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1 Limits and Convergence

1.1 Review of Numbers and Sets

Notation. Write sequences as: an, (an)∞n=1, an ∈ R

Definition. We say that an → a as n→∞ if given ε > 0, ∃N s.t. |an − a| < ε for all n ≥ N

Note. N = N(ε)

Definition (increasing sequence). an ≤ an+1

Definition (decreasing sequence). an ≥ an+1

Definition (strictly increasing sequence). an < an+1

Definition (strictly decreasing sequence). an > an+1

Note. Say monotone if stays increasing or stays decreasing

1.2 Fundamental Axiom of the real numbers

Axiom. If an ∈ R,∀n ≥ 1, A ∈ R and a1 ≤ a2 ≤ a3 ≤ . . . with an ≤ A for all n, there exists a ∈ R
s.t. an → a as n→∞
i.e. an increasing sequence of real numbers bounded above converges.

Note. Equivalently: a decreasing sequence of real numbers bounded below converges
Equivalent also to: every non-empty set of real numbers bounded above has a supremum

Notation. Say LUBA = Least Upper Bound Axiom.

Definition (supremum). For S ⊆ R, S 6= ∅, sup S = K if
(i) x ≤ K, ∀x ∈ S
(ii) given ε > 0,∃x ∈ S, s.t. x > K − ε

Note. Supremum is unique (see N&S notes), infinimum defined similarly.
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Lemma 1.1.
(i) The limit is unique. That is, if an → a, and an → b, then a = b
(ii) If an → a as n→∞ and n1 < n2 < n3 < . . . , then anj

→ a as j →∞ (subsequences converge
to the same limit)

(iii) If an = C ∀n, then an → C as n→∞
(iv) If an → a & bn → b, then

an + bn → a+ b

(v) If an → a & bn → b, then
anbn → ab

(vi) If an → a, an 6= 0 ∀n& a 6= 0 then
1

an
→ 1

a

(vii) If an ≤ A ∀n and an → a, then a ≤ A

Proof.
(i) given ε > 0, ∃n1 s.t. |an − a| < ε∀n ≥ n1

and ∃n2 s.t. |an − b| < ε∀n ≥ n2
Let N = max{n1, n2}. Then ∀n ≥ N

|a− b| ≤ |an − a|+ |an − b| < 2ε∀n ≥ N

If a 6= b, take

ε =
|a− b|

3
=⇒ |a− b| < 2

3
|a− b|

(ii) Given ε > 0,∃N s.t. |an − a| < ε∀n ≥ N . Since nj ≥ j (induction),

|anj − a| < ε∀j ≥ N

i.e. anj
→ a as j →∞

(iii) Exercise.
(iv) Exercise.
(v)

|anbn − ab| ≤ |anbn − anb|+ |anb− ab|
= |an||bn − b|+ |b||an − a|

As an → a, given ε > 0, ∃N1 s.t. |an − a| < ε∀n ≥ N1 (*)
As bn → b, given ε > 0,∃N2 s.t. |bn − b| < ε∀n ≥ N2

(*) =⇒ if n ≥ N1(1), |an − a| < 1, so:

|an| ≤ |a|+ 1

=⇒ |anbn − ab| ≤ ε(|a|+ 1 + |b|)∀n ≥ N3 = max{N1(1), N1(ε), N2(ε)}

(vi) Exercise.
(vii) Exercise.
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Lemma 1.2.
1

n
→ 0 as n→∞

Proof. 1/n is a decreasing sequence bounded below so by the fundamental Axiom it has limit
a.

Claim. a = 0

Proof.
1

2n
=

1

2
× 1

n
→ a

2

by lemma 1.1(v)
But 1

2n is a subsequence, so by 1.1(ii) 1
2n → a. By uniqueness of limits, lemma 1.1(i),

we have
a =

a

2
=⇒ a = 0

Remark. The definition of limit of a sequence makes perfect sence for an ∈ C

Definition. an → a if given ε > 0, ∃N s.t. ∀n ≥ N, |an − a| < ε.
First six parts of Lemma 1.1 are the same over C.
The last one does not makes sense (over C) since it uses the order of R.
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1.3 Bolzano-Weierstass Theorem

Theorem 1.3 (Bolzano-Weierstass). If xn ∈ R and there exists K s.t. |xn| ≤ K ∀n, then we can
find n1 < n2 < n3 < . . . and x ∈ R s.t. xnj

→ x as j →∞
In other words: every bounded sequence has a convergent subsequence.

Remark. We say nothing about uniqueness of limit, xn = (−1)n, x2n+1 → −1, x2n → 1

Proof. set [a1, b1] = [−K,K]

a1 b1C

C = mid point
Consider the following cases:
(i) xn ∈ [a1, c] for ∞ many values of n
(ii) xn ∈ [c, b1] for ∞ many values of n

(i) & (ii) could both hold at the same time.
If (i) holds then we set a2 = a1 and b2 = C. If (i) fails, we have that (ii) must hold and we
set a2 = C & b2 = b1
Proceed inductively to construct sequences an, bn s.t. xm ∈ [an, bn] for infinitely many values
of m.

an−1 ≤ an ≤ bn ≤ bn−1

bn − an =
bn−1 − an−1

2
(*)

Note. Called ‘bijection method’ or “lion hunting”

an increasing sequence and bounded
bn decreasing sequence and bounded
By the Fundamental Axiom,

an → a ∈ [a1, b1]

bn → b ∈ [a1, b1]

Use (*),

b− a =
b− a

2

=⇒ b− a

Since xm ∈ [an, bn] for ∞ many values of m, having chosen nj s.t. xnj
∈ [aj , bj ], there is

nj+1 > nj s.t. xj+1 ∈ [aj+1, bj+1]
(I have an “unlimited supply”!)
Hence

aj ≤ xnj
≤ bj

=⇒ xnj
→ a

1.4 Cauchy Sequences

Definition. an ∈ R is called aCauchy sequence if given ε > 0, ∃N > 0 s.t. |an−am| < ε ∀n,m ≥ N
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Lemma 1.4. A convergent sequence is a Cauchy sequence.

Proof. if an → a, given ε > 0, ∃N s.t. ∀n ≥ N, |an − a| < ε
Take m,n ≥ N,

|an − am| ≤ |an − a|+ |am − a| < 2ε

Theorem 1.5. Every Cauchy sequence is convergent.

Proof.

Claim. If an is Cauchy, then it is bounded.

Proof. Take ε = 1, N = N(1), in the Cauchy property, then

|an − am| < 1, ∀n,m ≥ N(1)

|am| ≤ |am − aN |+ |aN | < 1 + |aN | ∀m ≥ N

Let K = max{1 + |aN |, |an|, n = 1, 2, . . . N − 1}
Then |an| ≤ K ∀n X
By the Bolzano-Weierstrass theorem,

anj → a

Claim. an → a

Proof. Given ε > 0, ∃j0 s.t. ∀j ≥ j0

|anj
− a| < ε

Also, ∃N(ε) s.t. |am − an| < ε∀m,n ≥ N(ε)
Take j s.t. nj ≥ max{N)ε), nj0}
Then if n ≥ N(ε),

|an − a| ≤ |an − anj |+ anj − a| < 2ε

Remark. Thus on R a sequence is convergent iff it is Cauchy.
“Old-fashioned name”: “the general principle of convergence”

Note. This is a useful property since we do not need to know what the limit is.
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1.5 Series

Definition. an ∈ R,C. We say that
∞∑
j=1

aj converges to s if the sequence of partial sums

SN =

N∑
j=1

aj → s

as N →∞
We write

∞∑
j=1

aj = s

If SN does not converge, we say that
∞∑
j=1

aj diverges.

Remark. Any problem on series can be turned into a problem on sequences just by considering the
sequence of partial sums.

Lemma 1.6.
(i) If

∞∑
j=1

aj &
∞∑
j=1

bj converge, then so does
∞∑
j=1

(λaj + µbj) where λ, µ ∈ C

(ii) Suppose ∃N s.t. aj = bj ∀j ≥ N , then either
∞∑
j=1

aj &
∞∑
j=1

bj both converge or both diverge

(initial terms do not matter)

Proof.
(i)

SN =

N∑
j=1

a(λaj + µbj)

= λ

N∑
j=1

aj + µ

N∑
j=1

bj

= λcN + µdN

cN → c&dN → d so by lemma 1.1 (version C), sN → λc+ µd
(ii) n ≥ N

sn =

n∑
1

aj =

N−1∑
1

aj +

n∑
N

aj

dn =

n∑
1

bj =

N−1∑
1

bj +

n∑
N

bj

=⇒ sn − dn =

N−1∑
1

aj −
N−1∑
1

bj

(as aj = bj for j ≥ N)
so sn converges iff dn does.
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1.5.1 The Geometric Series

Claim. The geometric series converges iff |x| < 1

Proof. Set an = xn − 1n ≥ 1

Sn =

n∑
1

ag = 1 + x2 + · · ·+ xn−1

Then

sn =

{
1−xn

1−x for x 6= 1

n for x = 1

xSn = x+ x2 + · · ·+ xn = Sn − 1 + xn

=⇒ Sn(1− x) = 1− xn

if |x| < 1, xn → 0 and Sn → 1
1−x

if x > 1, xn →∞&Sn →∞
if x < −1, Sn does not converge (oscillates)

if x = −1, s =

{
1 for n odd
0 for n even

Note. Say Sn →∞ if given A, ∃N s.t. Sn > A, ∀n ≥ N
Sn → −∞, if given A, ∃N s.t. Sn < −A for all n ≥ N
If Sn does not converge or tend to ±∞, we say that Sn oscillates.

Claim. xn → 0 if |x| < 1

Proof. Consider the case 0 < x < 1 and we write 1
x = 1δ, δ > 0

So:
xn =

1

(1 + δ)n
≤ 1

1 + δn
→ 0

because (1 + δ)n ≥ 1 + nδ (from the binomial expansion)

Lemma 1.7. If
∞∑
j=1

aj converges, then:

lim
j→∞

aj = 0

Proof.

Sn =

n∑
1

aj

an = Sn − Sn−1
So if Sn → a then an → 0 (since Sn−1 → a also)
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Remark. The converse of 1.7 is false! Shown by example below:

Claim.
∞∑
1

1
n diverges (harmonic series)

Proof.

Sn =

∞∑
1

1

j

S2n = Sn +
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n
> Sn +

1

2

Since 1
n+k ≥

1
2n for k = 1, 2, . . . , n

So if Sn → a, then S2n → a also and thus

a ≥ a+
1

2

1.5.2 Series of Positive/ Non-negative terms

Theorem 1.8 (The Comparison Test). Suppose 0 ≤ bn ≤ an∀n
Then if

∞∑
1
an converges, so does

∞∑
1
bn

Proof. Let SN =
N∑
1
an

dN =
N∑
1
bn

bn ≤ an =⇒ dN ≤ SN
But SN → S, then

dN ≤ SN ≤ S ∀N

and dN is an increasing sequence bounded above =⇒ dN converges

An example using this below:
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Claim.
n∑
1

1
n2 converges

Proof.
1

n2
<

1

n(n− 1)
=

1

n− 1
− 1

n
= an

N∑
2

an = 1− 1

2
+

1

2
− 1

3
+ · · ·+ 1

N − 1
− 1

N

= 1− 1

N
→ 1 as N →∞

By comparison,
n∑
1

1
n2 converges

In fact, we get
n∑
1

1
n2 ≤ 1 + 1 = 2

Note. Converges to π2

6 but we do not prove that here.

Theorem 1.9 (Root test/ Cauchy’s test for convergence). Assume an ≥ 0 and a1/nn → a as n→∞.
Then if a < 1,

∑
an converges; if a > 1,

∑
an diverges

Proof. If a < 1, choose a < r < 1.
By definition of limit,
∃N s.t. ∀n ≥ N

a1/nn < r =⇒ an < rn

But since r < 1, the geometric series
∑
rn converges =⇒ by Theorem 1.8,

∑
an converges.

If a > 1, then for n ≥ N ,

a1/n > 1 =⇒ an > 1

Thus
∑
an diverges (since an does not tend to zero).

