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1 Limits and Convergence

1.1 Review of Numbers and Sets

Notation. Write sequences as: an, (an)∞n=1, an ∈ R

Definition. We say that an → a as n→∞ if given ε > 0, ∃N s.t. |an − a| < ε for all n ≥ N

Note. N = N(ε)

Note. Say monotone if stays increasing or stays decreasing

1.2 Fundamental Axiom of the real numbers

Axiom. If an ∈ R,∀n ≥ 1, A ∈ R and a1 ≤ a2 ≤ a3 ≤ . . . with an ≤ A for all n, there exists a ∈ R
s.t. an → a as n→∞
i.e. an increasing sequence of real numbers bounded above converges.

Definition (supremum). ForS ⊆ R, S 6= ∅, sup S = K if
(i) x ≤ K, ∀x ∈ S
(ii) given ε > 0,∃x ∈ S, s.t. x > K − ε

Note. Supremum is unique (see N&S notes), infinimum defined similarly.
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Lemma 1.1.
(i) The limit is unique. That is, if an → a, and an → b, then a = b
(ii) If an → a as n→∞ and n1 < n2 < n3 < . . . , then anj

→ a as j →∞ (subsequences converge
to the same limit)

(iii) If an = C ∀n, then an → C as n→∞
(iv) If an → a & bn → b, then

an + bn → a+ b

(v) If an → a & bn → b, then
anbn → ab

(vi) If an → a, an 6= 0 ∀n& a 6= 0 then
1

an
→ 1

a

(vii) If an ≤ A ∀n and an → a, then a ≤ A

Proof.
(i) Suppose we have 2 limits, use triangle inequality on |(an − a)− (an − b)|
(ii) For given ε, we can find N and show nN ≥ N
(iii) N = 1 for any given ε works
(iv) Use triangle inequality
(v) |anbn − ab| ≤ |anbn − anb|+ |anb− ab|
(vi) Combine into same fraction then use N so |an| > |l|/2 by triangle inequality
(vii) If not then we can get within |A− a|, which is contradiction using triangle inequality

Lemma 1.2.
1

n
→ 0 as n→∞

Proof. 1/n is a decreasing sequence bounded below so by the fundamental Axiom it has limit
a. Show a = 0 by using fact that 1/(2n) tends to same limit

Remark. The definition of limit of a sequence makes perfect sence for an ∈ C

Definition. an → a if given ε > 0, ∃N s.t. ∀n ≥ N, |an − a| < ε.
First six parts of Lemma 1.1 are the same over C.
The last one does not makes sense (over C) since it uses the order of R.
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1.3 Bolzano-Weierstass Theorem

Theorem 1.3 (Bolzano-Weierstass). If xn ∈ R and there exists K s.t. |xn| ≤ K ∀n, then we can
find n1 < n2 < n3 < . . . and x ∈ R s.t. xnj

→ x as j →∞
In other words: every bounded sequence has a convergent subsequence.

Remark. We say nothing about uniqueness of limit, xn = (−1)n, x2n+1 → −1, x2n → 1

Proof. set [a1, b1] = [−K,K]

a1 b1C

C = mid point
We show either [a1, C] or [c, b1] contains infinitely many values in sequence. Define a2, b2 based
on the case. Have

bn − an =
bn−1 − an−1

2

Then use algebra of limits to show b = a and we choose our xnj from [aj , bj ]

Proof (Faster). Define xm is a peak if xm ≥ xn for all n ≥ m. If (xn) has infinitely many
peaks then we must have a decreasing sequence: the subsequence of peaks. If we only have
finitely many peaks, we must have a final peak, say xN , and so ∀ni ≥ N + 1, we can find
ni+1 > ni for which xni+1

< xni
thus we have an increasing subsequence: xn1

= xN+1 and
(xni

) defined inductively as shown.

1.4 Cauchy Sequences

Definition. an ∈ R is called aCauchy sequence if given ε > 0, ∃N > 0 s.t. |an−am| < ε ∀n,m ≥ N

Lemma 1.4. A convergent sequence is a Cauchy sequence.

Proof. Triangle inequality on |(an − a)− (am − a)|

Theorem 1.5. Every Cauchy sequence is convergent.

Proof. Show an bounded by taking N = N(1) in Cauchy property, triangle inequality on
|am − aN |, then take max{a1, . . . , aN−1, 1 + |aN |}.
Then we have a limit, a, of a subsequence by Bolzano-Weierstass. We use the fact this
subsequence convergent and the Cauchy property of an to get |an−a| ≤ |an−anj

|+|anj
−a| < 2

Remark. Thus on R a sequence is convergent iff it is Cauchy

Note. This is a useful property since we do not need to know what the limit is.
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1.5 Series

Definition. an ∈ R,C. We say that
∞∑
j=1

aj converges to s if the sequence of partial sums

SN =

N∑
j=1

aj → s

as N →∞
We write

∞∑
j=1

aj = s

If SN does not converge, we say that
∞∑
j=1

aj diverges.

Remark. Any problem on series can be turned into a problem on sequences just by considering the
sequence of partial sums.

Lemma 1.6.
(i) If

∞∑
j=1

aj &
∞∑
j=1

bj converge, then so does
∞∑
j=1

(λaj + µbj) where λ, µ ∈ C

(ii) Suppose ∃N s.t. aj = bj ∀j ≥ N , then either
∞∑
j=1

aj &
∞∑
j=1

bj both converge or both diverge

(initial terms do not matter)

Proof.
(i)

SN = λ

N∑
j=1

aj + µ

N∑
j=1

bj = λcN + µdN

cN → c&dN → d so by lemma 1.1 (version C), sN → λc+ µd
(ii) n ≥ N ,

sn =

n∑
1

aj

dn =

n∑
1

bj

consider sn − dn to show sn converges iff dn does

1.5.1 The Geometric Series

Claim. The geometric series converges iff |x| < 1

Proof. Evaluate partial sum to n explicitly for x 6= 1 and consider relevant cases
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Note. Say Sn →∞ if given A, ∃N s.t. Sn > A, ∀n ≥ N
Sn → −∞, if given A, ∃N s.t. Sn < −A for all n ≥ N
If Sn does not converge or tend to ±∞, we say that Sn oscillates.

