"(a + Ou)(u)|| - [|v]|
1 (a+ Ou)|| - [Jull - [[0]] < M - [|b—al| - [Jv]|

<
<

Hence [ f(b) — f(a)|| < M]||b - al|

Corollary 7.9. Let U be an open, connected subset of R™ and f : U — R" be differentiable at every
a€U. If f/(a) =0 Va € U then f is constant

Proof. If a,b € U satisty [a,b] C U then by MVI (Thm 8)

1£() = f(@)l < (sup [f')I) - [Ib—all =0

z€[a,b

So f(a) = f(b). For x € U 3r > 0 s.t. open ball D,(z) C U Vy € D,(z) [z,y] C D.(z) CU
so f(y) = f(z). So f is locally constant and hence constant since U is connected

Remark. Let V C R™, W C R™ be open sets and f : V — W be a bijection. Let a € V. Assume f
is differentiable at a and f~!: W — V is differentiable at f(a). Let S = f'(a), T = (f~1)~*(f(a)).
By Chain Rule:

TS=(f"of)(a)=1In

ST = (fo f~1Y(f(a)) = I

Som = tr(TS) = tr(ST) =n and so f’(a) is invertible. Aim to prove an inverse.

7




Definition. Let U C R™ open and f : U — R” function. Say f is differentiable on U if f is
differentiable at a for every a € U. Then the derivative of f on U is f : U — L(R™,R™) a — f'(a).
Say f is a C''-function on U if f is continuously differentiable on U, i.e. f is differentiable on U and
f':U — L(R™,R™) is continuous
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Theorem 7.10 (Inverse Function Theorem, IFT). Let U C R™ be open and f : U — R™ be a C'-
function. Let a € U and assume f’(a) is invertible. Then 3 open sets V,W s.t. a € V, f(a) € W, V C
U and f|y : V — W is a bijection with inverse function g : W — V also a C'-function. Moreover

g =1 Yyew

Proof. (i) We show that WLOG a = f(a) = 0,f'(a) = I. Let T = f’(a) and define
h(z) = T Y(f(z + a) — f(a)). The domain of h is U — a and by Chain Rule h is
differentiable:

W(z) =T "o f'(a+2)

Soxz,yeU — a:

1= (@) = @)l = 1T~ o (f'(a+2) = fa+y)
<T@+ 2) = f(a+y)ll

It follows that h is a C1-function. Also h(0) = 0 and h’(0) = I. If we prove te result for
h, it will follow for f since

f(@) =T(h(z —a)) + f(a)

(ii) We now assume f(0) = 0, f’(0) = I. Since f’ os continuous, Ir > 0 s.t. B,(0) C U
and Vo € B,.(0)||f'(z) — I]| < 1/2. We will show that Vz,y € B,.(0) ||f(z) — f(y)]| >
1/2 - ||z — y||. To see this, let p: U — R™, p(z) = f(z) — x. Then p'(z) = f'(x) — I, so
I/ (@)]] < 1/2 ¥z € B,(0). By MVI [jp(z) — py)l| < 1/2- [}z — yl| Y2,y € By(0). Hence

I1f (@) = FW)ll = l(p(z) + =) = (p(y) + ¥
>l gl - Ip(@) — p(@)] = 3l — vl

(iii) Let s = r/2. We show f(D,(0)) D Ds(0). More precisely, Vw € D4(0) 3 unique
z € D,(0) s.t. f(z) =w. Fix w € D,(0). Define for x € B,.(0)

() =w = f(z) + = = w —p(z)

(Note f(z) =w < q(z) =)
Since p(0) = 0, we have for z € B,.(0)

la@)l < llwll + @) = [l + [p() - p(O)]
< ool + 2zl < 5+ 2 =
S ||w 2 x S 27"—7'

So ¢(B,(0)) C D,(0) C B.(0). For z,y € B,(0)

la(z) = a@)ll = llp(=) —p(Y)] < %IISL‘ —yll

So ¢q : B-(0) — B,.(0) is a contraction mapping on the nonempty complete metric space
B,(0). By CMT, 3 unique = € B,.(0) s.t. g(z) = z. Note z = ¢q(x) € D,(0) by above
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Proof. (iv) Let W = D4(0), V = D,.(0) N f~Y(W)/ Then f|y : V — W is a bijection with inverse
g : W — V continuous. W is open and f(0) = 0 € W and since f is continuous f~1(W) is
open, so V is open and 0 € V. (iii) says that f|y : V — W is a bijection. Finally let u,v € W
and let z = g(u), y = g(v). Then

lg(u) = g()[l = llz = yll < 2| f(z) = fFW)I

= 2flu — |

So g is Lipschitz with constant 2 so continuous
(v) (Non-examinable) g in C! and Vy € W ¢'(y) = [f'(9(y))]~*

7.3 Second Derivative

Definition. We are given open set U € R™ : f : U — R™ and a € U. Assume 3 open set V s.t.
a € V CU and f is differentiable on V. Say f is twice differentiable at a if f' : V — L(R™,R")
is differentiable at a. Let f”(a) = (f’)'(a) - called the second derivative of f at a

Note.
f"(a) € LR™, L(R™,R"))

7.3.1 Second derivative as a bilinear map

Remark.
L(R™, L(R™,R")) = Bil(R™ x R™ R")

T« T
For h,k € R™ T(h)(k) = T(h, k). From now we identify T and T
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Prop 7.11. Have U C R™ open, f : U — R™, a € U. Assume f is differentiable on V where
a €V CU, V open. Then f is twice differentiable at a <= 3T € Bil(R™ x R™,R") s.t. for every
fixed k € R™

f'la+nh)(k) = f'(a)(k) + T(h, k) + o(||2]])