Remark. Nothing can be said if a = 1, see examples later.
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Theorem 1.10 (Ratio test/ D’Alanbert’s test). Suppose an > 0 and an+1

an
→ l

If l < 1,
∑
an converges.

If l > 1,
∑
an diverges

Proof. Suppose l < 1 and choose r with l < r < 1
Then ∃N s.t. ∀n ≥ N,

an+1

an
< r

Therefore
an =

an
an−1

an−1
an−2

. . .
aN+1

aN
aN < aNr

n−N , n > N

=⇒ an < Krn

with K independent of n
Since

∑
rn converges, so does

∑
an by Theorem 1.8

If l > 1, choose 1 < r < l
Then an+1

an
> r ∀n ≥ N

And as before:
an =

an
an−1

an−1
an−2

. . .
aN+1

aN
aN > aNr

n−N , n > N

aNr
n−N →∞ as n→∞

So
∑
an diverges.

Remark. Nothing can be said if a = 1.

Examples: Consider ratio test for series
∞∑
1

n
2n

n+ 1

2n+1

2n

n
=
n+ 1

2n
→ 1

2
< 1

So we have convergence by the ratio test.

The following examples show limit 1 inconclusive:
n∑
1

1
n diverges,

n∑
1

1
n2 converges,

Since n1/n → 1 as n→∞, root test is also inconclusive when limit = 1.
To see this limit, write

n1/n = 1 + δn, δ > 0

n = (1 + δn)n >
n(n− 1)

2
δ2n

(binomial expansion)

=⇒ δ2n <
2

n− 1
=⇒ δn → 0
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Another root test example:
n∑
1

[
n+1
3n+5

]n
, root test gives:

n+ 1

3n+ 5
→ 1

3
< 1

so converges.

Theorem 1.11 (Cauchy’s Condensation Test). Let an be a decreasing sequence of positive terms.

Then
∞∑
1
an converges iff

∞∑
1

2na2n converges.

Proof. First we observe that if an is decreasing:

a2k ≤
(∗1)

a2k−1+i ≤
(∗2)

a2k−1 , 1 ≤ i ≤ 2k−1 (any k ≥ 1)

Assume now that
∞∑
1
an converges with sum let’s say A

Then,

2n−1a2n = a2n + · · ·+ a2n︸ ︷︷ ︸
2n−1 times

≤
(∗1)

a2n−1+1 + a2n−1+2 + · · ·+ a2n =

2n∑
m=2n−1+1

am

Thus
N∑
n=1

2n−1a2n ≤
N∑
n=1

2n∑
m=2n−1+1

am

=⇒
N∑
n=1

2na2n ≤ 2

2N∑
m=2

am ≤ 2(A− a1)

Thus
N∑
n=1

2na2n increasing and bounded above, converges.

Conversely, assume
∑

2na2n converges.

2N∑
m=2

am =

N∑
n=1

2N∑
m=2n−1+1

am ≤
N∑
n=1

2n−1a2n−1 ≤ B

=⇒
N∑
m=1

am is a bounded increasing sequence and thus it converges
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Example/ Application
∞∑
1

1

nk︸︷︷︸
an

converges iff k > 1 (for k > 0)

Decreasing sequence of positive terms as:

1

(n+ 1)k
<

1

nk
⇐⇒

(
n

n+ 1

)k
< 1 ⇐⇒ n

n+ 1
< 1

2na2n = 2n
[

1

2n

]k
= 2n−nk = (21−k︸︷︷︸

r

)n

And
∑
rn converges iff r < 1.

=⇒
∑

1
nk converges iff 21−k < 1 iff k > 1

1.5.3 Alternating Series

Theorem 1.12 (The alternating series test). If an decreases and tends to zero as n→∞, then the

series
∞∑
1

(−1)n+1an converges

Proof.
Sn = a1 − a2 + · · ·+ (−1)n+1an

S2n = (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n) ≥ S2n−2

S2n = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−2 − a2n−1)− a2n ≤ a1
So S2n is increasing and bounded above =⇒ S2n → S

S2n+1 = S2n + a2n+1 → S + 0 = S

This implies that Sn converges to S as:
given ε > 0, ∃N1 s.t. ∀n ≥ N1, |S2n − S| < ε
∃N3 s.t. ∀n ≥ N2, |S2n+1 − S| < ε
Take N = 2 max{N1, N2}+ 1
Then if k ≥ N =⇒

|Sk − S| < ε, so Sk → S

Note. e.g.
∞∑
1

(−1)n+1

n converges

1.5.4 Absolute Convergence

Definition. Take an ∈ C. If
∞∑
n=1
|an| is convergent, then the series is absolutely convergent

Note. Since |aN | ≥ 0 we can use th previous tests to check absolute convergence; this is particularly
useful for an ∈ C.
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Theorem 1.13. IF σan is absolutely convergent, then it is convergent.

Proof. Suppose first that an ∈ R
Let

vn =

{
an if an ≥ 0

0 if an < 0

wn =

{
0 if an ≥ 0

−an if an < 0

vn =
|an|+ an

2
, wn =

|an| − an
2

Clearly, v,wn ≥ 0,
an = vn − wn, |an| = vn + wn ≥ vn, wn

If
∑
|an| converges, by comparison,

∑
vn,
∑
wn also converge

=⇒
∑

an converges

If an ∈ C, write an = xn + iyn
|xn|, |yn| ≤ |an|

=⇒
∑
xn,
∑
yn are absolutely convergent, =⇒

∑
xn,
∑
yn converge, since an = xn +

iyn =⇒
∑
an converges as well

Examples.
(i)
∑ (−1)n

n converges, but not absolutely convergent
(ii)

∞∑
n=1

zn

2n
,
∑(

|z|
2

)n
(*)

=⇒ if |z| < 2, convergence of (*) and hence absolute convergence.
if |z| ≥ 2, then |an| ≥ 1, so an foes not tend to zero =⇒

∑
zn

2n diverges

Definition. If
∑
an converges but

∑
|an| does not, it is said sometimes that

∑
an is conditionally

convergent.

Note. “conditional”: because the sum to which the series converges is conditional on the order
in which the elements of the sequence are taken.
If rearranged, the sum is altered.
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Example.

1− 1

2
+

1

3
− 1

4
+ . . . (I)

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ . . . (II)

Let s)n be the partial sum fo (I) and tn be the sumpartial sum of (II)

sn → s > 0

tn →
3s

2

Definition. Let σ be a bijection of the positive integersm

a′n = aσ(n)

is a rearrangement.

Theorem 1.14. If
∑∞

1 an is absolutely convergent, every series consisting of the same terms in any
order (i.e. a rearrangement) has the same sum.

Proof. We do the proof first for an ∈ R.
Let

∑
a′n be a rearrangement of

∑
an. Let

Sn =

n∑
1

an

tn =

n∑
1

a′n

Suppose first that an ≥ 0
Given n, we can find q s.t. Sq contains every term of tn
Since an ≥ 0,

tn ≤ sq ≤ s

As n → ∞, tn → t (increasing sequence bounded above) =⇒ t ≤ s. By symmetry,
s ≤ t =⇒ s = t
If an has any sign vn and wn from Theorem 1.13

vn =
|an|+ an

2
, wn =

|an| − an
2

Consider,
∑
a′n,
∑
v′n,
∑
w′n

Since
∑
|an| converges, both

∑
vn,
∑
wn converge, now use the case vn, wn ≥ 0 to deduce

that ∑
v′n =

∑
vn,
∑

w′n =
∑

wn

and the claim follows since an = vn − wn
For the case an ∈ C, write an = xn + iyn
Since |xn|, |yn| ≤ |an| =⇒

∑
xn,
∑
yn are absolutely convergent.

Then by the previous case
∑
x′n =

∑
xn and

∑
y′n =

∑
yn. Since a′n = x′n+iy′n,

∑
an =

∑
a′n

15



2 Continuity

E ⊆ C non-empty, f : E → C any function, a ∈ E
(includes case in which f is real valued and E is a subset of R)

Definition. f is continuous at a∈ E if for every sequence zn ∈ E with zn → a, we have f(zn)→
f(a)
Equivalently below:

Definition. f is continuous at a∈ E, if

given ε > 0, ∃δ s.t. if |z − a| < f, then |f(z)− f(a)| < ε

(ε-f definition)

Claim. Two definitions equivalent

Proof. 2nd =⇒ 1st:
We know that given ε > 0, ∃δ > 0, s.t. |z − a| < f, z ∈ E, then |f(z)− f(a)| < ε.
Let zn → a.
Then ∃n0 s.t. ∀n ≥ n0 we have

|zn − a| < δ =⇒ |f(zn)− f(a)| < ε

1st =⇒ 2nd:
Assume f(zn)→ f(a) whenever zn → a (zn ∈ E). Suppose f is not continuous at a, according
to 2nd definition.

∃ε > 0, s.t. |z − a| < δ and |f(z)− f(a)| ≥ ε (*)

Let δ = 1
n , from (*) we get zn s.t. |zn − a| < 1

n and |f(zn)− f(a)| ≥ ε.
Clearly zn → a, but f(zn) does not tend to f(a) because |f(zn)− f(a)| ≥ ε

Prop 2.1. a ∈ E, g, f : E → C continuous at a. Then so are the functions f(z) +
g(z), f(z)g(z) & λf(z) for any constant. In addition if f(z) 6= 0 ∀z ∈ E, then 1

f is continuous
at a

Proof. Using 1st definition, this is obvious using the analagous results for sequences (Lemma
1.1) e.g.

f(zn) + g(zn)→ f(a) + g(a) if zn → a, f(zn)→ f(A) & g(zn)→ g(a) etc.

Example. The function f(z) = z is continuous, so using the proposition we derive that every
polynomial is continuous at every point in C

Note. We say f is continuous on E if it is continuous at every a ∈ E.

16



Remark. Still it is instructive to prove above prop directly from the ε− δ definition

Next we look at compositions

Theorem 2.2. Let f : A → C and g : B → C be two functions s.t. f(A) ⊆ B. Suppose f is
continuous at a ∈ A and g is continuous at f(a). Then g ◦ f : A→ C is continuous at a.

A

B

f

a f(a)

g

g(f(a))

g ◦ f

f(A)

Proof. Take any sequence zn → a. By assummpion, f(zn) → f(A). Set wn = f(zn). then
wn ∈ B and wn → f(a); thus

g(wn)→ g(f(a))

17



Examples.
(i)

f : R→ R

f(x) =

{
sin
(
1
x

)
x 6= 0

0 x = 0

(sin(x) continuous proved later)
if x 6= 0, then 2.1 and 2.2 imply that f(x) is continuous at every x 6= 0.
Discontinuous at 0:

1

xn
= (2n+

1

2
)π

f(xn) = 1, xn → 0 but f(0) = 0

(ii)
f : R→ R

f(x) =

{
x sin

(
1
x

)
x 6= 0

0 x = 0

f is continuous at 0:
take xn → 0, then

f(xn)| ≤ |xn| because | sin
(

1

x

)
| ≤ 1

=⇒ f(xn)→ 0 = f(0)

(iii)

f(x) =

{
1 x ∈ Q
0 x 6∈ Q

Discontinuous at every point:
if x ∈ Q, take a sequence xn → x with xn 6∈ Q, then

f(xn) = 0 6→ f(x) = 1

Similarly, if x 6∈ Q, take a sequence xn → x with xn ∈ Q, then

1 = f(xn) 6→ f(x) = 0

18



2.1 Limit of a function

F : E ⊆ C→ C

We wish to define what is meany by
lim
z→a

f(z)

even when a might not be in E e.g.

limit at z → 0
sin z

z
E = C\{0} a = 0

Also if
E ∪ [1, 2]

it does not make sense to speak about z ∈, z 6= 0, z → 0

0 21

[ ]

Definition. E ⊆ C, a ∈ C. We say that a is a limit point of E if for any δ > 0,∃z ∈ E s.t.