Claim. xn → 0 if |x| < 1

Proof. Write 1/|x| = 1 + δ and use binomial expansion to bound by 1/(1 + δn)

Lemma 1.7. If
∞∑
j=1

aj converges, then:

lim
j→∞

aj = 0

Proof.
an = Sn − Sn−1

algebra of limits on RHS shows an → 0

Remark. The converse of 1.7 is false! Shown by example below:

Claim.
∞∑
1

1
n diverges (harmonic series)

Proof.

Sn =

∞∑
1

1

j

S2n = Sn +
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n
> Sn +

1

2

Since 1
n+k ≥

1
2n for k = 1, 2, . . . , n

So if Sn → a, then S2n → a also and thus

a ≥ a+
1

2

1.5.2 Series of Positive/ Non-negative terms

Theorem 1.8 (The Comparison Test). Suppose 0 ≤ bn ≤ an∀n
Then if

∞∑
1
an converges, so does

∞∑
1
bn

Proof. Show partial sums bounded above by
∞∑
1
an, increasing.
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An example using this below:

Claim.
n∑
1

1
n2 converges

Proof.
1

n2
<

1

n(n− 1)
=

1

n− 1
− 1

n
= an for n ≥ 2

By comparison,
n∑
1

1
n2 converges

In fact, we get
n∑
1

1
n2 ≤ 1 + 1 = 2

Theorem 1.9 (Root test/ Cauchy’s test for convergence). Assume an ≥ 0 and a1/nn → a as n→∞.
Then if a < 1,

∑
an converges; if a > 1,

∑
an diverges

Proof. If a < 1, choose a < r < 1.
Eventually have:

a1/nn < r =⇒ an < rn

Show divergence in other case as terms do not tend to 0

Remark. Nothing can be said if a = 1.
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Theorem 1.10 (Ratio test/ D’Alanbert’s test). Suppose an > 0 and an+1

an
→ l

If l < 1,
∑
an converges.

If l > 1,
∑
an diverges

Proof. Suppose l < 1 and choose r with l < r < 1
Then ∃N s.t. ∀n ≥ N,

an+1

an
< r

Therefore
an =

an
an−1

an−1
an−2

. . .
aN+1

aN
aN < aNr

n−N , n > N

=⇒ an < Krn

with K independent of n
Since

∑
rn converges, so does

∑
an

If l > 1, choose 1 < r < l
Then an+1

an
> r ∀n ≥ N

And as before:
an =

an
an−1

an−1
an−2

. . .
aN+1

aN
aN > aNr

n−N , n > N

aNr
n−N →∞ as n→∞

So
∑
an diverges.

Remark. Nothing can be said if a = 1.

Remark. Can use root test when we have things like
∑

(f(n))n

Theorem 1.11 (Cauchy’s Condensation Test). Let an be a decreasing sequence of positive terms.

Then
∞∑
1
an converges iff

∞∑
1

2na2n converges.

Proof. Just bound as one does in the
∑

1/n case

1.5.3 Alternating Series

Theorem 1.12 (The alternating series test). If an decreases and tends to zero as n→∞, then the

series
∞∑
1

(−1)n+1an converges

Proof. Show S2n ≤ a1 and increasing by bracketing. S2n+1 = S2n + an+1.
This implies convergence as we consider max{N1, N2} defined appropriately for odd and even
n

8



1.5.4 Absolute Convergence

Definition. Take an ∈ C. If
∞∑
n=1
|an| is convergent, then the series is absolutely convergent

Note. Since |aN | ≥ 0 we can use th previous tests to check absolute convergence; this is particularly
useful for an ∈ C.

Theorem 1.13. If Σan is absolutely convergent, then it is convergent.

Proof. Suppose first that an ∈ R
Let vn = an when an positive, 0 otherwise. wn = −an when an negative, 0 otherwise.
|an| = vn + wn.

∑
vn converges by comparison. As does

∑
wn. an = vn − wn.

In C case, write an = xn+ iyn and use absolute convergence of xn, yn by comparison with |an|

Definition. If
∑
an converges but

∑
|an| does not, it is said sometimes that

∑
an is conditionally

convergent.

Note. “conditional”: because the sum to which the series converges is conditional on the order
in which the elements of the sequence are taken.
If rearranged, the sum is altered.

Definition. Let σ be a bijection of the positive integers,

a′n = aσ(n)

is a rearrangement.

Theorem 1.14. If
∑∞

1 an is absolutely convergent, every series consisting of the same terms in any
order (i.e. a rearrangement) has the same sum.

Proof. We do the proof first for an ∈ R.
Consider partial sums of series and permutation. Can sum to ‘far enough’ in original series
so as to include all terms in partial sum of permutation. Thus can bound above permutation
with limit of original series. By symmetry, can show ≤ and ≥ so have equality.
If an has any sign, use vn and wn from Theorem 1.13.
We use above to show any rearrangement of the vn has same sum, similarly for the wn. Then
an = vn − wn. Permuting the an is just applying same permutation to vn and wn, which in
turn gives us same sum.
For the case an ∈ C, write an = xn + iyn
Since |xn|, |yn| ≤ |an|, we have

∑
xn,
∑
yn are absolutely convergent.

We use previous case with a′n = x′n + iy′n to show sums equal
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2 Continuity

Let E ⊆ C be non-empty. Let f : E → C be any function. Have a ∈ E
(includes case in which f is real valued and E is a subset of R)

Definition. f is continuous at a∈ E if for every sequence zn ∈ E with zn → a, we have f(zn)→
f(a)
Equivalently below:

Definition. f is continuous at a∈ E, if

given ε > 0, ∃δ s.t. if |z − a| < δ, then |f(z)− f(a)| < ε

(ε-δ definition)

Claim. Two definitions equivalent

Proof. 2nd =⇒ 1st:
Eventually, the zn get within δ of a
1st =⇒ 2nd:
Suppose f not continuous at a according to 2nd definition. Then we can generate, using
δ = 1/n, a sequence zn → a but |f(zn) − f(a)| > ε for some ε > 0 so do not satisfy 1st

definition

Prop 2.1. a ∈ E, g, f : E → C continuous at a.
Then so are the functions f(z) + g(z), f(z)g(z) & λf(z) for any constant. In addition if f(z) 6=
0 ∀z ∈ E, then 1/f is continuous at a

Proof. Using 1st definition, this is obvious using the analagous results for sequences (Lemma
1.1) e.g.

f(zn) + g(zn)→ f(a) + g(a) if zn → a, f(zn)→ f(a) & g(zn)→ g(a) etc.

Example. The function f(z) = z is continuous, so using the proposition we derive that every
polynomial is continuous at every point in C

Note. We say f is continuous on E if it is continuous at every a ∈ E.

