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0 Overview

Recommended books
• “Complex Analysis” by Ahlfors
• “Real and Complex Analysis” by Rudin

1 Basic Notions

Notation. C: complex plane.
z : complex conjugate of z ∈ C.
|z| : modulus of z ∈ C.
d(z, w) = |z − w| defines a metric on C (usual or standard metric).
For a ∈ C and r > 0:

D(a, r) = {z ∈ C : |z − a| < r}

is the open disk (or open ball) with centre a and radius r.

Definition. A subset U ⊂ C is open if it is open w.r.t. the above metric, i.e. if for every a ∈ U ,
there exists r > 0 such that D(a, r) ⊂ U

• It is easy to check that if we identify C with Rw via x + iy ∼ (x, y) , then U ⊂ C is open
⇐⇒ U ⊂ R2 is open w.r.t. the Euclidean metric on R2

• This course ia about complex valued functions of a (single) complex variable. I.e. functions
f : A→ C where A ⊂ C

Note. Identifying C with R2 in the usual way, we can write f(z) = u(x, y) + iv(x, y) for z = x+ iy
and a pair of real functions u, v : A→ R. We write u = Re(f), the real part of f , and v = Im(f), the
imaginary part of f .
Almost exclusively, we will focus on differentiable functions f

Definition. The function f (as above) is continuous at a point w ∈ A if ∀ε > 0∃δ > 0 such that

z ∈ A, |z − w| < δ =⇒ |f(z)− f(w)| < ε

This is the same as saying that limz→w f(z) = f(w)

• It is easy to check that if we identify C with Rw , if we write f(z) = u(x, y) + iv(x, y) as above
then f is continuous at w = c + id ∈ A ⇐⇒ u, v are continuous at (c, d) ∈ A w.r.t. the
(induced) Euclidean metric on A ⊂ R2 and the Euclidean metric on the target R

1.1 Complex Differentation

Notation. Let f : U → C, where U ⊂ C is open
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Definition. (i) f is differentiable at w ∈ U if the limit

f ′(w) = lim
z→w

f(z)− f(w)

z − w

exists as a complex number. f ′(w) is called the derivative of f at w
(ii) f is holomorphic at w ∈ U if there is ε > 0 such that D(w, ε) ⊂ U and f is differentiable at

every point in D(w, ε)
(iii) f is holomorphic in U if f is holomorphic at every point in U , or equivalently, f is differentiable

at every point in U

Remark. Sometimes, we use “analytic” to mean holomorphic

Usual rules of differentiation of real functions of a real variable hold for complex functions. Derivatives
of sums, products, quotients of functions are obtained in the same way (as can easily be checked).

Equation. The chain rule for homposite functions also holds:

f : U → C, g : V → C, f(U) ⊂ V, h = g ◦ f : U → C

If f is differentiable at w ∈ U, g is differentiable at f(w), then h is differentiable at w and

h′(w) = g′(f(w))f ′(w)

(complex multiplication on the RHS)

Examples. (i) Polynomials p(z) =
∑n
j=0, a1, . . . , an ∈ C are holomorphic on all of C

(ii) If p, q are polynomials, then p/q is holomorphic on C\{z : q(z) = 0}

Write f(z) = u + iv. Is differentiability of f at a point w = c + id ∈ U the same as differentiability
of u and v at (c, d)?
Recall that u : U → R is differentiable at (c, d) ∈ U if there is a linear transformation L : R2 → R
such that

lim
(x,y)→(c,d)

u(x, y)− (u(c, d) + L(x− c, y − d))√
(x− c)2 + (y − d)2

= 0

If u is differentiable at (c, d), then L is uniquely defined and we write L = Du(c, d); moreover, L is
given by the partial derivatives of u, i.e.