0 < |z − a| < δ

Remark. a is a limit point iff ∃ a sequence zn ∈ E s.t. zn → a and zn 6= a for all n. (can check
equivalence)

Definition. f : E ⊆ C→ C, let a ∈ C be a limit point of E.
We say that

lim
z→a

f(z) = l

(f tends to l as z tends to a)
If given ε > 0, ∃δ > 0 s.t. whenever 0 < |z − a| < δ and z ∈ E, thenn |f(z)− l| < ε
Equivalently: f(zn)→ l for every sequence zn ∈ E, zn 6= a and zn → a
(proved exactly the same as previously with 2 definitions of continuity).

Remark. Straight from the definition, we have if a ∈ E is a limit point, then

lim
z→a

f(z) = f(a) ⇐⇒ f is continuous at a

If a ∈ E is isolated (i.e. a ∈ E and is not a limit point), continuity of f at a always holds.

19



The limit of functions has very similar properties to the limit of sequences
(i) it is unique f(z)→ A, f(z)→ B as z → a

|A−B| ≤ |A− f(z)|+ |f(z)−B|

if z ∈ E is s.t. 0 < |z − a| < δ1, δ2, then

|A−B| < 2ε =⇒ A = B

(the existence of such z is a consequence of the condition that a is s alimit point of E)
(ii) f(z) + g(z)→ A+B if f(z)→ A, g(z)→ B as z → a
(iii) f(z)g(z)→ AB

(iv) if B 6= 0, f(z)
g(z) →

A
B

all proved in the same way as before.

2.2 The Intermediate Value Theorem

a
b

f(a)

f(b)

x

20



Theorem 2.3. f : [a, b] → R continuous and f(a) 6= f(b). Then f takes every value which lies
between f(a) and f(b).

Proof. Without loss of generality, we may suppose f(a) < f(b).
Take

f(a) < η < f(b)

Let
S = {x ∈ [a, b] : f(x) < η}

a ∈ S, so S 6= ∅. Clearly S is bounded above by b.
Then there is a supremum C where C ≤ b. By definition of the supremum, given n, there
exists xn ∈ S s.t.

C − 1

n
< xn ≤ C

So, xn → C. Since xn ∈ S,
f(xn) < η

By continuity of f , f(xn)→ f(C).
Thus

f(C) ≤ η (*)

Now observe that C 6= b, for if C = b, then f(b) ≤ η by (*) which is false.

[
a

]
bC

Then for n large

C +
1

n
∈ [a, b] and C +

1

n
→ C

Again by continuity f(C + 1
n )→ f(C). But since

C +
1

n
> C, f(C +

1

n
) ≥ η

Thus
f(C) ≥ η =⇒ f(C) = η

Remark. The theorem is very useful for finding zeros of fixed points.

Example. Existence if the N -th root of a positive real number

f(x) = xN , x ≥ 0

Let y be a positive number.
f is continuous on [0, 1 + y]

0 = f(0) < y < (1 + y)N = f(1 + y)

By the IVT, ∃C ∈ (0, 1 + y) s.t. f(C) = y i.e. CN = y
C is a positive N -root of y.
Uniqueness: if dN = y with d > 0 and d 6= C, wlog suppose d < c

=⇒ dN < cN =⇒ y < y
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2.3 Bounds of a Continuous Function

Theorem 2.4. Let f : [a, b]→ R be continuous. Then there exists K s.t.

|f(x)| ≤ K ∀x ∈ [a, b]

Proof. We argue by contradiction.
Suppose statement is false. Then given any integer n ≥ 1, there exists xn ∈ [a, b] s.t. |f(xn)| >
n.
By Bolzano-Weierstrauss, xn has a convergent subsequence xnj

→ x.
Since a ≤ xnj

≤ b, we must have x ∈ [a, b]. By continuity of f ,

f(xnj
)→ f(x)

But
|f(xnj

| > nj →∞

Theorem 2.5. f : [a, b]→ R continuous. Then ∃x1, x2 ∈ [a, b] s.t.

f(x1) ≤ f(x) ≤ f(x2) ∀x ∈ [a, b]

“A continuous function on a closed, bounded interval is bounded and attains its bounds.”

Proof (1st). Let
A = {f(x) : c ∈ [a, b]} = f([a, b])}

By Theorem 2.4, A is bounded. Since it is clearly non-empty, it has supremum, M .
By definition of supremum,

given integer n ≥ 1, ∃xn ∈ [a, b] s.t. M − 1

n
< f(xn) ≤M (*)

By Bolzano-Weierstrass,
∃xnj

→ x ∈ [a, b]

Since f(xnj
) → M (because *) and f is continuous, we deduce that f(x) = M so x2 = x.

Reason similarly for the minimum

Proof (2nd).
A = f([a, b]), M = supA

as before. Suppose 6 ∃x2 s.t. f(x2) = M .
Let

g(x) =
1

M − f(x)
, x ∈ [a, b]

is defined and continuous. By Theorem 2.4 applied to g,

∃K > 0 s.t. g(x) ≤ K ∀x ∈ [a, b]

This means that f(x) ≤ M − 1
K on [a, b]. This is absurd since it contradicts that M is the

supremum
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Note. Theorems 2.4, 2.5 are false if the interval is not closed e.g.

x ∈ (0, 1], f(x) =
1

x

2.4 Inverse functions

Definition. f is increasing for x ∈ [a, b] if f(x1) ≤ f(x2) for all x1, x2 s.t. a ≤ x1 ≤ x2 ≤ b
If f(x1) < f(x2) we say that f is strictly increasing.
Similarly for decreasing and strictly decreasing.
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Theorem 2.6. f : [a, b]→ R continuous and strictly increasing for x ∈ [a, b].
Let c = f(a) and d = f(b).
Then f : [a, b]→ [c, d] is bijective and the inverse

g = f−1 : [c, d]→ [a, b]

is continuous and strictly increasing

Remark. A similar theorem holds for strictly decreasing functions.

Proof. Take c < k < d.
From the intermediate value theorem

∃h s.t. f(h) = k

a bh

c
k
d

Since f is strictly increasing, h is unique.
Define g(k) = h and this gives an inverse g : [c, d] → [a, b] for f . g is strictly increaseing:
y1 < y2

y1 = f(x1), y2 = f(x2)

If x2 ≤ x1, since f is increasing

=⇒ f(x2) ≤ f(x1) =⇒ y2 ≤ y1

g is continuous:
Given ε > 0, let

k1 = f(h− ε), k1 = f(h+ ε)

f strictly increasing =⇒
k1 < k < k2

If k1 < y < k2 then
h− ε < g(y) < h+ ε

c dk1 k k2

{ δ

δ = min{k2 − k, k − k1}

(here k ∈ (c, d) but a similar argument establishes continuity at the end points (can check))
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3 Differentiability

Let f : E ⊆ C→ C, ost of the time E = interveral ⊆ R

Definition. Let x ∈ E be a point s.t. ∃xn ∈ E with xn 6= x and xn → x (i.e. a limit point)
f is said to be differentiable at x with derviative f ′(x) if

lim
y→x

f(y)− f(x)

y − x
= f ′(x)

If f is differentiable at each x ∈ E, we say f is differentiable on E

Note. Think of E as an interval or disc in the case of C

Remark.
(i) Other common notations:

dy

dx
,

df

dx

(ii)

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

(y = x+ h)
(iii) “Another important look at the definition:”

Let
ε(h) = f(x+ h)− f(x)− hf ′(x)

then
lim
h→0

ε(h)

h
= 0

f(x+ h) = f(x) + hf ′(x)︸ ︷︷ ︸
linear

+ε(h)

linear as h 7→ hf ′(x)

Definition (alternative). f is differentiable at x if ∃A and ε s.t.

f(x+ h) = f(x) + hA+ ε(h)

where
lim
h→0

ε(h)

h
= 0

If such an A exists, then it is unique, since

A = lim
h→0

f(x+ h)− f(x)

h
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Remark.
(iv) If f is differentiable at x then f is continuous at x as since ε(h)→ 0,

f(x+ h)→ f(x) as h→ 0

(v) Another alternative way of writing things:

f(x+ h) = f(x) + hf ′(x) + hεf (h)

with εf (h)→ 0 as h→ 0
or

f(x) = f(a) + (x− a)f ′(a) + (x− a)εf (x)

with
lim
x→a

εf (x)→ 0

Example.
f(x) = |x|, f : R→ R

0
x

y

f ′(x) = 1 if x > 0

f ′(x)− = 1 if x < 0

Take hn → 0 from above:

lim
n→∞

f(hn)− f(0)

hn
= lim

hn
hn

= 1

Take hn → 0 from below:

lim
n→∞

f(hn)− f(0)

hn
= lim

−hn
hn

= −1

So not differentiable at x = 0
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3.1 Differentiation of Sums, Products, etc.

Prop 3.1.
(i) IF f(x) = c ∀x inE, then f is differentiable with f ′(x) = 0
(ii) f, g differentiable at x, then so is f + g and

(f + g)′(x) = f ′(x) + g′(x)

(iii) f, g differentiable at x, then so is fg and

(fg)′(x) = f ′(x)g(x) + f(g)g′(x)

(iv) If f is differentiable at x and f(x) 6= 0 ∀x ∈ E, then 1/f is differentiable at x and(
1

f

)′
(x) = − f(x)

[f(x)]2

Proof.
(i)

lim
h→0

C − C
h

= 0

(ii)

lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h
= lim
h→0

f(x+ h)− f(x)

h
+ lim
h→0

g(x+ h)− g(x)

h

= f ′(x) + g′(x)

(iii)
φ(x) = f(x)g(x)

φ(x+ h)− φ(x)

h
=
f(x+ h)g(x+ h)− f(x)g(x)

h

= f(x+ h)

[
g(x+ h)− g(x)

h

]
+ g(x)

[
f(x+ h)− f(x)

h

]
= f ′(x)g(x) + f(x)g′(x)

using standard properties of limits and the fact that f is continuous at x
(iv)

φ(x) = 1/f(x)

φ(x+ h)− φ(x)

h
=

1/f(x+ h)− 1/f(x)

h

=
f(x)− f(x+ h)

hf(x)f(x+ h)
→ − f ′(x)

[f(x)]2

Remark. From (iii) and (iv) we immediately get(
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

[g(x)]2

27



Example.
f(x) = xn, n ∈ Z, n > 0

n = 1

Clearly f(x) = x, f ′(x) = 1

Claim.
f ′(x) = nxn−1

Proof. Induction:
f(x) = x · xn

f ′(x) = xn + x(ncn−1) = (n+ 1)xn

Using prop 3.1

f(x) = x−n =
1

xn
n ∈ Z, n > 0

If x 6= 0, use prop 3.1 (iv) to derive

f ′(x) = − (xn)′

x2n
= −nx

n−1

x2n
= −nx−n−1

So can differentiate polynomials, rational functions X
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Theorem 3.2 (Chain rule).
f : U → C

is s.t.
f(x) ∈ V ∀x ∈ V

If f is differentiable at a ∈ U and g : V → C is differentiable at f(a), then g ◦ f is differentiable at a
with

(g ◦ f)′(a) = f ′(a)g′(f(a))

Proof. We know:
f(x) = f(a) + (x− a)f ′(a) + εf (x)(x− a)

where
lim
x→a

εf (x) = 0

g(y) = g(b) + (y − b)g′(b) + εg(y)(y − b)

where
lim
y→b

εg(y) = 0

b = f(a)

Set
εf (a) = 0 & εg(b) = 0

to make them continuous at x = a and y = b.
Now y = f(x) gives

g(f(x)) = g(b) + (f(x)− b)g′(b) + εg(f(x))(f(x)− b)
= g(f(a)) + [(x− a)f ′(a) + εf (x)(x− a)][g′(b) + εg(f(x))]

= g(f(a)) + (x− a)f ′(a)g′(b) + (x− a) [εf (x)g′(b) + εg(f(x))(f ′(a) + εf (x))]︸ ︷︷ ︸
σ(x)

σ(x) = εf (x)g′(b)︸ ︷︷ ︸
0

+ εg(f(x))︸ ︷︷ ︸
0 as continuous comp.