Next we look at compositions
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Theorem 2.2. Let f : A → C and g : B → C be two functions s.t. f(A) ⊆ B. Suppose f is
continuous at a ∈ A and g is continuous at f(a). Then g ◦ f : A→ C is continuous at a.

A

B

f

a f(a)

g

g(f(a))

g ◦ f

f(A)

Proof. Take any sequence zn → a. By assummpion, f(zn) → f(A). Set wn = f(zn). then
wn ∈ B and wn → f(a); thus

g(wn)→ g(f(a))

2.1 Limit of a function

f : E ⊆ C→ C

We wish to define what is meany by
lim
z→a

f(z)

even when a might not be in E e.g.

limit as z → 0 of
sin z

z
E = C\{0} a = 0

Also if
E = {0} ∪ [1, 2]

it does not make sense to speak about z ∈ E, z 6= 0, z → 0

0 21

[ ]

Definition. E ⊆ C, a ∈ C. We say that a is a limit point of E if for any δ > 0,∃z ∈ E s.t.

0 < |z − a| < δ

Remark. a is a limit point iff ∃ a sequence zn ∈ E s.t. zn → a and zn 6= a for all n. (can check
equivalence)
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Definition. f : E ⊆ C→ C, let a ∈ C be a limit point of E.
We say that

lim
z→a

f(z) = l

If given ε > 0, ∃δ > 0 s.t. whenever 0 < |z − a| < δ and z ∈ E, then |f(z)− l| < ε
Equivalently: f(zn)→ l for every sequence zn ∈ E, zn 6= a and zn → a
(proved exactly the same as previously with 2 definitions of continuity).

Remark. Straight from the definition, we have if a ∈ E is a limit point, then

lim
z→a

f(z) = f(a) ⇐⇒ f is continuous at a

If a ∈ E is isolated (i.e. a ∈ E and is not a limit point), continuity of f at a always holds.

2.2 The Intermediate Value Theorem

a
b

f(a)

f(b)

x

12



Theorem 2.3. f : [a, b] → R continuous and f(a) 6= f(b). Then f takes every value which lies
between f(a) and f(b).

Proof. Without loss of generality, we may suppose f(a) < f(b).
Take

f(a) < η < f(b)

Let
S = {x ∈ [a, b] : f(x) < η}

a ∈ S, so S 6= ∅. Clearly S is bounded above by b.
Then there is a supremum C where C ≤ b. We construct a sequence xn = C− 1/n→ C using
the fact it is a supremum.
Have f(xn)→ C and as f(xn) < η, f(C) ≤ η.
Also have f(C + 1/n) > η as C supremum, and C 6= b since f(C) ≤ η < f(b). Taking this
limit to C shows f(C) ≥ η
Hence, f(C) = η

Remark. The theorem is very useful for finding zeros of fixed points.

2.3 Bounds of a Continuous Function

Theorem 2.4. Let f : [a, b]→ R be continuous. Then there exists K s.t.

|f(x)| ≤ K ∀x ∈ [a, b]

Proof. We argue by contradiction.
Suppose statement is false. Then given any integer n ≥ 1, there exists xn ∈ [a, b] s.t. |f(xn)| >
n.
By Bolzano-Weierstass, xn has a convergent subsequence xnj

→ x.
Since a ≤ xnj ≤ b, we must have x ∈ [a, b]. By continuity of f ,

f(xnj
)→ f(x)

But
|f(xnj

)| > nj →∞
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Theorem 2.5. f : [a, b]→ R continuous. Then ∃x1, x2 ∈ [a, b] s.t.

f(x1) ≤ f(x) ≤ f(x2) ∀x ∈ [a, b]

“A continuous function on a closed, bounded interval is bounded and attains its bounds.”

Proof (1st). Let
A = {f(x) : x ∈ [a, b]} = f([a, b])

By Theorem 2.4, A is bounded. Since it is clearly non-empty, it has supremum, M .
By definition of supremum,

given integer n ≥ 1, ∃xn ∈ [a, b] s.t. M − 1

n
< f(xn) ≤M (*)

By Bolzano-Weierstass,
∃xnj

→ x ∈ [a, b]

Since f(xnj ) → M (because (*)) and f is continuous, we deduce that f(x) = M so x2 = x.
Reason similarly for the minimum

Proof (2nd).
A = f([a, b]), M = supA

as before. Suppose @x2 s.t. f(x2) = M .
Let

g(x) =
1

M − f(x)
, x ∈ [a, b]

is defined and continuous. By Theorem 2.4 applied to g,

∃K > 0 s.t. g(x) ≤ K ∀x ∈ [a, b]

This means that f(x) ≤ M − 1
K on [a, b]. This is absurd since it contradicts that M is the

supremum

Note. Theorems 2.4, 2.5 are false if the interval is not closed e.g.

x ∈ (0, 1], f(x) =
1

x

2.4 Inverse functions

Definition. f is increasing for x ∈ [a, b] if f(x1) ≤ f(x2) for all x1, x2 s.t. a ≤ x1 ≤ x2 ≤ b
If f(x1) < f(x2) we say that f is strictly increasing.
Similarly for decreasing and strictly decreasing.
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Theorem 2.6. f : [a, b]→ R continuous and strictly increasing for x ∈ [a, b].
Let c = f(a) and d = f(b).
Then f : [a, b]→ [c, d] is bijective and the inverse

g = f−1 : [c, d]→ [a, b]

is continuous and strictly increasing

Remark. A similar theorem holds for strictly decreasing functions.

Proof. Take c < k < d.
From the intermediate value theorem

∃h s.t. f(h) = k

a bh

c
k
d

Since f is strictly increasing, h is unique.
Define g(k) = h and this gives an inverse g : [c, d] → [a, b] for f . g is strictly increaseing:
y1 < y2

y1 = f(x1), y2 = f(x2)

If x2 ≤ x1, since f is increasing

=⇒ f(x2) ≤ f(x1) =⇒ y2 ≤ y1

g is continuous:
Given ε > 0, let

k1 = f(h− ε), k1 = f(h+ ε)

f strictly increasing =⇒
k1 < k < k2

If k1 < y < k2 then
h− ε < g(y) < h+ ε

c dk1 k k2

{ δ

δ = min{k2 − k, k − k1}

(here k ∈ (c, d) but a similar argument establishes continuity at the end points (can check))
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3 Differentiability

Let f : E ⊆ C→ C. Most of the time, E ⊆ R is an interval.