L(x, y) =

(
∂u

∂x
(c, d)

)
+

(
∂u

∂y
(c, d)

)
y

The answer to the above question is NO! The theorem below characterises differentiability of f in
terms of u and v
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Theorem 1.1 (Cauchy-Riemann equations). f = u + iv : U → C is differentiable at w = c + id ∈
U ⇐⇒ u, v : U → R are differentiable at (c, d) ∈ U and u, v satisfy the Cauchy-Riemann equations
at (c, d), i.e.

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
at (c, d)

If f is differentiable at w = c+ id, then

f ′(w) =
∂u

∂x
(c, d) + i

∂v

∂x
(c, d)

(and three other expressions following from the C-R equations)

Proof. f is differentiable at w with derivative f ′(w) = p+ iq

⇐⇒ lim
z→w

f(z)− f(w)

z − w
= p+ iq

⇐⇒ f(z)− f(w)− (z − w)(p+ iq)

|z − w|
= 0

Writing f = u+ iv and separating real and imaginary parts, the above holds ⇐⇒

lim
(x,y)→(c,d)

u(x, y)− u(c, d)− p(x− c) + q(y − d)√
(x− c)2 + (y − d)2

= 0 and

lim
(x,y)→(c,d)

v(x, y)− v(c, d)− q(x− c)− p(y − d)√
(x− c)2 + (y − d)2

= 0

⇐⇒ u is differentiable at (c, d) with Du(c, d)(x, y) = px− qy, and v is differentiable at (c, d)
with Dv(c, d)(x, y) = qx+ py.
⇐⇒ u, v is differentiable at (c, d) and ux(c, d) = p = vy(c, d), and uy(c, d) = iq = −vx(c, d)
i.e. C-R equations hold at (c, d). (Here ux = ∂u

∂x etc.)
We also get from the above that if f is differentiable at w, then

f ′(w) = p+ iq = ux(c, d) + ivx(c, d)

Warning. u, v satisfying the C-R equations at a point does NOT guarantee differentiability of f (see
example sheet 1)
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Remark. If we just want to show: differentiability of f at w = c + id =⇒ the partial derivatives
ux, uy, vc, vy exist and satisfy Cauchy-Riemann equations, then we can proceed more simply as follows:
start with the definition

f ′(w) = lim
z→w

f(z)− f(w)

z − w
= lim
h→0

f(w + h)− f(w)

h

Taking h = t ∈ R in this, we get

f ′(w) = lim
t→0

(
u(c+ t, d)− u(c, d)

t
+ i

v(c+ t, d)− v(c, d)

t

)
This says that limt→0(u(c+ t, d)−u(c, d))/t and limt→0(v(c+ t, d)−v(c, d))/t both exist, i.e. ux(c, d)
and vx(c, d) exist, and f ′(w) = ux(c, d) + ivx(c, d). Similarly, taking h = it, t ∈ R, we get that
f ′(w) = vy(c, d)− iuy(c, d). So ux = vy and uy = −vx at (c, d)

Example. f(z) = z = x− iy. For this, u(x, y) = x, v(x, y) = −y, so ux = 1, uy = 0, vx = 0, vy = −1.
So C-R equations do not hold anywhere, and f is NOT differentiable at any point

Corollary 1.2. Let f = u + iv : U → C. If u, v have continuous partial derivatives at a point
(c, d) ∈ U and satisfy the C-R equations at (c, d) then f is differentiable at w = c+ id. In particular,
if u, v are C1 functions on U (i.e. have continuous partial derivatives in U) satisfying the C-R
equations in U , then f is holomorphic in U

Proof. Continuity of partial derivatives of u implies that u is differentiable, and similarly for
v. So the corollary follows from Theorem 1.1

We can relax the requirement of continuity of partial derivatives of u, v in U to just continuity of u, v
in U . Thus, if f = u+ iv is defined on an open set U and is continuous in U , and if u, v satisfy the
C-R equations in U , then f is holomorphic in U . This is called the Looman-Menchoff theorem. It is
quite non-trivial to prove