(f ′(a) + εf (x))︸ ︷︷ ︸
f ′(a)

so
lim
x→a

σ(x) = 0
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Examples.
(i)

f(x) = sin
(
x2
)

(sinx)′ = cosx

(to be seen later)
f ′(x) = 2x cos

(
x2
)

(ii)

f(x) =

{
sin
(
1
x

)
x 6= 0

0 x = 0

(this is continuous at every x)
differentiable at every x 6= 0 by the previous theorem.
At x = 0,

f(x)− f(0)

x− 0
=
x sin(1/x)

x
= sin(1/x)

=⇒ lim
x→0

f(x)− f(0)

x− 0

does not exist =⇒ f is not differentiable at x = 0.
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3.2 The Mean Value Theorem

Theorem 3.3 (Rolle’s Theorem).
f : [a, b]→ R

continuous on [a, b] and differentiable on [a, b). If f(a) = f(b),

∃c ∈ (a, b) s.t. f ′(c) = 0

a bc

Proof. Let
M = max

x∈[a,b]
f(x), m = min

x∈[a,b]
f(x)

Recall (Theorem 2.5) that these values are achieved.
Let k = f(a). If M = m = k, then f is constant and f ′(c) = 0 ∀c ∈ (a, b)
Then M > k or m < k. Suppose M > k
By Theorem 2.5,

∃c s.t. f(c) = M

If f ′(c) > 0, then there are values to the right of c for which f(x) > f(c) since

f(x+ h)− f(x) = h(f ′(c) + ε(h)) > 0

Since ε(h)→ 0 as h→ 0 and thus

f ′(x) + ε(h) > 0 if h small

This contradicts that M is the maximum.
Similarly, if f ′(c) < 0, ∃x to the left of c for which f(x) > f(c)

=⇒ f ′(c) = 0

Note. A simple tweak gives below:
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Theorem 3.4 (The Mean Value Theorem). Let f : [a, b] → R be a continuous function which is
differentiable on (a, b). Then ∃c ∈ (a, b) st.

f(b)− f(a) = f ′(c)(b− a)

Proof. Write
φ(x) = f(x)− kx

Choose k s.t. φ(a) = φ(b)

=⇒ f(b)− bk = f(a)− bk =⇒ k =
f(b)− f(a)

b− a

By Rolle’s theorem applied to φ

∃c ∈ (a, b) s.t. φ′(c) = 0

i.e. f ′(x) = k

Remark. We will often write
f(a+ h) = f(A) + hf ′(a+ θh)

[ ]
a a+ ha+ hθ

θ ∈ (0, 1)

(b = a+ h

Warning.
θ = θ(h)
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Corollary 3.5. f : [a, b]→ R continuous and differentiable on (a, b). Then we have
(i) If f ′(x) > 0 ∀x ∈ (a, b), then f is strictly increasing on [a, b]

(i.e. if b ≥ y > x ≥ a, then f(y) > f(x))
(ii) If f ′(x) ≥ 0 ∀x ∈ (a, b), then f is increasing (i.e. if b ≥ y > x ≥ a, then f(y) ≥ f(x))
(iii) If f ′(x) = 0 ∀x ∈ (a, b), then f is constant on [a, b]

Proof.
(i) Have

f(y)− f(x) = f ′(c)(y − x) c ∈ (x, y)

from MVT
so

f ′(c) > 0 =⇒ f(y) > f(x)

(ii) same: but f ′(c) ≥ 0 =⇒ f(y) ≥ f(x)
(iii) Take x ∈ [a, b]. Then use MVT in [a, x] to get x ∈ (a, x) s.t.

f(x)− f(a) = f ′(x)(x− a) = 0

=⇒ f(x) = f(a) =⇒ f is constant

Remark. We have similar statements for decreasing functions
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3.3 Inverse Rule/ Inverse Function Theorem

Theorem 3.6. f : [a, b]→ R continuous and differentiable on (a, b) with

f ′(x) > 0 ∀x ∈ (a, b)

Let f(a) = c and f(b) = d. Then the function f : [a, b] → [c, d] is bijective and f−1 is differentiable
on (c, d) with

(f−1)′(x) =
1

f ′(f−1(x))

Proof. By corollary 3.5, f is strictly increasing on [a, b]. By Theorem 2.6

∃g : [c, d]→ [a, b]

which is continuous, strictly increasing inverse of f .
RTP: g is differentiable and g′(y) = 1

f ′(x) where y = f(x), x ∈ (a, b)

If k 6= 0 is given, let h be given by

y + k = f(x+ h)

That is, g(y + k) = x+ h, h 6= 0
Then

g(y + k)− g(y)

k
=

x+ h− x
f(x+ h)− f(x)

→ 1

f ′(x)

Let k → 0, then h→ 0 (g is continuous)

g′(y) = lim
h→0

g(y + k)− g(y)

k
=

1

f ′(x)

Example.
g(x) = x1/q

(x > 0, q positive integer)
f(x) = xq (g(f(x) = x)

f ′(x) = qxq−1

Since f is differentiable, so if g and by the inverse rule

g′(x) =
1

q(x1/q)1−q
=

1

q
x1/q−1

Now if g(x = xp/q (p integer, q positive integer)
We can find g′(x) by using the chain rule

g(x) = (xp)1/q = (x1/q)p

We find (can check)
g′(x) =

p

q
x

p
q−1

So, if g(x) = xr r ∈ Q
then g′(x) = rxr−1
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Remark. Suppose f, g : [a, b]→ R are continuous, differentiable on (a, b) and g(a) 6= g(b). Then the
MVT gives us s, t ∈ (a, b) s.t.

f(b)− f(a)

g(b)− g(a)
=

(b− a)f ′(s)

(b− a)g′(t)
=
f ′(s)

g′(t)

Cauchy showed that one can take s = t

Theorem 3.7 (Cauchy’s mean value theorem). Let f, g : [a, b] → R be continuous functions and
differentiable on (a, b).
Then ∃t ∈ (a, b) s.t.

(f(b)− f(a))g′(t) = f ′(t)(g(b)− g(a))

Proof. Let

φ(x) =

∣∣∣∣∣∣
1 1 1

f(a) f(x) f(b)
g(a) g(x) g(b)

∣∣∣∣∣∣
φ iscontinuous on [a, b] and differentiable on (a, b)
Also,

φ(a) = φ(b) = 0

By Rolle’s theorem, ∃t ∈ (a, b) s.t. φ′(t) = 0
If we expand the determinant, we get the desired result:

φ′(x) = f ′(x)g(b)− g′(x)f(b) + f(a)g′(x)− g(a)f ′(x)

= f ′(x)[g(b)− g(a)] + g′(x)[f(a)− f(b)]

φ′(t) = 0 gives the result

Note. We recover the MVT if we take g(x) = x

Example. “L’Hopital’s rule”

lim
x→0

ex − 1

sinx
=

ex − e0

sinx− sin 0
=

et

cos t

as x→ 0, t→ 0, so
et

cos t
→ 1

Note. We want to entend the MVT to include higher order derivatives
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Theorem 3.8 (Taylor’s theorem with Lagrange’s remainder). Suppose f and its derivatives up to
order n− 1 are continuous in [a, a+ h] and f (n) exist for x ∈ (a, a+ h). Then

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + · · ·+ hn−1f (n−1)(a)

(n− 1)!
+
hn

n!
f (n)(a+ θh)

Where θ ∈ (0, 1)

Proof. Define for 0 ≤ t ≤ h

φ(t) = f(a+ t)− f(a)− tf ′(a)− · · · − tn−1

(n− 1)!
f (n−1)(a)− tn

n!
β

where we choose β s.t. φ(h) = 0
(recall in the proof of the MVT we used f(x)− kx and we picked k s.t. we could use Rolle’s
theorem)
We see that

φ(0) = φ′(0) = · · · = φ(n−1)(0) = 0

We use Rolle’s Theorem n-times:

φ(0) = φ(h) = 0 =⇒ φ′(h1) = 0 0 < h1 < h

φ′(0) = φ(h1) = 0 =⇒ φ′′(h2) = 0 0 < h2 < h1

Finally
φ(n−1)(0) = φ(n−1)(hn−1) = 0 =⇒ φ(n)(hn) = 0

0 < hn < hn−1 < · · · < h

So hn = θh for θ ∈ (0, 1)
Now

φ(n)(t) = f (n)(a+ t)− β

=⇒ β = f (n)(a+ θh)

Set t = h, φ(h) = 0 and put this value of β in the second line in the proof

Note.
(i) For n = 1,we get back the MVT, so this is a “n-th order mean value theorem”
(ii)

Rn =
hn

n!
f (n)(a+ θh)

is known as Lagrange’s form of the remainder
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Theorem 3.9 (Taylor’s theorem with Cauchy’s form of remainder). With the same hypothesis as in
Theorem 3.8 and a = 0 (to simplify), we have

f(h) = f(0) + hf ′(0) + · · ·+ hn−1

(n− 1)!
f (n−1)(0) +Rn

where

Rn =
hn(1− θ)n−1f (n)(θh)

(n− 1)!
, θ ∈ (0, 1)

Proof. Define

F (t) = f(h)− f(t)− (h− t)f ′(t)− · · · − (h− t)n−1f (n−1)(t)
(n− 1)!

with t ∈ [0, h]

F ′(t) = −f ′(t) + f ′(t)− (h− t)f ′′(t) + (h− t)f ′′(t)− (h− t)2

2
f ′′(t) + · · · − (h− t)n−1

(n− 1)!
f (n)(t)

=⇒ F ′(t) = − (h− t)n−1

(n− 1)!
f (n)(t)

Set

φ(t) = F (t)−
[
h− t
h

]p
F (0)

where p ∈ Z, 1 ≤ p ≤ n
Then φ(0) = φ(h) = 0 so by Rolle’s theorem,

∃θ ∈ (0, 1) s.t. φ′(θh) = 0

But

φ′(θh) = F ′(θh) +
p(1− θ)p−1

h
F (0) = 0

Thus

0 = −hn−1 (1− θ)n−1

(n− 1)!
f (n)(θh)+

p(1− θ)p−1

h

[
f(h)− f(0)− hf ′(0)− · · · − hn−1

(n− 1)!
f (n−1)(0)

]

=⇒ f(h) = f(0) + hf ′(0) + · · ·+ hn−1

(n− 1)!
f (n−1)(0) +

hn(1− θ)n−1f (n)(θh)

(n− 1)! · p · (1− θ)p−1
, θ ∈ (0, 1)

If p = n we get Lagrange’s remainder
If p = 1 we get Cauchy’s remainder

Method. To get a Taylor Series for f , one needs to show that Rn → 0 as n → ∞. This requires
“estimates” and “effort”

Remark. Theorems 3.8 and 3.9 work equally well in n interval [a+ h, a] with h < 0
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Example (The Binomial Series).
f(x) = (1 + x)r, r ∈ Q

Claim. if |x|| < 1 then

(1 + x)r = 1 +

(
r

1

)
x+ · · ·+

(
r

n

)
xn + . . .

where (
r

n

)
=
r(r − 1) . . . (r − n+ 1)

n!

Proof. Clearly
f (n)(x) = r(r − 1) . . . (r − n+ 1)(1 + x)r−n

If r ∈ Z, r ≥ 0, then f (r+1) ≡ 0, we have a polynomial of degree r.
In general (Lagrange),

Rn =
xn

n!
f (n)(θx)

=

(
r

n

)
xn

(1 + θx)n−r

θ ∈ (0, 1) so have interval [0, x] Note: in principle, θ depends on both x and n.
For 0 < x < 1

(1 + θx)n−r > 1 for n > r

Now observe that the series ∑(
r

n

)
xn

is absolutely convergent for |x| < 1.
Indeed by the ratio test

an =

(
r

n

)
xn

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣r(r − 1) . . . (r − n+ 1)(r − n)xn+1

(n+ 1)!

∣∣∣∣ ∣∣∣∣ n!

r(r − 1) . . . (r − n+ 1)xn

∣∣∣∣ (1)

=

∣∣∣∣ (r − n)x

n+ 1

∣∣∣∣→ |x| as n→∞ (2)

In particular, an → 0, so
(
r
n

)
xn → 0for |x| < 1

Hence for n > r and 0 < x < 1, we have

|Rn| ≤
∣∣∣∣(rn

)
xn
∣∣∣∣ = |an| → 0 as n→∞

So the claim is proved in the range 0 ≤ x < 1
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Example (continued).