Definition. Let x ∈ E be a point s.t. ∃xn ∈ E with xn 6= x and xn → x (i.e. a limit point)
f is said to be differentiable at x with derviative f ′(x) if

lim
y→x

f(y)− f(x)

y − x
= f ′(x)

If f is differentiable at each x ∈ E, we say f is differentiable on E

Note. Think of E as an interval or disc in the case of C

Remark.
f ′(x) = lim

h→0

f(x+ h)− f(x)

h

Definition (alternative). f is differentiable at x if ∃A and ε s.t.

f(x+ h) = f(x) + hA+ ε(h)

where
lim
h→0

ε(h)

h
= 0

If such an A exists, then it is unique, since

A = lim
h→0

f(x+ h)− f(x)

h

Remark.
(i) Differentiable =⇒ continuous
(ii) Another alternative way of writing things:

f(x+ h) = f(x) + hf ′(x) + hεf (h)

with εf (h)→ 0 as h→ 0
or

f(x) = f(a) + (x− a)f ′(a) + (x− a)εf (x)

with
lim
x→a

εf (x)→ 0

16



3.1 Differentiation of Sums, Products, etc.

Prop 3.1.
(i) If f(x) = C ∀x ∈ E, then f is differentiable with f ′(x) = 0
(ii) f, g differentiable at x, then so is f + g and

(f + g)′(x) = f ′(x) + g′(x)

(iii) f, g differentiable at x, then so is fg and

(fg)′(x) = f ′(x)g(x) + f(g)g′(x)

(iv) If f is differentiable at x and f(x) 6= 0 ∀x ∈ E, then 1/f is differentiable at x and(
1

f

)′
(x) = − f(x)

[f(x)]2

Proof.
(i) trivial
(ii) linearity of lim
(iii)

φ(x) = f(x)g(x)

φ(x+ h)− φ(x)

h
=
f(x+ h)g(x+ h)− f(x)g(x)

h

= f(x+ h)

[
g(x+ h)− g(x)

h

]
+ g(x)

[
f(x+ h)− f(x)

h

]
= f ′(x)g(x) + f(x)g′(x)

using standard properties of limits and the fact that f is continuous at x
(iv)

φ(x) = 1/f(x)

φ(x+ h)− φ(x)

h
=

1/f(x+ h)− 1/f(x)

h

=
f(x)− f(x+ h)

hf(x)f(x+ h)
→ − f ′(x)

[f(x)]2

Remark. From (iii) and (iv) we immediately get(
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

[g(x)]2
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Theorem 3.2 (Chain rule).
f : U → C

is s.t.
f(x) ∈ V ∀x ∈ U

If f is differentiable at a ∈ U and g : V → C is differentiable at f(a), then g ◦ f is differentiable at a
with

(g ◦ f)′(a) = f ′(a)g′(f(a))

Proof. We know:
f(x) = f(a) + (x− a)f ′(a) + εf (x)(x− a)

where
lim
x→a

εf (x) = 0

g(y) = g(b) + (y − b)g′(b) + εg(y)(y − b)

where
lim
y→b

εg(y) = 0

b = f(a)

Set
εf (a) = 0 & εg(b) = 0

to make them continuous at x = a and y = b.
Set y = f(x), and work through the algebra, using the fact εf , εg continuous

18



3.2 The Mean Value Theorem

Theorem 3.3 (Rolle’s Theorem).
f : [a, b]→ R

continuous on [a, b] and differentiable on (a, b). If f(a) = f(b),

∃c ∈ (a, b) s.t. f ′(c) = 0

a bc

Proof. Have function attains maximum,M , in interval. IfM = f(a) then f constant implying
result. Otherwise, suppose f ′(M) 6= 0 and get contradiction that M is not maximum

Theorem 3.4 (The Mean Value Theorem). Let f : [a, b] → R be a continuous function which is
differentiable on (a, b). Then ∃c ∈ (a, b) st.

f(b)− f(a) = f ′(c)(b− a)

Proof. Apply Rolle’s to:
φ(x) = f(x)− kx

k =
f(b)− f(a)

b− a

Remark. We will often write
f(a+ h) = f(a) + hf ′(a+ θh)

[ ]
a a+ ha+ hθ

θ ∈ (0, 1)

(b = a+ h)

19



Warning.
θ = θ(h)

Corollary 3.5. f : [a, b]→ R continuous and differentiable on (a, b). Then we have
(i) If f ′(x) > 0 ∀x ∈ (a, b), then f is strictly increasing on [a, b]

(i.e. if b ≥ y > x ≥ a, then f(y) > f(x))
(ii) If f ′(x) ≥ 0 ∀x ∈ (a, b), then f is increasing (i.e. if b ≥ y > x ≥ a, then f(y) ≥ f(x))
(iii) If f ′(x) = 0 ∀x ∈ (a, b), then f is constant on [a, b]

Proof.
(i) Use MVT in [x, y]
(ii) Use MVT in [x, y]
(iii) Use MVT in [a, x]

3.3 Inverse Rule/ Inverse Function Theorem

Theorem 3.6. f : [a, b]→ R continuous and differentiable on (a, b) with

f ′(x) > 0 ∀x ∈ (a, b)

Let f(a) = c and f(b) = d. Then the function f : [a, b] → [c, d] is bijective and f−1 is differentiable
on (c, d) with

(f−1)′(x) =
1

f ′(f−1(x))

Proof. By corollary 3.5, f is strictly increasing on [a, b]. By Theorem 2.6

∃g : [c, d]→ [a, b]

which is continuous, strictly increasing inverse of f .
Set y + k = f(x+ h) with y = f(x). Use continuity of g and consider

lim
h→0

g(y + k)− g(y)

k

Theorem 3.7 (Cauchy’s mean value theorem). Let f, g : [a, b] → R be continuous functions and
differentiable on (a, b).
Then ∃t ∈ (a, b) s.t.