Remark. Complex differentiability is much more restrictive than (real) differentiability of real and
imaginary parts (because of the additional requirement that C-R equations must hold). This leads
to some surprising theorems compared to the real case. For instance:
(i) If f : C→ C is holomorphic and bounded (i.e. |f(z)| ≤ K for some constant K and all z), then

f is constant! (Liouville theorem)
(ii) If f : U → C is holomorphic, then f is automoatically infinitely differentiable on U

We will prove these (and much more!) later on
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Note. (ii) =⇒ partial derivatives of u, v of all orders exist. So we can differentiable C-R equations
to get:

(ux)x = (vy)x =⇒ uxx = vyx

(uy)y = (−vx)y =⇒ uyy = −vxy
Since vxy = xxy, this gives

∆u = uxx + uyy = 0 in U

Similarly, ∆v = 0 in U . I.e. real and imaginary parts of a holomorphic function are harmonic

Definition. • A curve is a continuous map γ : [a, b] → C, where [a, b] ⊂ R is a closed interval.
We say γ is a C1 curve if γ′ exists and is continuous on [a, b]. (If γ(t) = x(t) + iy(t) then
γ′(t) = x′(t) = iy′(t); at the end points, γ′ is the one-sided derivative)

• An open set U ⊂ C is path-connected if for any two points z, w ∈ U , there is a curve
γ : [0, 1]→ U such that γ(0) = z and γ(1) = w

• A domain is a non-empty, open, path connected subset of C

Corollary 1.3. If U ⊂ C is a domain, f : U → C is holomorphic with f ′(z) = 0 for every z ∈ U ,
then f is constant

Proof. Write f == u + iv. By the C-R equations, f ′ = 0 =⇒ Du = 0 and Dv = 0
in U . Since U is a domain, this means (by a theorem from “Analysis and Topology”) that
u = constant and v = constant, i.e. f is constant.

So far, we’ve only seen a few explicity holomorphic functions (namely, polynomials on C and rational
functions on their domains). We’d like to generate more. We do this by looking at the following:

Theorem 1.4 (radius of convergence). If (cn)∞n=0 is a sequence of complex numbers, then there is a
unique number R ∈ [0,∞] such that the ower series

∞∑
n=0

cn(z − a)n, z, a ∈ C

converges absolutely if |z−a| < R and diverges if |z−a| > R. If 0 < r < R, then the series converges
uniformly (with respect to the variable z) on the compact disk D(a, r) = {z ∈ C : |z − a| ≤ r}

Equation. R is the radius of convergence of the power series. Note that there is no claim about
convergence when |z − a| = r, R > 0. There are various expressions for R. e.g.

R = sup{r ≥ 0 : |cn|rn → 0 as n→∞}

and
1

R
= lim sup

n→∞
|cn|1/n
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Theorem 1.5. Let
∑∞
n=0 be a power series with r. o. c. equal to R > 0. Fix a ∈ C, and define

f : R(a,R)→ C by f(z) =
∑∞
n=0 cn(z − a)n. Then:

(i) f is holomorphic on D(a,R)
(ii) the derived series

∑∞
n=1 ncn(z − a)n−1 also has r. o. c. equal to R and f ′(z) =

∑∞
n=1 ncn(z −

a)n−1 ∀z ∈ D(a,R)
(iii) f has deriatives of all orders on D(a,R) and cn = f (n)(a)/n!
(iv) if f vanishes on D(a, ε) for some ε > 0, then f ≡ 0 on D(a,R)

Proof. (i) By considering g(z) = f(z + a), we assume w.l.o.g. that a = 0. So have
f(z) =

∑∞
n=0 cnz

n for z ∈ D(0, R), with r.o.c. R > 0.
The derived series

∑∞
n=1 ncnz

n−1 will have some r.o.c. R1 ∈ [0,∞]. To see R1 ≥ R,
let z ∈ D(0, R) be arbitrary, and choose ρ such that |z| < ρ < R. Then n|cn||z|n−1 =
n|cn||z/ρ|n−1. ρn−1 ≤ |cn|ρn−1 for sufficiently large n (as n|z/ρ|n−1 → 0 as n → ∞).
Since