Proof (continued). If −1 < x < 0 the argument above breaks down, but Cauchy’s form of
Rn works:

Rn =
(1− θ)n−1r(r − 1) . . . (r − n+ 1)(1 + θx)r−nxn

(n− 1)!

=
r(r − 1) . . . (r − n+ 1)

(n− 1)!︸ ︷︷ ︸
r(r−1

n−1)

(1− θ)n−1

(1 + θx)n−r
xr

= r

(
r − 1

n− 1

)
xn(1 + θx)r−1

(
1− θ

1 + θx

)n−1
︸ ︷︷ ︸
<1 for x∈(−1,1)

|Rn| ≤
∣∣∣∣r(r − 1

n− 1

)
xn
∣∣∣∣ (1 + θx)n−1

Can check:
(1 + θx)r−1 < max{1, (1 + x)r−1}

Kr = rmax{1, (1 + x)r−1}

which is independent of n

|Rn| ≤ Kr

∣∣∣∣(r − 1

n− 1

)
xn
∣∣∣∣→ 0

because an → 0. Thus Rn → 0

3.4 Remarks on Complex Differentiation

Remark. Formally, we have regarding sums, products, chain rule etc. but it is much more restrictive
than differentiability of functions on the real line.
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Example. f(z) = z̄ is no-where C-differentiable

z

zn = z +
1

n
→ z

f(zn)− f(z)

zn − z
=
z̄ + 1

n − z̄
z + 1

n − z
= 1

zn = z +
i

n
→ z

f(zn)− f(z)

zn − z
=
z̄ − i

n − z̄
z + i

n − z
= −1

so
lim
w→z

f(w)− f(z)

w − z
does not exist

On the other hand f(x, y) = (x,−y) is differentiable

z = x+ iy

Note. IB Complex Analysis explores the consequences of C-differentiability

4 Power Series

We want to look at
∑∞
n=0 anz

n with zn ∈ C, an ∈ C.
(The case

∑∞
n=0 an(z − z0)n, z0 fixed follows this one by translation)
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Lemma 4.1. If
∑∞

0 anz
n
1 converges and |z| < |z1|, then

∑∞
0 anz

n converges absolutely

Proof. Since
∑∞

0 anz
n
1 converges, anzn1 → 0. Thus ∃K > 0 s.t.

|anzn1 | < K ∀n

Then

|anzn| ≤ K
∣∣∣∣ zz1
∣∣∣∣n

Since the geometric series
∑∞

0

∣∣∣ zz1 ∣∣∣n converges, the lemma follows by comparison

Using this lemma, we will prove that every power series has a radius of convergence

Theorem 4.2. A power series either
(i) Converges absolutely for all z, or
(ii) Converges absolutely for all z inside a circle |z| = R and diverges for all z outside it, or
(iii) Converges for R = 0 only

R
X

x
O

Proof. Let S = {x ∈ R, x ≥ 0 and
∑
anx

n converges} Clearly 0 ∈ S. By Lemma 4.1, if
x1 ∈ S, then [0, x1] ∈ S.

If S = [0,∞), we have case (i)

If not, there exists a finite supremum R (R ≥ 0). For S, R = supS <∞

If R > 0, we’ll prove that if |z1| < R, then
∑
anz

n
1 converges absolutely:

choose R0 s.t.|z1 < |R0 < R. Then R0 ∈ S and the series converges if z = R0.
By Lemma 4.1,

∑
|anzn1 | converges

Finally we show that if |z2| > R ≥ 0, then the series does not converge for z2. Now
take R0 s.t. R < R0 < |z2|. If

∑
anz

n
2 converes, by Lemma 4.1,

∑
anR

n
0 would be convergent,

which contradicts that R = supS.

Definition. The circle |z| = R is called the circle of convergence and R is the radius of con-
vergence.
In (i), we agree that R =∞ and in (iii) R = 0
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The following lemma is useful for computing R

Lemma 4.3. If ∣∣∣∣an+1

an

∣∣∣∣→ l

as n→∞, then R = 1
l

Proof. By the ratio test, we have absolute convergence if

lim

∣∣∣∣an+1

an

zn+1

zn

∣∣∣∣ < 1

so if |z| < 1
l , we have absolute convergence. If |z| > 1

l , the series diverges , again by the ratio
test

Remark. One can also use the root test to get |an|1/n → l then R = 1
l
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Examples.
(i)
∑∞

0
zn

n! ∣∣∣∣an+1

an

∣∣∣∣− n!

(n+ 1)|
=

1

n+ 1
→ 0 = l =⇒ R =∞

(ii) Geometric series,
∑∞

0 zn

R = 1. Note that at |z| = 1, we have divergence

(iii)
∑∞

0 n!zn, has R = 0 ∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)!zn+1

n!zn
= (n+ 1)z →∞

Only converges at z = 0
(iv)

∑∞
1

zn

n has R = 1, but diverges for z = 1 (harmonic series)
What happens for |z| = 1 and z 6= 1?
Consider

∞∑
1

zn

n
(1− z)

SN =

N∑
1

zn − zn+1

n
=

N∑
1

zn

n
−

N∑
1

zn+1

n

=

N∑
1

zn

n
−
N+!∑
2

zn

n− 1

= z − zN+1

N
+

N+1∑
2

−zn

n(n− 1)

if |z| = 1, z
N+1

N → 0 as N →∞ and
∑∞

2
zn

n converges for all z with |z| = 1, z 6= 1

(v)
∑∞

1
zn

n2 , R = 1 and converges for all z with |z| = 1
(vi)

∑∞
0 nzn, R = 1 but diverges for all |z| = 1

Remark. In principle, nothing can be said about |z| = R and each case has to be discussed
separately.
Within the radius of convergence ‘life is great”. Power series will “behave as if they were
polynomials”
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Theorem 4.4. f(z) =
∑∞

0 anz
n has radius of convergence R. Then f is differentiable at all points

with |z| < R with

f ′(z) =

∞∑
n=1

nanz
n−1

Proof. By Lemma 4.5, we may define

f ′(z) =

∞∑
n=1

nanz
n−1, |z| < R

RTP:
lim
h→0

f(z + h)− f(z)− hf ′(z)
h

→ 0

Let

I =
f(z + h)− f(z)− hf ′(z)

h

=
1

h

∞∑
0

an
(
(z + h)n − zn − hnzn−1

)
|I| = 1

|h|

∣∣∣∣∣ lim
N→∞

N∑
0

an
(
(z + h)n − zn − hnzn−1

)∣∣∣∣∣
≤ 1

|h|

∞∑
0

|an||(z + h)n − zn − nhzn−1|

≤ 1

|h|

∞∑
2

|an|n(n− 1)(|z|+ |h|)n−2|h|2

By Lemma 4.5, for |h| small enough,

∞∑
2

|an|n(n− 1)(|z|+ |h|)n−2

converges to A(h), but A(h) ≤ A(r) for h < r and |z|+ r < R

=⇒ |I| ≤ |h|A(h) ≤ |h|A(r) as h→ 0
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Lemma 4.5. If
∑∞

0 anz
n has radius of convergence R, then so do

∞∑
1

nanz
n−1 and

∞∑
2

n(n− 1)anz
n−2

Proof. Take z and R0 s.t. 0 < |z| < R0 < R. Since anRn0 → 0,

∃K s.t. |anRn0 | ≤ K ∀n ≥ 0

Thus

|annzn−1| =
n

|z|
|anRn0 |

∣∣∣∣ zR0

∣∣∣∣n
≤ Kn

|z|

∣∣∣∣ zR0

∣∣∣∣n
But

∑
n| zR0

| converges by the ratio test

n+ 1

n

∣∣∣∣ zR0

∣∣∣∣n+1 ∣∣∣∣R0

z

∣∣∣∣n =
n+ 1

n

∣∣∣∣ zR0

∣∣∣∣→ ∣∣∣∣ zR0

∣∣∣∣ < 1

if |z| > R, the series diverges since |anzn| is unbounded, hence so is n|anzn|
Same proof applies to

∞∑
2

n(n− 1)anz
n−2
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Lemma 4.6.
(i) (

n

r

)
≤ n(n− 1)

(
n− 2

r − 2

)
for all 2 ≤ r ≤ n

(ii)
|(z + h)n − zn − nhzn−1| ≤ n(n− 1)(|z|+ |h|)n−2|h|2 ∀z ∈ C, h ∈ C

Proof.
(i) (

n
r

)(
n−2
r−2
) =

n!

r!(n− r)!
(r − 2)!(n− r)!

(n− 2)!

=
n(n− 1)

r(r − 1)

≤ n(n− 1) X

(ii)

(z + h)n − zn − nhzn−1 =

n∑
r=2

(
n

r

)
zn−rhr thus

|(z + h)n − zn − nhzn−1| ≤
n∑
r=2

(
n

r

)
|z|n−r|h|r

≤ n(n− 1)

[
n∑
r=2

(
n− 2

r − 2

)
|z|n−r|h|r−2

]
︸ ︷︷ ︸

(|z|+|h|)n−2

|h|2
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4.1 The Standard Functions

We have already seen that
∞∑
0

zn

n!

has R =∞
Define e : C→ C

e(z) =

∞∑
0

zn

n!

Straight from Theorem 4.4, e is differentiable and e′(z) = e(z)

Claim. Observation: If F : C→ C has f ′(z) = 0 ∀z ∈ C, then F is constant

Proof. Consider

g(t) = F (tz)

= u(t) + iv(t)

By the chain rule:

g′(t) = F ′(tz)z = 0 = u′(t) + iv′(t)

=⇒ u′ = v′ = 0

Now apply Corollary 3.5

Now let a, b ∈ C and consider
F (z) = e(a+ b− z)e(z)

F ′(z) = −e(a+ b− z)e(z) + e(a+ b− z)z = 0

=⇒ F is constant

e(a+ b− z)e(z) = F (0) = e(a+ b)

Set z = b
e(a)e(b)e(a+ b)

Now we restrict e : R→ R
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Theorem 4.7.
(i) e : R→ R is everywhere differentiable and e′(x) = e(x)
(ii) e(x+ y) = e(x)e(y)
(iii) e(x) > 0 ∀x ∈ R
(iv) e is strictly increasing
(v) e(x)→∞ as x→∞, and e(x)→ 0 as x→ −∞
(vi) e : R→ (0,∞) is a bijection

Proof.
(i) done X
(ii) done X
(iii) Clearly e(x) > 0 ∀x ≥ 0 and e(0) = 1

Also
e(0) = e(x− x) = e(x)e(−x)

=⇒ e(−x) > 0 ∀x > 0

(iv)
e′(x) = e(x) > 0 =⇒ e is strictly increasing

(v)
e(x) > 1 + x for x > 0

So if x→∞, e(x)→∞
For x > 0 since

e(−x) =
1

e(x)
, e(x)→ 0 as x→ −∞

(vi) injectivity: follows right away from being strictly increasing
surjectivity: Take y ∈ (0,∞), since e(x)→∞ as x→∞ and e(x)→ 0 as x→ −∞,

∃a, b ∈ R s.t. e(a) < y < e(b)

By the intermediate value theorem, ∃x ∈ R s.t. e(x) = y

Remark.
e : (R,+)→ ((0,∞),×)

is a group isomorphism.