(f(b)− f(a))g′(t) = f ′(t)(g(b)− g(a))

Proof. Consider

φ(x) =

∣∣∣∣∣∣
1 1 1

f(a) f(x) f(b)
g(a) g(x) g(b)

∣∣∣∣∣∣
φ is continuous on [a, b] and differentiable on (a, b)
We can apply Rolle’s to φ as φ(a) = φ(b) = 0
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Theorem 3.8 (Taylor’s theorem with Lagrange’s remainder). Suppose f and its derivatives up to
order n− 1 are continuous in [a, a+ h] and f (n) exist for x ∈ (a, a+ h). Then

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + · · ·+ hn−1f (n−1)(a)

(n− 1)!
+
hn

n!
f (n)(a+ θh)

Where θ ∈ (0, 1)

Proof. Define for 0 ≤ t ≤ h

φ(t) = f(a+ t)− f(a)− tf ′(a)− · · · − tn−1

(n− 1)!
f (n−1)(a)− tn

n!
β

where we choose β s.t. φ(h) = 0
(recall in the proof of the MVT we used f(x)− kx and we picked k s.t. we could use Rolle’s
theorem)
Use Rolle’s Theorem on the first n− 1 derivatives to get

0 < hn < · · · < h1 < h

where hi is a point where φ(i)(hi) = 0
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Theorem 3.9 (Taylor’s theorem with Cauchy’s form of remainder). With the same hypothesis as in
Theorem 3.8 and a = 0 (to simplify), we have

f(h) = f(0) + hf ′(0) + · · ·+ hn−1

(n− 1)!
f (n−1)(0) +Rn

where

Rn =
hn(1− θ)n−1f (n)(θh)

(n− 1)!
, θ ∈ (0, 1)

Proof. Define

F (t) = f(h)− f(t)− (h− t)f ′(t)− · · · − (h− t)n−1f (n−1)(t)
(n− 1)!

with t ∈ [0, h]

F ′(t) = −f ′(t) + f ′(t)− (h− t)f ′′(t) + (h− t)f ′′(t)− (h− t)2

2
f ′′(t) + · · · − (h− t)n−1

(n− 1)!
f (n)(t)

=⇒ F ′(t) = − (h− t)n−1

(n− 1)!
f (n)(t)

Set

φ(t) = F (t)−
[
h− t
h

]p
F (0)

where p ∈ Z, 1 ≤ p ≤ n
Then φ(0) = φ(h) = 0 so by Rolle’s theorem,

∃θ ∈ (0, 1) s.t. φ′(θh) = 0

But

φ′(θh) = F ′(θh) +
p(1− θ)p−1

h
F (0) = 0

Subbing in for F ′(θh) and F (0) followed by rearrangement gives result.
If p = n we get Lagrange’s remainder
If p = 1 we get Cauchy’s remainder

Method. To get a Taylor Series for f , one needs to show that Rn → 0 as n → ∞. This requires
“estimates” and “effort”
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4 Power Series

Lemma 4.1. If
∑∞

0 anz
n
1 converges and |z| < |z1|, then

∑∞
0 anz

n converges absolutely

Proof. Since
∑∞

0 anz
n
1 converges, anzn1 → 0. Thus ∃K > 0 s.t.

|anzn1 | < K ∀n

Use this to bound |anzn|

Theorem 4.2. A power series either
(i) Converges absolutely for all z, or
(ii) Converges absolutely for all z inside a circle |z| = R and diverges for all z outside it, or
(iii) Converges for R = 0 only

R
X

x
O

Proof. Let S = {x ∈ R, x ≥ 0 and
∑
anx

n converges} Clearly 0 ∈ S. By Lemma 4.1, if
x1 ∈ S, then [0, x1] ∈ S.
Then consider cases S = [0,∞), supS 6= 0 and supS = 0.

Definition. The circle |z| = R is called the circle of convergence and R is the radius of con-
vergence.
In (i), we agree that R =∞ and in (iii) R = 0

Lemma 4.3. If ∣∣∣∣an+1

an

∣∣∣∣→ l

as n→∞, then R = 1
l

Proof. Apply ratio test
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Theorem 4.4. f(z) =
∑∞

0 anz
n has radius of convergence R. Then f is differentiable at all points

with |z| < R with

f ′(z) =

∞∑
n=1

nanz
n−1

Proof. By Lemma 4.5, we may define

f ′(z) =

∞∑
n=1

nanz
n−1, |z| < R

Show
lim
h→0

∣∣∣∣f(z + h)− f(z)− hf ′(z)
h

∣∣∣∣→ 0

using
|(z + h)n − zn − nhzn−1| ≤ n(n− 1)(|z|+ |h|)n−2|h|2

Lemma 4.5. If
∑∞

0 anz
n has radius of convergence R, then so do

∞∑
1

nanz
n−1 and

∞∑
2

n(n− 1)anz
n−2

Proof. Take z and R0 s.t. 0 < |z| < R0 < R. Since anRn0 → 0,

∃K s.t. |anRn0 | ≤ K ∀n ≥ 0

Then bound above with series of form
∑
K1n|z/R0|n and show convergence of this using ratio

test
In case |z| > R, have |nanz|n 6→ 0 Same proof applies to

∞∑
2

n(n− 1)anz
n−2

Lemma 4.6.
(i) (

n

r

)
≤ n(n− 1)

(
n− 2

r − 2

)
for all 2 ≤ r ≤ n

(ii)
|(z + h)n − zn − nhzn−1| ≤ n(n− 1)(|z|+ |h|)n−2|h|2 ∀z ∈ C, h ∈ C

Proof.
(i) trivial
(ii) trivially follows
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4.1 The Standard Functions

Define e : C→ C

e(z) =

∞∑
0

zn

n!

Now let a, b ∈ C and consider
F (z) = e(a+ b− z)e(z)

F ′(z) = −e(a+ b− z)e(z) + e(a+ b− z)e(z) = 0

=⇒ F is constant

e(a+ b− z)e(z) = F (0) = e(a+ b)

Set z = b
e(a)e(b)e(a+ b)

Now we restrict e : R→ R

Theorem 4.7.
(i) e : R→ R is everywhere differentiable and e′(x) = e(x)
(ii) e(x+ y) = e(x)e(y)
(iii) e(x) > 0 ∀x ∈ R
(iv) e is strictly increasing
(v) e(x)→∞ as x→∞, and e(x)→ 0 as x→ −∞
(vi) e : R→ (0,∞) is a bijection

Proof.
(i) done X
(ii) done X
(iii) Clearly e(x) > 0 ∀x ≥ 0 and e(0) = 1

Consider e(x− x)
(iv) e′ > 0
(v) e(x) > 1 + x and e(−x) = 1/e(x)
(vi) injectivity: follows right away from being strictly increasing

surjectivity: IVT

Since e is a bijection, consider the inverse function

l : (0,∞)→ R
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Theorem 4.8.
(i)

l : (0,∞)→ R

is a bijection and
l(e(x)) = x ∀x ∈ R

and
e(l(t)) = t ∀t ∈ (0,∞)