Then T = f"(a)

Proof. “ =" Assume f twice differentiable at a:
f'(a+h) = f'(a) + f"(a)(h) + [|A]| - £(h)

where € : V. —a — L(R™,R") s.t. £(0) = 0 and ¢ is continuous at 0. Fix k € R™ and evaluate
at k:

f'la+h)(k) = f'(a)(k) + f"(a)(h, k) + [|h]] - e(h)(k)
Here f’(a) € Bil(R™ x R™,R"™) and
le(r) (BNl < [le()[I - [IK]| = 0 as h =0

so [|h]] - e(h)(k) = o(]|Al)
“ <=7 Assume T € Bil(R™ x R™,R") and

f'(a+h)(k) = f'(a)(t) = T(h, k)
121

—0inR"ash—0

with k fixed. We need

fllath = f(a)) =T(h)
171

e(h) = — 0 in LR™,R"™) as h — 0

We know for fixed k € R™,e(h)(k) — 0 in R™ as h — 0. It follows that

le(mll = (Z le(h)(e)]|*)2 -+ 0ash—0
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Examples. (i) f : R™ — R” linear. Then f is differentiable on R™ and f’(a) = f Va € R™.
So f:R™ — L(R™,R")a — f Ya € R™. So f’ is constant so f’ is differentiable on R™ and
f"(a) =0 VYa € R™

(ii) f:R™ x R™ — RP bilinear. Then f is differentiable on R™ x R™ and for (a,b) € R™ x R”

f,(av b)<h7 k) = f(a7 k) + f(h’ b)

Note: this is linear in (a, b) with (h, k)-fixed. So f : R™ xR"™ — L(R™ xR",RP) (a,b) — f'(a,b)
is itself linear so differentiable on R™ x R™ and

F"(a,b) = f' € L(R™ x R”, L(R™ x R",R”)) = Bil((R™ x R") x (R™ x R"),R")
(iii) f: M, — M, f(A) = A3 Fix Aec M,

fAA+H)=(A+H)?=A>+ A’H+ AHA+ HA*+ AH?> + HAH + H?A + H?
linear in H o(||H||)

So f is differentiable at A and f'(A)(H) = A?H + AHA + HA? so f is differentiable on M,,.
Fix A e M, and K € M,
FA+H)(K)=(A+H?K+(A+ HK(A+H)+ K(A+ H)?
= A’K + AKA+ KA? + [AHK + HAK + AKH + HKA + KAH + KHA]

+[H?K + HKH + KH’|
o(llH|)

Note that T : M,, x M,, — M,
T(HK)=AHK + HAK + AKH+ HKA+ KAH+ KHA

is bilinear. So the above shows that f is twice differentiable at A and f”(A) =T (prop 11)
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7.3.2 Second Derivative and Partial Derivatives

Have open U C R™, funtion f : U — R", a € U. Assume f is twice differentiable at a: so f
is differentiable on some open set V with a € V. C U and f' : V — LR™ R"), 2 — f'(x) is

differentiable at a
f'la+h) = f'(a) + f"(a)(h) + o(||A])
So
f'(a+h)(k) = f'(a)(k) + f"(a)(h, k) + o([|R])
with k£ € R™ fixed. Fix u,v € R™\{0}. Put k = v:

Dyf(a+h) = Dyf(a) + f"(a)(h,v) + o(|||])

So
Dyf:V = R" z = D, f(z) = f'(z)(v)

is differentiable at a and (D, f) (a)(h) = f"(a)(h,v) so

DyD, f(a) = Dy(D,f)(a)
= (Do f) (a)(u) = f"(a)(u,v)

In particular
D;D;f(a) = f"(a)(ei,e;)

forl1 <i,5<m
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Theorem 7.12 (Symmetry of mixed directional derivatives). Let U, f,a be as above. Assume f is
twice differentiable on some open set V wit ha € V.C U. Assume f”:V — Bil(R™ x R™ R"), = —
f"(z) is continuous at a. Then Vu,v € R™\{0}

DuDUf(a) - D’uDuf<a')

equivalently

f"(@)(u,v) = f"(a) (v, u)

i.e. f”(a) is a symmetric bilinear map

Proof. Wlogn=1. For 1<j <n
(Duf)i(z) = [Duf(2)]; = [f' (@) (W)]; = fj(x)(u) = Duf;(z)
So (Duf); = Duf;. Repeat:
(DvDuf)j = Do(Duf);j = DoDuf;
Enough to show that D, D, f;(a) = DyD, f;(a)

a+ tv a+ su + tv

s, t e R

a a+ su

Consider
p(s,t) = fla+su+tv) — fla+tv) — fla+ su) + f(a)

Fix x,t. Consider ¢(y) = f(a + yu + tv) — f(a + yu). Note p(s,t) = ¥(s) — ¥(0). By MVT
Ja = a(s,t) € (0,1) s.t.

o(s,t) =1p(s) =1(0) = s - ¢'(a - s) = s(Duf(a+ asu+tv) — Duf(a+ asu))
Apply MVT to y = D, f(a + asu+ yv)
@(s,t) =s-t-DyDy f(a+ asu+ Stv)
for some 8 = f(s,t) € (0,1). So

©(s, 1)
st

= D, D, f(a+ asu+ ftv)
= f"(a + asu + Btv)(u,v)
== f"(a)(u,v)

since f” is continuous at a.

Repeat above with ¥(y) = f(a + su+ yv) — f(a + yv) to get

) @),
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