Since e is a bijection, consider the inverse function

l : (0,∞)→ R
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Theorem 4.8.
(i)

l : (0,∞)→ R

is a bijection and
l(e(x)) = x ∀x ∈ R

and
e(l(t) = t ∀t ∈ (0,∞)

(ii) l is differentiable and

l′(t) =
1

t

(iii)
l(xy) = l(x) + l(y) ∀x, y ∈ (0,∞)

Proof.
(i) obvious from the definition
(ii) Inverse rule (Theorem 3.6):

l is differenitable and
l′(t) =

1

e(l(t))
=

1

t

(iii) from IA Groups, if e is an isomorphism, so is its inverse

Now define for α ∈ R and x > 0,
rα(x) = e(αl(x))
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Theorem 4.9. Suppose x, y > 0 and α, β ∈ R. Then:
(i)

rαl(xy) = rα(x)rα(y)

(ii)
rα+β(x) = rα(x)rβ(x)

(iii)
rα(rβ(x)) = rαβ(x)

(iv)
r1(x) = x, r0(x) = 1

Proof.
(i)

rα(xy) = e(αl(xy))

= e(αl(x) + αl(y))

= e(αl(x))e(αl(y))

= rα(x)rα(y)

(ii)

rα+β(x) = e((α+ β)l(x))

= e(αl(x))e(βl(x))

= rα(x)rβ(x) X

(iii)

rαβ(x) = rα(e(βl(x)))

= e(αle(βl(x)))

= e(αβl(x))

rαβ(x) X

(iv)
r1(x) = e(l(x)) = x X

r0(x) = e(0) = 1 X
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Equation.
rn(x) = r1+···+1(x) = x · x . . . x = xn

r1(x)r−1(x) = r0(x) = 1

So
r−1(x) =

1

x

=⇒ r−n(x) =
1

xn

(r1/q(x))q = r1(x) = x =⇒ r1/q(x) = x1/q

rp/q = (r1/q(x))p = xp/q

Thus rα(x) agrees with α ∈ Q as previously defined.

Now we do a “baptism ceremony”
exp(x) = e(x) x ∈ R

log x = l(x) x ∈ (0,∞)

xα = rα(x) α ∈ R, x ∈ (0,∞)

e(x) = e(x log e) = rx(e) = ex

where

e =

∞∑
0

1

n!
= e(1)

so exp(x) is also a power, which we may as well denote ex
Finally, we compute (xα)′

(xα)′ =
(
eα log x

)′
= eα log xα

x
= αxα−1 X

Note. If we let f(x) = ax, a > 0 then

f ′(x) =
(
ex log a

)′
= ex log a log a = ax log a

Remark. “Exponentials beat polynomials”

lim
x→∞

ex

xk
=∞ for k > 0

ex =

∞∑
0

xj

j!
>
xn

n!
for x > 0

and pick n > k so
ex

xk
>
xn−k

n!
→∞ as x→∞
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4.2 Trigonometric Functions

Definition.

cos z = 1− z2

2!
+
z4

4!
− · · · =

∞∑
0

(−1)kz2k

(2k)!

sin z = z − z3

3!
+
z5

5!
− · · · =

∞∑
0

(−10)kz2k+1

(2k + 1)!

Both power series have infinite radius of convergence and by theorem 4.4., they are differentiable and

(sin z)′ = cos z

(cos z)′ = − sin z

Notation. Write
ex = e(z)
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Equation.

eiz =

∞∑
0

(−z)n

n!
=

∞∑
0

(iz)2k

(2k)!
+

∞∑
0

(iz)2k+1

(2k + 1)!

(iz)2k = (−1)kz2k, (iz) = i(−1)kz2k+1

=⇒ eiz = cos z + i sin z

Similarly,
e−iz = cos z − i sin z

which gives:

cos z =
1

2

(
eiz + e−iz

)
sin z =

1

2i

(
eiz − e−iz

)
From this we get many trigonometric identities:

cos z = cos(−z), sin(z) = − sin z

cos(0) = 1, sin(0) = 0

(i)
sin(z + w) = sin z cosw + cos z sinw

(ii)
cos(z + w) = cos z cosw − sin z sinw z,w ∈ C

Follows from
ea+b = ea · eb

to prove (ii) write:

cos(z + w) =
1

2

{
ei(z+w) + e−i(z+w)

}
=

1

2

{
eiz · eiw + e−iz · e−iw

}

cos z cosw − sin z sinw =
1

4
(eiz + e−iz)(eiw + e−iw) +

1

4
(eiz − e−iz)(eiw − e−iw) (*)

operate to get same result use (*) to get

sin2 z + cos2 z = 1 ∀z ∈ C

Now if x ∈ R, then sinx, cosx ∈ R
and (*) gives

| sinx|, | cosx| ≤ 1

Warning.

cos(iy) =
1

2
(e−y + ey) (y ∈ R)

as y →∞, cos(iy)→∞
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4.2.1 Periodicity of the Trigonometric Functions

Prop 4.10. There is a smallest positive number ω (where
√

2 < ω
2 <
√

3 s.t.

cos
(ω

2

)
= 0

Proof. If 0 < x < 2

sinx =

(
x− x3

3!

)
+

(
x5

5!
− x7

7!

)
+ · · · > 0

(if 0 < x < 2 then x2n−1

(2n−1)! >
x2n+1

(2n+1) )
So for 0 < x < 2,

(cosx)′ = − sinx < 0

=⇒ cosx is strictly decreasing

1 2

−1

0

1

cosx

We’ll show that cos
√

2 > 0 and cos
√

3 < 0. Then by the intermediate value theorem the
existence of ω follows.

cos
√

2 =

(
(
√

2)4

4!
− (
√

2)6

6!

)
+ ( )
>0

+ ( )
>0

+ · · · > 0

cosx = 1− x2

2!
+
x4

4!
−
(
x6

6!
− x8

8!

)
︸ ︷︷ ︸

>0

− . . .

x =
√

3:
1− 3

2
+

9

4× 3× 2
= 1− 3

2
+

3

8
= −1

8
< 0

=⇒ cos
√

3 < 0
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Corollary 4.11.
sin

ω

2
− 1

Proof.
sin2 ω

2
+ cos

ω

2
= 1

and
sin

ω

2
> 0

Notation. Now define π = ω

Theorem 4.12.
(i)

sin
(
z +

π

2

)
= cos z, cos

(
z +

π

2

)
− sin z

(ii)
sin(z + π) = − sin z, cos(z + π) = − cos z

(iii)
sin(z + 2π) = sin z, cos(z + 2π) cos z

Proof. immediate from addition formulas and

cos
π

2
, sin

π

2
= 1

Note. This implies

eiz+2πi = cos(z + 2π) + i sin(z + 2π)

= cos(z)i sin z

= eiz

=⇒ ez is periodic with period 2πi
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Remark. We can “relate the trig functions with geometry”.
Given two vectors x, y ∈ R2, define x · y as in vector and matrices

x · y = x1y1 + x2y2, x = (x1, x2) and y = (y1, y2)

By Cauchy-Swarz:
|x · y| ≤ ‖x‖‖y‖

Thus if x 6= 0, y 6= 0

−1 ≤ x · y
‖x‖‖y‖

≤ 1

So we define the angle between x and y as the unique θ ∈ [0, π] s.t.

cos θ =
x · y
‖x‖‖y‖

1

O

x

θ

h

v

e1

e2

θ

x

y
x = (h, v)

cos θ = x · e1 = h

4.3 Hyperbolic Functions

Definition.
cosh z =

1

2
(ez + e−z)

sinh z =
1

2
(ez − e−z)

=⇒ cosh z = cos(iz), sinh = −i sin(iz)

Claim.
(cosh z)′ = sinh z

(sinh z)′ = cosh z

cosh2 z − sinh2 z = 1, etc.

Proof. Exercise
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Note. The rest of the trigonometric functions (tan, cot, sec, cosec) are defined in the usual way

5 Integration

Note. f : [a, b]→ R bounded meand:

∃K s.t. |f(X)| ≤ K, ∀x ∈ [a, b]

Definition. A dissection (or partition) D of [a, b] is a finite subset of [a, b] containing the end points
of a and b.
We write

D = {x0, x1, . . . , xn} with

a = x0 < x1 < · · · < xn−1 < xn = b

a bxj−1 xj

f

Definition. We define the upper sum and lower sum associated with D by

S(f,D) =

n∑
j=1

(xj − xj−1) sup
x∈[xj−1,xj ]

f(x) (upper

s(f,D =

n∑
j=1

(xj − xj−1) inf
x∈[xj−1,xj ]

f(x) (lower

Clearly
s(d,D) ≤ S(d,D) ∀D
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Lemma 5.1. If D and D′ are dissections with D ⊆ D′, then

S(d,D) ≥ S(d,D′) ≥ s(f,D′) ≥ s(f,D)

Proof.
S(d,D′) ≥ s(f,D′)

is obvious.
Suppose D′ contains an extra point than D, let’s say y ∈ (xr−1, xr)
clearly:

sup
x∈[xr−1,y]

f(x), sup
x∈[y,xr]

f(x) ≤ sup
x∈[xr−1,xr]

f(x)

=⇒ (xr − xr−1) sup
x∈[xr−1,xr]

f(x) ≥ (y − xr−1) sup
x∈[xr−1,y]

f(x) + (xr − y) sup
x∈[y,xr]

f(x)

S(f,D) ≥ s(f,D′)

The same for s and the same if D′ has more extra points than D

Lemma 5.2. D1,D2 two arbitrary dissections. Then

S(f,D1) ≥ S(f,D1 ∪D2) ≥ s(f,D1 ∪ D2) ≥ s(f,D2)

So
S(f,D1) ≥ s(f,D2)

Proof. Take
D′ = D1 ∪ D2 ⊇ D1D2

ad apply the previous lemma.

Definition. The upper integral of f is

I∗(f) = inf
D
S(f,D)

(this always exists)
The lower integral of f is

I∗(f) = sup
D
s(f,D)

(this always exists)

58



Claim. By lemma 5.2,
I∗(f) ≥ I∗(f)

Proof.
S(f,D1) ≥ s(f,D2)

I∗(f) = inf
D1

S(f,D∞) ≥ s(f,D2)

I∗(f) ≥ sup
D2

s(f,D∈) ≥ s(f,D2) = I∗(f)

Definition. A bounded function f : [a, b]→ R is said to beReimann integrable (or first integrable)
if

I∗(f) = I∗(f)

and we set ∫ b

a

f(x) dx = I∗(f) = I∗(f) =

∫ b

a

f

Example.

f(x) =

{
1 x ∈ Q ∩ [0, 1]

0 x 6∈ Q ∩ [0, 1]

f : [0, 1]→ R is not Reimann integrable

sup
[xj−1,xj ]

= 1, inf
[xj−1,xj ]

= 0 ∀D

=⇒ I∗(f) = 1, but I∗(f) = 0

A useful criterion for integrability:
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Theorem 5.3. A bounded function
f : [a, b]→ R

is Riemann integrable iff given ε > 0,∃D s.t.

S(f,D)− s(f,D) < ε

Proof. For every dissection D, we have

0 ≤ I∗(f)− I∗(f) ≤ S(f,D)− s(f,D)

If the given condition holds, then

0 ≤ I∗(f)− I∗(f) ≤ S(f,D)− s(f,D) < ε ∀ε > 0

=⇒ I∗(f) = I∗(f)

Conversely, if f is integrable, by definition of sup, inf, there are partitions D1 and D2 s.t.∫ b

a

f dx− ε

2
= I∗(f)− ε

2
< s(f,D1)

S(f,D2) < I∗(f) +
ε

2
=

∫ b

a

f dx+
ε

2

By lemma 5.1,
(D1 ∪ D2 ⊇ D1,D2)

S(f,D1 ∪ D2)− s(f,D1 ∪ D2) ≤ S(f,D2)− s(f,D1) <

∫ b

a

f dx+
ε

2
−
∫ b

a

f dx+
ε

2
= ε

We now use this condition to show that monotonic and continuous functions (separately) are inte-
grable.