(ii) l is differentiable and

l′(t) =
1

t

(iii)
l(xy) = l(x) + l(y) ∀x, y ∈ (0,∞)

Proof.
(i) obvious from the definition
(ii) Inverse rule
(iii) from IA Groups, since e is an isomorphism, so is its inverse

Now define for α ∈ R and x > 0,
rα(x) = e(αl(x))

Theorem 4.9. Suppose x, y > 0 and α, β ∈ R. Then:
(i)

rαl(xy) = rα(x)rα(y)

(ii)
rα+β(x) = rα(x)rβ(x)

(iii)
rα(rβ(x)) = rαβ(x)

(iv)
r1(x) = x, r0(x) = 1

Proof.
(i) trivial algebra
(ii) trivial algebra
(iii) trivial algebra
(iv) trivial
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Now we do a “baptism ceremony”
exp(x) = e(x) x ∈ R

log x = l(x) x ∈ (0,∞)

xα = rα(x) α ∈ R, x ∈ (0,∞)

e(x) = e(x log e) = rx(e) = ex

where

e =

∞∑
0

1

n!
= e(1)

so exp(x) is also a power, which we may as well denote ex
Finally, we compute (xα)′

(xα)′ =
(
eα log x

)′
= eα log xα

x
= αxα−1 X

4.2 Trigonometric Functions

Definition.

cos z = 1− z2

2!
+
z4

4!
− · · · =

∞∑
0

(−1)kz2k

(2k)!

sin z = z − z3

3!
+
z5

5!
− · · · =

∞∑
0

(−10)kz2k+1

(2k + 1)!

Both power series have infinite radius of convergence and by theorem 4.4., they are differentiable and

(sin z)′ = cos z

(cos z)′ = − sin z

Method. Use
cos z =

1

2

(
eiz + e−iz

)
sin z =

1

2i

(
eiz − e−iz

)
to derive trig identities
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4.2.1 Periodicity of the Trigonometric Functions

Prop 4.10. There is a smallest positive number ω (where
√

2 < ω
2 <
√

3) s.t.

cos
(ω

2

)
= 0

Proof. If 0 < x < 2

sinx =

(
x− x3

3!

)
+

(
x5

5!
− x7

7!

)
+ · · · > 0

(if 0 < x < 2 then x2n−1

(2n−1)! >
x2n+1

(2n+1) )
So for 0 < x < 2,

(cosx)′ = − sinx < 0

=⇒ cosx is strictly decreasing
Show cos

√
2 > 0 and cos

√
3 < 0 so we can use IVT. Show these by bracketing series cleverly

Corollary 4.11.
sin

ω

2
= 1

Proof.
sin2 ω

2
+ cos

ω

2
= 1

and
sin

ω

2
> 0

Notation. Now define π = ω

Theorem 4.12.
(i)

sin
(
z +

π

2

)
= cos z, cos

(
z +

π

2

)
− sin z

(ii)
sin(z + π) = − sin z, cos(z + π) = − cos z

(iii)
sin(z + 2π) = sin z, cos(z + 2π) cos z

Proof. immediate from addition formulas and

cos
π

2
, sin

π

2
= 1

Remark. Relate trig functions to geometry using dot product
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4.3 Hyperbolic Functions

Definition.
cosh z =

1

2
(ez + e−z)

sinh z =
1

2
(ez − e−z)

=⇒ cosh z = cos(iz), sinh = −i sin(iz)

Claim.
(cosh z)′ = sinh z

(sinh z)′ = cosh z

cosh2 z − sinh2 z = 1, etc.

Proof. Trivial

Note. The rest of the trigonometric functions (tan, cot, sec, cosec) are defined in the usual way
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5 Integration

Note. f : [a, b]→ R bounded means:

∃K s.t. |f(x)| ≤ K, ∀x ∈ [a, b]

Definition. A dissection (or partition) D of [a, b] is a finite subset of [a, b] containing the end points
of a and b.
We write

D = {x0, x1, . . . , xn} with

a = x0 < x1 < · · · < xn−1 < xn = b

a bxj−1 xj

f

Definition. We define the upper sum and lower sum associated with D by

S(f,D) =

n∑
j=1

(xj − xj−1) sup
x∈[xj−1,xj ]

f(x)

is the upper sum.

s(f,D =

n∑
j=1

(xj − xj−1) inf
x∈[xj−1,xj ]

f(x)

is the lower sum. Clearly
s(d,D) ≤ S(d,D) ∀D

Lemma 5.1. If D and D′ are dissections with D ⊆ D′, then

S(d,D) ≥ S(d,D′) ≥ s(f,D′) ≥ s(f,D)

Proof.
S(d,D′) ≥ s(f,D′)

is obvious.
Suppose D′ contains an extra point than D, let’s say y ∈ (xr−1, xr)
Consider sups cleverly
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Lemma 5.2. D1,D2 two arbitrary dissections. Then

S(f,D1) ≥ S(f,D1 ∪D2) ≥ s(f,D1 ∪ D2) ≥ s(f,D2)

So
S(f,D1) ≥ s(f,D2)

Proof. Take
D′ = D1 ∪ D2 ⊇ D1,D2

ad apply the previous lemma.

Definition. The upper integral of f is

I∗(f) = inf
D
S(f,D)

(this always exists)
The lower integral of f is

I∗(f) = sup
D
s(f,D)

(this always exists)

Claim. By lemma 5.2,
I∗(f) ≥ I∗(f)

Proof.
S(f,D1) ≥ s(f,D2)

I∗(f) = inf
D1

S(f,D1) ≥ s(f,D2)

I∗(f) ≥ sup
D2

s(f,D2) = I∗(f)

Definition. A bounded function f : [a, b]→ R is said to beReimann integrable (or first integrable)
if

I∗(f) = I∗(f)

and we set ∫ b

a

f(x) dx = I∗(f) = I∗(f) =

∫ b

a

f

A useful criterion for integrability:
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Theorem 5.3. A bounded function
f : [a, b]→ R

is Riemann integrable iff given ε > 0,∃D s.t.