∑
|cn|ρn converges, it follows that

∑∞
n=1 n|cn||z|n−1 converges. Thus D(0, R) ⊂

D(0, R1) i.e. R1 ≥ R.
Since |cn||z|n ≤ n|cn||zn| = |z|(n|cn||z|n−1), if

∑
n|cn||z|n−1 converges, then so does

|cn||z|n, so R1 ≤ R. So R1 = R.
To prove that f is differentiable with f ′(z) =

∑∞
n=1 ncnz

n−1, fix z ∈ D(0, R). Key idea:
this assertion is equivalent to continuity at z of the function

g : D(0, R)→ C, g(w) =

{
f(w)−f(z)

w−z w 6= z∑∞
n=1 ncnz

n−1 w = z

By substituting for f , g(w) =
∑∞
n=1 hn(w), w ∈ D(0, R) where

hn(w) =

{
cn(wn−zn)

w−z w 6= z

ncnz
n−1 w = z

Now hn is continuous on D(0, R) (since w 7→ wn is differentiable with derivative nwn−1).
Using (wn− zn)/(w− z) =

∑n−1
j=0 z

jwn−1−j , we get that for any r with |z| < r < R and
any w ∈ D(0, r),

|hn(w)| ≤ n|cn|rn−1 ≡Mn

Since
∑
Mn < ∞, we have by the Weierstrass M -test

∑
hn converges uniformly on

D(0, r). But a uniform of limit of continuous functions is continuous, so g =
∑
hn is

continuous in D(0, r) and in particular at z
(ii) proved in (i)
(iii) Repeatedly apply (ii). The formula cn = f (n)(a)/n! follows by differentiating the series

n times and setting z = a
(iv) If f ≡ 0 in D(a, ε), then f (n)(a) = 0 for all n, so cn = 0 for all n and hence f ≡ 0 in

D(a,R)

Remarks.
(i) This theorem provides a way to generate a large class of holomorphic functions on a disk
(ii) Later we will show that every holomorphic function is locally given by a power series. Once

we have that, part (iii) above gives that holomorphic functions are automatically infinitely
differentiable in their domain

Definition. If f : C→ C is holomorphic on all of C, we say f is entire
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Prop 1.6. (i) ez is entire, with (ez)′ = ez

(ii) ez 6= 0 and ez+w = ez · ew for all z, w ∈ C
(iii) ex+iy = ex(cos y + i sin y) for x, y ∈ R
(iv) ez = 1 if and only if z = 2nπi for some integer n
(v) Let z ∈ C. ∃w ∈ C s.t. ew = z if and only if z 6= 0

Proof. (i) r.o.c. of the series is ∞. To see (ez)′ = z, differentiate the series term-by-term,
using Theorem 1.5

(ii) Fix any w ∈ C and set F (z) = ez+w·e
−z

/ Then

F ′(z) = −ez+w · e−z + ez+w · e−z = 0

so
F (z) = constant = F (0) = ew

(e0 = 1 by direct calculation. Thus

ez+w · e−z = ew ∀z, w ∈ C (*)

Taking w = 0, ez · e−z = 1. So ez 6= 0. Multiplying (*) by ez, get

ez+w = ez · ew

(iii) ex+iy = ex · eiy by (ii). Now use the definition of eiy, and the series for sin y, cos y for
y ∈ R

(iv) Follows from (iii)
(v) Follows from (iii)

Definition. Given z ∈ C, we say a complex number w ∈ C is a logarithm of z if ew = z

Remark. By Proposition 1.6(v), z has a logarithm iff z 6= 0.
By Proposition 1.6(ii) and (iv), if z 6= 0, then z has infinitely many logarithms, with any two differeing
from each other by 2nπi for some integer n.
If w is a logarithm of z, then eRe(w) = |z|, so Re(z) = ln |z| (the real logarithm of the positive number
|z|); in particular, Re(w) is uniquely determined by z