Remark. Monotonic and continuous are bounded (thm 2.6 for the case of continuous functions)
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Theorem 5.4. f : [a, b]→ R monotonic. Then f is integrable

Proof. Suppose f is increasing (same proof for f decreasing)
Then

sup
x∈[xj−1,xj ]

= f(xj)

inf
x∈[xj−1,xj ]

= f(xj−1)

Thus

S(f,D)− s(f,D) =

n∑
j=1

(xj − xj−1)[f(xj)− f(xj−1)]

Now choose
D = {a, a+

b− a
n

, a+
2(b− a)

n
, . . . , b}

xj = a+
(b− a)j

n
, 0 ≤ j ≤ n

S(f,D)− s(f,D) =
(b− a)

n
(f(b)− f(a))

Take n large enough s.t.
b− a
n

(f(b)− f(a)) < ε

and use Theorem 5.3

5.0.1 Continuous Functions

Note. First we need an auxiliary lemma
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Lemma 5.5. f : [a, b]→ R continuous. Then

given ε > 0, existsδ > 0 s.t |x− y| < δ =⇒ |f(x)− f(y)| < ε

(uniform continuity)

Note. The point is δ works ∀x, y as long as |x− y| < δ
(in the definition of continuity of f at x, δ = δ(x))

Proof. Suppose the claim is false. Then ∃ε > 0 s.t. ∀δ > 0, we can find x, y ∈ [a, b] s.t.
|x− y| < δ but |f(x)− f(y) ≥ ε
Take δ = 1

n , to gen xn, yn with

|xn − yn| <
1

n
, but |f(xn)− f(yn)| ≥ ε

By Bolzano-Weierstrass, ∃xnk
> C

|ynk
− C| ≤ |ynk

− xnk
|+ |xnk

− C| → 0

(both parts of sum converge to 0)
But

|f(xnk
)− f(ynk

)| ≥ ε

0 ≥ ε
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Theorem 5.6. Let f : [a, b]→ R be continuous. Then f is Riemann integrable.

Proof. given ε > 0, ∃δ > 0 s.t. |x− y| < δ

=⇒ |f(x)− f(y)| < ε

Let D = {a+ (b−a)j
n , j = 0, 1, . . . , n}

Choose n large enough s.t.
b− a
n

< δ

Then for x, y ∈ [xj−1, xj ]
|f(x)− f(y)| < ε (*)

since
|x− y| ≤ |xj − xj−1| =

b− a
n

< δ

This means that

max
x∈[xj−1,xj ]

f(x)− min
x∈[xj−1,xj ]

f(x) = f(pj)− f(qj) pj , qj ∈ [xj−1, xj ]

(max and min exist due to continuity)

=⇒ S(f,D)− s(f,D) =

n∑
j=1

(xj − xj−1)

[
max

x∈[xj−1,xj ]
f(x)− min

x∈[xj−1,xj ]
f(x)

]

=

n∑
j=1

(b− a)

n
(f(pj)− f(qj)︸ ︷︷ ︸

<ε by (*)

)

< ε(b− a)

Now use Theorem 5.3

Remark. More complicated functions can be Riemann integrable
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Example. f : [0, 1]→ R

f(x) =

{
1/q, x = p/q ∈ (0, 1]in its lowest form
0, otherwise

Clearly s(f,D) = 0 ∀D.
We will show that given ε > 0,∃D s.t.

S(f,D) < ε

This implies f is integrable with ∫ 1

0

f = 0

Take N ∈ N s.t.
1

N
<
ε

2

Consider the set

{x ∈ [0, 1] : f(x) ≥ 1/N} = {p/q : 1 ≤ q ≤ N and 1 ≤ p ≤ q

This is a finite set 0 < t1 << t2 < · · · < tR = 1
Consider a dissection of [a, b] s.t.
(i) Each tk, 1 ≤ k ≤ R is in some [xj−1, xj ]
(ii) ∀k, the unique interval containing tR has length at most ε/2R

0 1 = tRt1 t2 t3

x0 x1 x2 x3 x4 x5

< 1/N

< ε/2R

R such intervals.

Not: f ≤ 1 everywhere

S(f,D) ≤ 1

N
+
ε

2
< ε
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5.1 Elementary Properties of the Integral

Claim. For f, g bounded and integrable on [a, b]:
(i) If f ≤ g on [a, b], then ∫ b

a

f ≤
∫ b

a

g

(ii) f + g is integrable on 9a, b] and ∫ b

a

f + g =

∫ b

a

f +

∫ b

a

g

(iii) For any constant k, kf is integrable and∫ b

a

kg = k

∫ b

a

f

(iv) |f | is integrable and ∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |

(v) The product fg is integrable

Proof.
(i) if f ≤ g, then ∫ b

a

f = I∗(f) ≤ S(f,D) ≤ S(g,D)

hence ∫ b

a

f = I∗(f) ≤ I∗(g) =

∫ b

a

g

(ii)
sup

[xj−1,xj ]

(f + g) ≤ sup
[xj−1,xj ]

f + sup
[xj−1,xj ]

g

=⇒ S(f + g,D) ≤ S(f,D) + S(g,D)

Now take two dissections D1 and D2

I∗(f + g) ≤ S(f + g,D1 ∪ D2) ≤ S(f,D1 ∪ D2) + S(g,D1 ∪ D2)

≤ S(f,D1) + S(g,D2)

last from lemma 5.1. Fix D1 and inf over D2 to get

I∗(f + g) ≤ I∗(f) + I∗(g) =

∫ b

a

f +

∫ b

a

g

Similarly ∫ b

a

f +

∫ b

a

g ≤ I∗(f + g)

=⇒ f + g is integrable with integral equal to the sum of the integrals.
(iii) Exercise!
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Claim (cont.).

Proof (cont.).
(iv) Consider

f+(x) = max(f(x), 0)

sup
[xj−1,xj ]

f+ − inf
[xj−1,xj ]

f+ ≤ sup
[xj−1,xj ]

f − inf
[xj−1,xj ]

f

(can check)
and we know that given ε > 0, ∃D s.t.

S(f,D)− s(f,D) < ε

=⇒ S(f+,D)− s(f+,D) < ε

=⇒ f+ is integrable
But |f | = 2f+ − f By (ii) and (iii), |f | is integrable.
Since −|f | ≤ f ≤ |f |, we use property (i) to see∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |

(v) Take f integrable and ≥ 0
Then

sup
[xj−1,xj ]

f2 =

 Mj︷ ︸︸ ︷
sup

[xj−1,xj ]

f

2

inf
[xj−1,xj ]

f2 =

 inf
[xj−1,xj ]

f︸ ︷︷ ︸
mj


2

Thus

S(f2,D)− s(f2,D) =

n∑
j=1

(xj − xj−1)(M2
j −m2

j )

=

n∑
j=1

(xj − xj−1(Mj +mj)(Mj −mj)

≤ 2K(S(f,D)− s(f,D))

using |f(x)| ≤ K ∀x ∈ [a, b]
Using the criterion in Theorem 5.3, we deduce that f2 is integrable.
Now take any f , then |f | ≥ 0 and is integrable. Since f2 = |f |2.
We deduce that f2 is integrable for any f
Finally for fg, note:

4fg = (f + g)2 − (f − g)2

=⇒ fg is integrable given what we proved
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Claim (6). f is integrable on [ab]. If a < c < b, then f is integrable over [a, c] and [c, b] and∫ b

a

f =

∫ c

a

f +

∫ b

c

f

Conversely if f is integrable over [a, c] and [c, b], then f is integrable over [a, b] and∫ b

a

f =

∫ c

a

f +

∫ b

c

f

Proof. We first make two observations:
if D1 is a dissection of [a, c] and D2 is a dissection of [b, c], then

D = D1 ∪ D2

is a dissection of [a, b] and

S(f,D1 ∪ D2) = S(f |[a,c],D1) + S(f |[c,b],D2) (*1)

Also if D is a dissection of [a, b], then

S(f,D) ≥ S(f,D ∪ {c})
= S(f |[a,c],D1) + S(f |[c,b],D2) (*2)

where D1 dissects [a, c] and D2 dissects [a, b]

(∗1) =⇒ I∗(f) ≤ I∗(f |[a,c]) + I∗(f |[c,b])

(∗2) =⇒ I∗(f) ≥ I∗(f |[a,c]) + I∗(f |[c,b])

Similarly
I∗(f) = I∗(f |[a,c]) + I∗(f |[c,b])

Thus
0 ≤ I∗(f)− I∗(f) = I∗(f |[a,c])− I∗(f |[a,c])︸ ︷︷ ︸

≥0

+ I∗(f |[c,b])− I∗(f |[c,b])︸ ︷︷ ︸
≥0

From this, claim follows right away.

Notation. We have a convention that is if a > b, then∫ b

a

f = −
∫ a

b

f

if a = b, we agree that its value is zero.
With this convention, if |f | ≤ K, then ∣∣∣∣∣

∫ b

c

f

∣∣∣∣∣ ≤ K|b− a|
(from property (4) and convention)
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5.2 The Fundamental Theorem of Calculus (FTC)

f : [a, b]→ R bounded and integrable. Write

F (x) =

∫ x

a

f(t) dt, x ∈ [a, b]

Theorem 5.7. F is continuous

Proof.

F (x+ h)− F (x) =

∫ x+h

x

f(t) dt

|F (x+ h)− F (x)| =

∣∣∣∣∣
∫ x+h

x

f(t) dt

∣∣∣∣∣ ≤ K|h|
if |f(t)| ≤ K, ∀t ∈ [a, b]. Now let h→ 0 and we are done.

Theorem 5.8 (FTC). If in addition f is continuous at x, then F is differentiable at x and

F ′(x) = f(x)

Proof. We need to consider (x+ h ∈ [a, b] & h 6= 0∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ =
1

|h|

∣∣∣∣∣
∫ x+h

x

f(t) dt− hf(x)

∣∣∣∣∣
=

1

|h|

∣∣∣∣∣
∫ x+h

x

[f(t)− f(x)] dt

∣∣∣∣∣
f continuous at x, means that given ε > 0, ∃δ > 0 s.t. if |t− x| < δ then

|f(t)− f(x)| < ε

IF |h| < δ, we can write

1

|h|

∣∣∣∣∣
∫ x+h

x

[f(t)− f(x)] dt

∣∣∣∣∣ ≤ 1

|h|
ε|h|

= ε

This means
lim
h→0

F (x+ h)− F (x)

h
= f(x)
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Example.

f(x) =

{
−1 x ∈ [−1, 0)

1 x ∈ (0, 1]

−1 1

monotonic =⇒ integrable

f(x) =

{
−x− 1 x ≤ 0

x− 1 x ≥ 0

F (x) = −1 + |x|

−1 1

−1
F not differentiable at x = 0

F

Corollary 5.9 (integration is the inverse of differentiation). If f = g′ is continuous on [a, b], then∫ x

a

f(t) dt = g(x)− g(a) ∀x ∈ [a, b]

Proof. From Theorem 5.8, F − g has zero derivative in [a, b] =⇒ F − g is constant and since
F (a) = 0,

F (x) = g(x)− g(a)
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Notation. Every continuous function has an indefinite integral or anti-derivative written∫
f(x) dx

which is determined up to a constant.

Remark. We have solved the ODE: {
y′(x) = f(x)

y(a) = y0

Corollary 5.10 (integration by parts). Suppose f ′ and g′ exist and are ontinuous on [a, b]. Then∫ b

a

f ′g = f(b)g(b)− f(a)g(a)−
∫ b

a

fg′

Proof. By the product rule,
(fg)′ = f ′g + fg′

By 5.9,

f(b)g(b)− f(a)g(a) =

∫ b

a

f ′g +

∫ b

a

fg′

Corollary 5.11 (integration by substitution). Let g : [α, β]→ [a, b] with g(α) = a and g(β) = b, g′

exists and is continuous on [α, β]. Let f : [a, b]→ R be continuous. Then∫ b

a

f(x) dx =

∫ β

α

f(g(t))g′(t) dt

Proof. Set
F (x) =

∫ x

a

f(t) dt

as before. Let h(t) = F (g(t)) defined since g takes values in [a, b]). Then∫ β

α

f(g(t))g′(t) dt =
FTC

∫ β

α

F ′(g(t))g′(t) dt

=
chain rule

∫ β

α

h′(t) dt

= h(β)− h(α)

= F (b)− F (a)

=

∫ b

a

f(x) dx
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Theorem 5.12 (Taylor’s theorem with remainder an integral). Let f (n)(x) be continuous for x ∈
[0, h]. Then

f(h) = f(0) + · · ·+ hn−1f (n−1)

(n− 1)!
+Rn

where

Rn =
hn

(n− 1)!

∫ 1

0

(1− t)n−1f (n)(th) dt

Proof. By substituting u = th

Rn =
1

(n− 1)!