S(f,D)− s(f,D) < ε

Proof.
0 ≤ I∗(f)− I∗(f) ≤ S(f,D)− s(f,D)

Gives one way ∫ b

a

f dx− ε

2
= I∗(f)− ε

2
< s(f,D1)

S(f,D2) < I∗(f) +
ε

2
=

∫ b

a

f dx+
ε

2

Gives reverse

Theorem 5.4. f : [a, b]→ R monotonic. Then f is integrable

Proof. Set
D = {a, a+

b− a
n

, a+
2(b− a)

n
, . . . , b}

S(f,D)− s(f,D) =
(b− a)

n
(f(b)− f(a))

b− a
n

(f(b)− f(a)) < ε

Lemma 5.5. f : [a, b]→ R continuous. Then

given ε > 0,∃δ > 0 s.t |x− y| < δ =⇒ |f(x)− f(y)| < ε

(uniform continuity)

Note. The point is δ works ∀x, y as long as |x− y| < δ
(in the definition of continuity of f at x, δ = δ(x))

Proof. Suppose the claim is false. Then ∃ε > 0 s.t. ∀δ > 0, we can find x, y ∈ [a, b] s.t.
|x− y| < δ but |f(x)− f(y)| ≥ ε
Take δ = 1

n , to get xn, yn with

|xn − yn| <
1

n
, but |f(xn)− f(yn)| ≥ ε

Apply Bolzano-Weierstass to get xnk
→ C and show ynk

tend to same limit, use continuity to
show |f(C)− f(C)| ≥ ε, which is a contradiction
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Theorem 5.6. Let f : [a, b]→ R be continuous. Then f is Riemann integrable.

Proof. given ε > 0, ∃δ > 0 s.t. |x− y| < δ

=⇒ |f(x)− f(y)| < ε

Let D = {a+ (b−a)j
n : j = 0, 1, . . . , n}

Choose n large enough s.t.
b− a
n

< δ

Then for x, y ∈ [xj−1, xj ]
|f(x)− f(y)| < ε (*)

since
|x− y| ≤ |xj − xj−1| =

b− a
n

< δ

Use this to get
S(f,D)− s(f,D) < ε(b− a)
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5.1 Elementary Properties of the Integral

Claim. For f, g bounded and integrable on [a, b]:
(i) If f ≤ g on [a, b], then ∫ b

a

f ≤
∫ b

a

g

(ii) f + g is integrable on [a, b] and ∫ b

a

f + g =

∫ b

a

f +

∫ b

a

g

(iii) For any constant k, kf is integrable and∫ b

a

kf = k

∫ b

a

f

(iv) |f | is integrable and ∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |

(v) The product fg is integrable

Proof.
(i) ∫ b

a

f = I∗(f) ≤ S(f,D) ≤ S(g,D)

=⇒
∫ b

a

f = I∗(f) ≤ I∗(g) =

∫ b

a

g

(ii)
sup

[xj−1,xj ]

(f + g) ≤ sup
[xj−1,xj ]

f + sup
[xj−1,xj ]

g

=⇒ S(f + g,D) ≤ S(f,D) + S(g,D)

so
I∗(f + g) ≤ S(f,D1) + S(g,D2)

which then leads us to

I∗(f + g) ≤ I∗(f) + I∗(g) =

∫ b

a

f +

∫ b

a

g

Similarly ∫ b

a

f +

∫ b

a

g ≤ I∗(f + g)

(iii) Bound I∗, I∗ in natural way
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Claim (cont.).

Proof (cont.).
(iv) Consider

f+(x) = max(f(x), 0)

sup
[xj−1,xj ]

f+ − inf
[xj−1,xj ]

f+ ≤ sup
[xj−1,xj ]

f − inf
[xj−1,xj ]

f

(can check)
use this to show f+ is integrable
But |f | = 2f+ − f By (ii) and (iii), |f | is integrable.
Since −|f | ≤ f ≤ |f |, we use property (i) to see∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |

(v) Take f integrable and ≥ 0
Then

sup
[xj−1,xj ]

f2 =

 Mj︷ ︸︸ ︷
sup

[xj−1,xj ]

f

2

inf
[xj−1,xj ]

f2 =

 inf
[xj−1,xj ]

f︸ ︷︷ ︸
mj


2

Thus

S(f2,D)− s(f2,D) =

n∑
j=1

(xj − xj−1)(M2
j −m2

j )

=

n∑
j=1

(xj − xj−1)(Mj +mj)(Mj −mj)

≤ 2K(S(f,D)− s(f,D))

using |f(x)| ≤ K ∀x ∈ [a, b]
Using the criterion in Theorem 5.3, we deduce that f2 is integrable.
Now take any f , then |f | ≥ 0 and is integrable. Since f2 = |f |2.
We deduce that f2 is integrable for any f
Finally for fg, note:

4fg = (f + g)2 − (f − g)2

=⇒ fg is integrable given what we proved

Note. Method was: show f2 integrable for any f given f is bounded & integrable
by showing difference between upper and lower estimates < ε. Then use the fact
that 4fg = (f + g)2 − (f − g)2 to get RHS integrable using previous results,
implying LHS integrable, implying fg integrable.
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Claim (6). f is integrable on [a, b]. If a < c < b, then f is integrable over [a, c] and [c, b] and∫ b

a

f =

∫ c

a

f +

∫ b

c

f

Conversely if f is integrable over [a, c] and [c, b], then f is integrable over [a, b] and∫ b

a

f =

∫ c

a

f +

∫ b

c

f

Proof. We first make two observations:
if D1 is a dissection of [a, c] and D2 is a dissection of [b, c], then

D = D1 ∪ D2

is a dissection of [a, b] and

S(f,D1 ∪ D2) = S(f |[a,c],D1) + S(f |[c,b],D2) (*1)

Also if D is a dissection of [a, b], then

S(f,D) ≥ S(f,D ∪ {c})
= S(f |[a,c],D1) + S(f |[c,b],D2) (*2)

where D1 dissects [a, c] and D2 dissects [a, b]

(∗1) =⇒ I∗(f) ≤ I∗(f |[a,c]) + I∗(f |[c,b])

(∗2) =⇒ I∗(f) ≥ I∗(f |[a,c]) + I∗(f |[c,b])

Similarly
I∗(f) = I∗(f |[a,c]) + I∗(f |[c,b])

Thus
0 ≤ I∗(f)− I∗(f) = I∗(f |[a,c])− I∗(f |[a,c])︸ ︷︷ ︸

≥0

+ I∗(f |[c,b])− I∗(f |[c,b])︸ ︷︷ ︸
≥0

From this, claim follows right away.