Definition. Let U ⊂ C\{0} be open. Then a branch of logarithm on U is a continuous function
λ : U → C such that eλ(z) = z for each z ∈ U
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Remark. If λ is a branch of log on U , then λ is automatically holomorphic in U , with λ′(z) = 1/z

Proof. If w ∈ U then

lim
z→w

λ(z)− λ(w)

z − w
= lim
z→w

λ(z)− λ(w)

eλ(z) − eλ(w)

= lim
z→w

1(
eλ(z)−eλ(w)

λ(z)−λ(w)

) (z 6= w =⇒ λ(z) 6= λ(w))

=
1

eλ(w)
lim
z→w

1(
eλ(z)−λ(w)−1
λ(z)−λ(w)

)
=

1

eλ(w)
lim
h→0

1(
eh−1
h

) as λ continuous

=
1

eλ(w)
=

1

w

Definition. The principal branch of logarithm is the function

Log : U1 = C\{x ∈ R : x ≤ 0} → C

defined by
Log(z) = ln |z|+ i arg(z)

where arg(z) is the unique argument of z ∈ Uw in (−π, π)

Log is a branch of logarithm in U1: to check continuity of Log, note that z 7→ log |z| is continuous
on C\{0} (by continuity of z 7→ |z| and continuity of r 7→ log r for r > 0); also z 7→ arg(z) is
continuous, since θ 7→ eiθ is a homeomorphism (−π, π) → S1\{−1} (as can be checked directly,
where S1 = {z : |z| = 1}), and z 7→ z/|z| is continuous on C\{0} So z 7→ Log(z) is continuous on U1.
We also have

eLog(z) = eln |z|+i arg(z) = eln |z| · ei arg(z) = |z|(cos arg(z) + i sin arg(z)) = z

So Log is a branch of logarithm in U1

Note. Log does not have a continuous extension to C\{0} (since arg(z) → π as z → −1 with
Im(z) > 0, and arg(z) → −π as z → −1 with Im(z) < 0). We will later show there is no branch of
log on C\{0}
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Prop 1.7. (i) Log is holomorphic on Uq with (Log(z))′ = 1/z
(ii) For |z| < 1

Log(1 + z) =

∞∑
n=1

(−1)n+1zn

n

Proof. (i) Remark above
(ii) Note that r.o.c. of the series is 1, and |z| < 1 =⇒ 1 + z ∈ U1, so both sides are defined

on |z| < 1. Let F (z) = Log(1 + z)−
∑∞
n=1(−1)n+1zn/n, |z| < 1. Then

F ′(z) =
1

1 + z
−
∞∑
n=1

(−z)n−1 = 0

so
F (z) = constant = F (0) = 0

Using exp and Log, we can define further useful functions
(i) For any constant α ∈ C, define

zα = eαLog(z), z ∈ U1

This is the principal branch of zα. We have that zα is holomorphic on U! with (zα)′ = αzα−1

(ii) cos(z), sin(z), cosh(z), sinh(z) can all be written in terms of exponentials. All entire derivatives
fiven by the familiar expressions from the real variables

1.2 Conformality

Let f : U → C be holomorphic (where U ⊂ C is open, as usual). Let w ∈ U and suppose that
f ′(w) 6= 0. Take to C1 curves γi : [−1, 1]→ U (i = 1, 2) such that γi(0) = w and γi 6= 0 for i = 1, 2.
Then f ◦ γi are C1 curves passing through f(w). Moreover

(f ◦ γi)′(0) = f ′(w)γ′i(0) 6= 0

So
(f ◦ γ1)′(0)

(f ◦ γ2)′(0)
=
γ′1(0)

γ′2(0)

and hence
arg(f ◦ γ1)′(0)− arg(f ◦ γ2)′(0) = arg γ′1(0)− arg γ′2(0)