∫ h

0

(h− u)n−1f (n)(u) du

Integrating by parts now, we get:

Rn = −h
n−1f (n−1)(0)

(n− 1)!
+

1

(n− 2)!

∫ h

0

(h− u)n−2f (n−1)(u) du︸ ︷︷ ︸
Rn−1

If we integrate by parts n− 1 times, we arrive at:

Rn = −h
n−1f (n−1)(0)

(n− 1)!
− · · · − hf ′(0) +

∫ h

0

f ′(u) du︸ ︷︷ ︸
f(h)−f(0)

Remark. Now we can get the Cauchy & Lagrange form of the remainder.
However, note that the proof above uses continuity of f (n) not just mere existence as in section 3.
But first need to prove:
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Theorem 5.13. f, g : [a, b]→ R continuous with g(x) 6= 0 ∀x ∈ (a, b). Then ∃c ∈ (a, b) s.t.∫ b

a

f(x)g(x) dx = f(x)

∫ b

a

g(x) dx

Proof. We’re going to use Cauchy’s MVT (Theorem 3.7)

F (x) =

∫ x

a

fg, G(x) =

∫ x

a

g

Theorem 3.7 =⇒ ∃c ∈ (a, b) s.t.

(F (b)− F (a))G′(c) = F ′(c)(G(b)−G(a))(∫ b

a

fg

)
g(c) = f(c)g(c)

∫ b

a

g

if g(c) 6= 0, we simplify ans we’re done

Note. if we take g(x) ≡ 1, we get∫ b

a

f(x) dx = f(c)(b− a)

Claim. We can get the Cauchy & Lagrange form of the remainder from Taylor’s theorem with
remainder (given continuity of f (n))

Proof. Now we want to apply this to

Rn =
hn

(n− 1)!

∫ 1

0

(1− t)n−1f (n)(th) dt

First we use Theorem 5.13 with g ≡ 1, to get

Rn =
hn

(n− 1)!
(1− θ)n−1f (n)(θh)mθ ∈ (0, 1)

Which is Cauchy’s form of the remainder!
To get Lagrange, we use Theorem 5.13 with g(t) = (1− t)n−1 which is > 0 for t ∈ (0, 1)

=⇒ ∃θ ∈ (0, 1) s.t. Rn =
hn

(n− 1)!
f (n)(θh)

[∫ 1

0

(1− t)n−1 dt

]
︸ ︷︷ ︸

=1/n∫ 1

0

(1− t)n−1 dt = − (1− t)n

n

]1
0

=
1

n

=⇒ Rn =
hn

n!
f (n)(θh), θ ∈ (0, 1)

which is Lagrange’s form of the remainder!

72



5.3 Improper Integrals

Definition. Suppose f : [a,∞] → R integrable (and bounded) on every interval [a,R] and that as
R→∞ ∫ R

a

f(x) dx→ l

Then we say that
∫∞
a
f(x) dx exists or converges and that its value is l. If

∫ R
a
f(x) dx does not ten

to a limit, we say that
∫∞
a
f(x) dx diverges.

A similar definition applies to
∫ a
−∞ f(x) dx. If∫ ∞

a

f(x) dx = l1

and ∫ a

−∞
f(x) dx = l2

we write ∫ ∞
−∞

= l1 + l2

(independent of the particular value of a)

Warning. This is not the same as saying that

lim
R→∞

∫ R

−R
f(x) dx

exists. It is stronger: e.g. ∫ R

−R
xdx = 0

Example. ∫ ∞
1

dx

xk
converges iff k > 1

Indeed, if k 6= 1, ∫ R

1

dx

xk
=

x1−k

1− k

]R
1

=
R1−k

1− k

and as R→∞, this limit is finite iff k > 1 (and equals − 1
1−k )

if k = 1, ∫ R

1

dx

x
= logR→∞
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Remark. 1/
√
x continuous on [δ, 1], for any δ > 0. and∫ 1

δ

dx√
x

= 2
√
x
]1
δ

= 2− 2
√
δ → 2 as δ → 0

1

1

1/
√
x is unbounded on [0, 1] ∫ 1

0

dx√
x

= lim
δ→0

∫ 1

δ

dx√
x

= 2

Exercise: give a general definition∫ 1

0

dx

x
= lim
δ→0

∫ 1

δ

dx

x
= lim
δ→0

log x]
1
δ = log 1− log δ

limit does not exist as δ → 0
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Remark. If f ≥ 0 and g ≥ 0 for x ≥ a and f(x) ≤ Kg(x), K constant x ≥ a, then∫ ∞
a

g converges =⇒
∫ ∞
a

f converges

and ∫ ∞
a

f ≤ K
∫ ∞
a

g

Just note that ∫ R

a

f ≤ K
∫ R

a

g

The function R→
∫ R
a
f is increasing (f ≥ 0) and bounded above (

∫∞
a
g converges)

Take

l = sup
R≥a

∫ R

a

f <∞

Now check that

lim
R→∞

∫ R

a

f = l

given ε > 0,∃R0 s.t. ∫ R0

a

f ≥ l − ε

Thus

∀R ≥ R0,

∫ R

a

f ≥
∫ R0

a

≥ l − ε

=⇒ 0 ≤ l −
∫ R

a

f ≤ ε X

Example. ∫ ∞
0

e−x
2/2 dx

e−x
2/2 ≤ e−x/2, x ≥ 1∫ R

1

e−x/2 dx =
1

2
[e−1/2 − e−R/2]→ e−1/2

2

=⇒
∫ ∞
0

e−x
2/2 dx converges

Remark. We know that if
∑
an converges, then an → 0. We have to be careful with improper

integrals.∫∞
a
f converges may not imply that f → 0
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Example.

1

1/2 3/2 n. . .

2
(n+1)2

︸︷︷︸
f(n) = 1

area(∆) =
2

(n+ 1)2
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5.4 The Integral Test

Theorem 5.14 (integral test). Let f(x) be a positive decreasing function for x ≥ 1. Then
(i) Th integral

∫∞
1
f(x) dx and the series

∑∞
1 f(n) both converge or diverge.

(ii) As n→∞,
n∑
r=1

f(r)−
∫ n

1

f(x) dx

tends to a limit l s.t. 0 ≤ l ≤ f(1)

Proof.

n− 1 nx

f(n)

f(n− 1)

(f decreasing =⇒ f integrable on every bounded subinterval by Theorem 5.4)
If n− 1 ≤ x ≤ n, then

f(n− 1) ≥ f(x) ≥ f(n)

=⇒ f(n− 1) ≥
∫ n

n−1
f(x) dx ≥ f(n) (*)

Adding:
n−1∑
r=1

f(r) ≥
∫ n

1

f(x) dx ≥
n∑
2

f(r) (**)

From this claim (i) is obvious.
For the proof of (ii) set

φ(n) =

n∑
1

f(r)−
∫ n

1

f(x) dx

Then
φ(n)− φ(n− 1) = f(n)−

∫ n

n−1
f(x) dx ≤ 0

using (*).
Also from (**),

0 ≤ φ(n) ≤ g(1)

thus φ(n) is decreasing and tends ot a limit l s.t.

0 ≤ l ≤ f(1)
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Examples.
(i)

∞∑
1

1

nk
converges iff k > 1

We saw that ∫ ∞
1

1

xk
converges iff k > 1

so we just apply the integral test.
(ii)

∞∑
1

1

n log n
, f(x) =

1

x log x
, x ≥ 2

∫ R

2

dx

x log x
= log(log x)]

R
2

log(logR)− log(log 2)→∞ as R→∞

then by the integral test
∞∑
2

1

n log n
diverges

Corollary 5.15 (Euler’s constant). As n→∞,

1 +
1

2
+ · · ·+ 1

n
− log n→ γ

with 0 ≤ γ ≤ 1

Proof. Set f(x) = 1/x and use Theorem 5.14

Remark. We have an open problem: is γ irrational?
(γ ∼ 0.577)

Remark. We have seen: monotone functions and continuous functions are integrable
We can generalise this a bit and say that piece-wise continuous functions are integrable

[ ]
a b

78



Definition. A function f : [a, b] → R is said to be piece-wise continuous if there is a dissection
D = {x0 = a, x1, . . . , xn = b} s.t.
(i) f is continuous on (xj−1, xj) ∀j
(ii) the one-sided limits

lim
x→x+

j−1

f(x), lim
x→x−j−1

f(x) exist

5.5 Characterization for Riemann integrability (Non-Examinable)

Note. It is now an exercise to check that f is Riemann integrable:
first check that f |[xj−1,xj ] is integrable for each j (the values of f at the end points won’t really
matter) and use additivity of domain (property (6))

Note. Q: How large can the discontinuity of f be while f is still Riemann integrable?
Recall the example

f(x) =

{
1/q x = p/q

0 otherwise

The question has been answered by Henri Lebesgue:
Characterization for Riemann integrability:
f : [a, b]→ R bounded. Then f is Riemann integrable iff the set of discontinuity points has measure
zero.

Definition. Let l(I) be the length of an interval I.
A subset A ⊆ R is said to have measure zero if for each ε > 0 ∃ a countable family of intervals st.

A ⊆
∞⋃
j=1

Ij

and ∑
j

l(Ij) < ε
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Lemma 5.16.
(i) Every countable set has measure zero.

(ii) if B has measure zero and A ⊆ B, the A has measure zero.
(iii) if Ak has measure zero ∀k ∈ N then

⋃
k∈NAk also has measure zero.

Note. The proof of Lebesgue’s criterion uses the concept of oscillation of f :
I interval:

ωf (I) = sup
I
f − inf

I
f

Oscillation at a point
ωf (x) = lim

ε→0
ωf (x− ε, x+ ε)

Proof (Sketch).

D = {x ∈ [a, b] : f discontinuous at x}
= {x : ωf (x) > 0}

=⇒ RTP: D has measure zero.

N(α) = {x : ωf (x) ≥ α}

D =

∞⋃
1

N(1/k)

We’ll show that for fixed α, N(α) has measure zero.
Let ε > 0,∃D s.t.

S(f,D)− s(f,D) <
εα

2

S(f,D)− s(f,D) =

n∑
j=1

ωf ([xj−1, xj ])(xj − xj−1)

F = {j : (xj−1, xj) ∩N(α) 6= ∅}

then for each j ∈ F ,
ωf ([xj−1, xj ]) ≥ α

α
∑
j∈F

(xj − xj−1) ≤
∑
j∈F

ωf ([xj−1, xj ])(xj − xj−1) <
εα

2

=⇒
∑
j∈F

(xj − xj−1) <
ε

2

These cover N(α) except perhaps for {x0, x1, xn}. But these can be covered by intervals of
total length < ε

2
=⇒ N(α) can be covered by intervals of total length < εX
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Lemma 5.17 (cont.).

Proof (cont.). ⇐= : let ε > 0 be given

N(ε) ⊆ D

so N(ε) has measure zero. It is closed and bounded, =⇒ it can be covered with finitely many
open sets of total length < ε

N(ε) ⊆
m⋃
i=1

Ui

let Ii = Ui (closure = adding end points)
wlog, Ii do not overlap

[ ]
a b

] ][ [ ] [ ][ I1 I2 Ii

J1
︸︷︷︸

< ε

︸ ︷︷ ︸
< ε

︸︷︷︸

< ε

The complement

K = [a, b]\
m⋃
i=1

Ui

is compact so it can be covered by finitely many disjoint closed intervals Ji s.t.

ωf (Jj) < ε

Now the Ii’s and Jj ’s give a dissection for [a, b] s.t.

n∑
1

ωf ([xj−1, xj ])(xj − xj−1) =

m∑
i=1

ωf (Ii)︸ ︷︷ ︸
≤2K

l(Ii) +

k∑
j=1

ωf (Jj)︸ ︷︷ ︸
<ε

l(Jj)

≤ 2K

m∑
1

l(Ii) + ε(b− a)

≤ 2Kε+ ε(b− a)

(using |f | ≤ K)

Lemma 5.18. f is continuous at x iff ωf (x) = 0

Proof. Exercise.
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