5.2 The Fundamental Theorem of Calculus (FTC)

f : [a, b]→ R bounded and integrable. Write

F (x) =

∫ x

a

f(t) dt, x ∈ [a, b]

Theorem 5.7. F is continuous

Proof. Show |F (x+ h)− F (x)| ≤ K|h| where K is upper bound of |f(t)|
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Theorem 5.8 (FTC). If in addition f is continuous at x, then F is differentiable at x and

F ′(x) = f(x)

Proof. Show for x+ h ∈ [a, b], h 6= 0:∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ =
1

|h|

∣∣∣∣∣
∫ x+h

x

[f(t)− f(x)] dt

∣∣∣∣∣
Use continuity at x to bound integral by ε so eventutally get:

lim
h→0

F (x+ h)− F (x)

h
= f(x)

Corollary 5.9 (integration is the inverse of differentiation). If f = g′ is continuous on [a, b], then∫ x

a

f(t) dt = g(x)− g(a) ∀x ∈ [a, b]

Proof. From Theorem 5.8, F − g has zero derivative in [a, b] =⇒ F − g is constant and since
F (a) = 0,

F (x) = g(x)− g(a)

Corollary 5.10 (integration by parts). Suppose f ′ and g′ exist and are continuous on [a, b]. Then∫ b

a

f ′g = f(b)g(b)− f(a)g(a)−
∫ b

a

fg′

Proof. By the product rule,
(fg)′ = f ′g + fg′

By 5.9,

f(b)g(b)− f(a)g(a) =

∫ b

a

f ′g +

∫ b

a

fg′
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Corollary 5.11 (integration by substitution). Let g : [α, β]→ [a, b] with g(α) = a and g(β) = b, g′

exists and is continuous on [α, β]. Let f : [a, b]→ R be continuous. Then∫ b

a

f(x) dx =

∫ β

α

f(g(t))g′(t) dt

Proof. Set
F (x) =

∫ x

a

f(t) dt

as before. Let h(t) = F (g(t)) defined since g takes values in [a, b]). Then∫ β

α

f(g(t))g′(t) dt =
FTC

∫ β

α

F ′(g(t))g′(t) dt

=

∫ b

a

f(x) dx

By recognising chain rule. (Let h(t) = F (g(t)))

Theorem 5.12 (Taylor’s theorem with remainder an integral). Let f (n)(x) be continuous for x ∈
[0, h]. Then

f(h) = f(0) + · · ·+ hn−1f (n−1)(0)

(n− 1)!
+Rn

where

Rn =
hn

(n− 1)!

∫ 1

0

(1− t)n−1f (n)(th) dt

Proof. By substituting u = th

Rn =
1

(n− 1)!

∫ h

0

(h− u)n−1f (n)(u) du

Integrating by parts n− 1 times

Theorem 5.13. f, g : [a, b]→ R continuous with g(x) 6= 0 ∀x ∈ (a, b). Then ∃c ∈ (a, b) s.t.∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx

Proof. Use Cauchy’s MVT (Theorem 3.7) on:

F (x) =

∫ x

a

fg

G(x) =

∫ x

a

g
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Claim. We can get the Cauchy & Lagrange form of the remainder from Taylor’s theorem with
remainder (given continuity of f (n))

Proof. Now we want to apply this to

Rn =
hn

(n− 1)!

∫ 1

0

(1− t)n−1f (n)(th) dt

First we use Theorem 5.13 with g ≡ 1, to get

Rn =
hn

(n− 1)!
(1− θ)n−1f (n)(θh), θ ∈ (0, 1)

Which is Cauchy’s form of the remainder!
To get Lagrange, we use Theorem 5.13 with g(t) = (1− t)n−1 which is > 0 for t ∈ (0, 1)

=⇒ ∃θ ∈ (0, 1) s.t. Rn =
hn

(n− 1)!
f (n)(θh)

[∫ 1

0

(1− t)n−1 dt

]
︸ ︷︷ ︸

=1/n∫ 1

0

(1− t)n−1 dt = − (1− t)n

n

]1
0

=
1

n

=⇒ Rn =
hn

n!
f (n)(θh), θ ∈ (0, 1)

which is Lagrange’s form of the remainder!

5.3 Improper Integrals

Definition. Suppose f : [a,∞] → R integrable (and bounded) on every interval [a,R] and that as
R→∞ ∫ R

a

f(x) dx→ l

Then we say that
∫∞
a
f(x) dx exists or converges and that its value is l. If

∫ R
a
f(x) dx does not tend

to a limit, we say that
∫∞
a
f(x) dx diverges.

A similar definition applies to
∫ a
−∞ f(x) dx. If∫ ∞

a

f(x) dx = l1

and ∫ a

−∞
f(x) dx = l2

we write ∫ ∞
−∞

(x) dx = l1 + l2

(independent of the particular value of a)
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5.4 The Integral Test

Theorem 5.14 (integral test). Let f(x) be a positive decreasing function for x ≥ 1. Then
(i) The integral

∫∞
1
f(x) dx and the series

∑∞
1 f(n) both converge or both diverge.

(ii) As n→∞,
n∑
r=1

f(r)−
∫ n

1

f(x) dx→ l

where 0 ≤ l ≤ f(1)

Proof.

n− 1 nx

f(n)

f(n− 1)

Use diagram to get to
n−1∑
r=1

f(r) ≥
∫ n

1

f(x) dx ≥
n∑
2

f(r) (**)

Set

φ(n) =

n∑
1

f(r)−
∫ n

1

f(x) dx

Then
φ(n)− φ(n− 1) = f(n)−

∫ n

n−1
f(x) dx ≤ 0

Right inequality of (**) gives:
0 ≤ φ(n) ≤ g(1)

thus φ(n) is decreasing and tends ot a limit l s.t.

0 ≤ l ≤ f(1)

Corollary 5.15 (Euler’s constant). As n→∞,

1 +
1

2
+ · · ·+ 1

n
− log n→ γ

with 0 ≤ γ ≤ 1

Proof. Set f(x) = 1/x and use Theorem 5.14
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Remark. We have seen: monotone functions and continuous functions are integrable
We can generalise this a bit and say that piece-wise continuous functions are integrable

[ ]
a b

Definition. A function f : [a, b] → R is said to be piece-wise continuous if there is a dissection
D = {x0 = a, x1, . . . , xn = b} s.t.
(i) f is continuous on (xj−1, xj) ∀j
(ii) the one-sided limits

lim
x→x+

j−1

f(x), lim
x→x−

j−1

f(x) exist
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