This means that the angle that the curves γ1, γ2 make at w is the same as the angle their images
f ◦ γ1, f ◦ γ2 make at f(w), in size as well as in orientation, i.e. f is “angle-preserving at w” whenever
f ′(w) 6= 0 (In particular, if the curves γ1, γ2 are tangential at w, then the curves f ◦ γ1, f ◦ γ2 are
tangential at f(w))

Remark. If f is a C1 map on U , the converse also holds, ie. if w ∈ U, f has the property that
(f ◦ γ)′(0) 6= 0 for any C1 curve γ with γ(0) = w and γ′(0) 6= 0, and if f is angle preserving at w in
the above sense then f ′(w) exists and f ′(w) 6= 0. See example sheet 1
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Definition. A holomorphic function f : U → C on an open set U is said to be conformal at a point
w ∈ U if f ′(w) 6= 0

Definition. Let U, Ũ be domains in C. A map f : U → Ũ is said to be a conformal equivalence
between U and Ũ if f is a bijective holomorphic map with f ′(z) 6= 0 for every z ∈ U

Remark. If f is holomorphic and injective, then f ′(z) 6= 0 for each z. (We shall see this later in the
course). So in the above definition, the requirement f ′(z) 6= 0 is redundant

Remark. It is automatic that the inverse f−1 : Ũ → U is holomorphic. This follows from the
holomorphic inverse function theorem, which can be proved using the real inverse function theorem
(see example sheet 1)

Examples. (i) Mobius maps

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− gb 6= 0

f is conformal on C\{−d/c} if c 6= 0, and conformal on C if c = 0. Mobius maps sometimes
seve as explicit conformal equivalences between subdomains of C. e.g. Let H = open upper-half
plane = {z : Im(z) > 0} ∩ C. Then

z ∈ H ⇐⇒ z is closer to i than to − i
⇐⇒ |z − i| < |z + i|

⇐⇒
∣∣∣∣z − iz + i

∣∣∣∣ < 1

Thus g(z) = (z − i)/(zi) maps H onto D(0, 1), so f : H→ D(0, 1) is a conformal equivalence
(ii) f : z 7→ zn, n ≥ 1 integer

f : {z ∈ C\{0} : 0 < arg(z) < πn} → H

This is a conformal equivalence, with inverse f−1(z) = z1/n (the principal branch of z1/n)

exp : {z ∈ C : −π < Im(z) < π} → C\{x ∈ R : x ≤ 0}

is a conformal equivalence, whose inverse is Log(z)

Aside:

Theorem 1.8. Any simply connected domain U ⊂ C with U 6= C is conformally equivalent to D(0, 1)

Proof. See e.g. Ahlfors, Complex Analysis, or Rudin, Real and Complex Analysis
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Here U ⊂ C simply connected means that every continuous map γ : S1 = ∂D(0, 1) → U extends to
a continuous map Γ : D(0, 1)→ U with Γ|∂D(0,1) = γ. (We will discuss simply connected domains in
detail later in the course; intuitively, simply connected domains are the ones “without holes”)

Remark. The case U = C has to be excluded in the theorem in view of Liouville’s theorem (which
we will prove later)

2 Complex Integration

Moral. We aim to extend real (Riemann) integration to integration of complex functions f : U →
C, U ⊂ C, along curves in U .
First look at complex functions of a real variable

Definition. If f : [a, b] ⊂ R→ C is a complex function, and if f is continuous (or more generally if
f is Riemann integrable, i.e. Re(f) and Im(f) are Riemann integrable), define∫ b

a

f(t) dt =

∫ b

a

Re(f(t)) dt+ i

∫ b

a

Im(f(t)) dt

In particular, ∫ b

a

ig(t) = i

∫ b

a

g(t) dt

for a real function g : [a, b]→ R. Hence, by direct calculation

w

∫ b

a

f(t) dt =

∫ b

a

wf(t) dt

for any w ∈ C
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Prop 2.1 (Basic estimate). If f : [a, b]→ C is continuous, then∣∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(t)|dt ≤ (b− a) sup
t∈[a,b]

|f(t)|

with equality iff f is constant

Proof. If
∫ b
a
f(t) dt = 0, then we are done. Else write

∫ b
a
f(t) dt = reiθ, θ ∈ [0, 2π), and let

M = supt∈[a,b] |f(t)|. Then∣∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣∣ = r = e−iθ
∫ b

a

f(t) dt =

∫ b

a

e−iθf(t) dt

=

∫ b

a

Re(e−iθf(t)) dt+ i

∫ b

a

Im(e−iθf(t)) dt

Since LHS is real ∣∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣∣ =

∫ b

a

Re(e−iθf(t)) dt

≤
∫ b

a

|e−iθf(t)|dt

=

∫ b

a

|f(t)|dt

≤ (b− a)M

Equality holds iff |f(t)| = M and Re(e−iθf(t)) = M for all t ∈ [a, b], i.e. iff |f(t)| = M and
arg(f(t)) = θ for all t ∈ [a, b], i.e. iff f = const.

Definition. Let U ⊂ C be open and U → C be continuous. Let γ[a, b] → U be a C1 curve. Then
the integral of f along γ is ∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt

13



Basic properties:
(i) Invariance under reparametrisation: let ϕ : [a1, b1]→ [a, b] be a C1 and injective with ϕ(a1) = a

and ϕ(b1) = b. Let δ = γ ◦ ϕ : [a1, b1]→ U . Then we have∫
δ

f(z) dz =

∫
γ

f(z) dz

Proof.∫
δ

f(z) dz =

∫ b1

a1

f(γ ◦ ϕ)γ′(ϕ(t))ϕ′(t) dt =

∫ b

a

f(γ(s))γ′(s) ds =

∫
γ

f(z) dz

using s = ϕ(t). The second equality follows from the definition of integral of a function
of a real variable and the change of variables formula for integrals of real functions of a
real variable

(ii) Linearity: ∫
γ

(c1f1(z) + c2f2(z)) dz = c1

∫
γ

f1 dz + c2

∫
γ

f2(z) dz

for constants c1, c2 ∈ C
(iii) Additivity: If γ : [a, b]→ U is a C1 curve and a < c < b, then∫

γ

f(z) dz =

∫
γ|[a,c]

f(z) dz +

∫
γ|[c,b]

f(z) dz

(iv) Inverse path: Define the inverse path (−γ) : [−b,−a]→ U by (−γ)(t) = γ(−t) for −b ≤ t ≤ −a.
Then ∫

(−γ)

f(z) dz = −
∫
γ

f(z) dz

(ii), (iii), (iv) are easy to check using the definitions

Definition. Let γ : [a, b]→ C be a C1 curve. The length of γ is defined by

length(γ) =

∫ b

a

|γ′(t)|dt

Definition. A piecewise C1 curve is a continuous map γ : [a, b]→ C such that there exists a finite
subdivision

a = a0 < a1 < a2 < · · · < an−1 < an = b

with the property that γj : γ|[aj−1,aj ] : [aj−1 → aj ]→ C is C1 for 1 ≤ j ≤ n.
If γ is a piecewise C1 is piecewise C1 curve as above, define:∫

γ

f(z) dz =

n∑
j=1

∫
γj

f(z) dz

and

length(γ) =

n∑
j=1

length(γj) =

n∑
j=1

∫ aj

aj−1

|γ′(t)|dt

14



Note. Both definitions are independent of the subdivision, by the additivity property (iii) above.
From now on, by a “curve”, we shall mean a piecewise C1 curve

Definition. If γ1 : [a, b] → C and γ2 : [c, d] → C are curves with γ1(b) = γ2(c), we define the sum
of γ1 and γ2 to be the curve

(γ1 + γ2) : [a, b+ d− c]→ C

(γ1 + γ2)(t) =

{
γ1(t) a ≤ t ≤ b
γ2(t− b+ c)b ≤ t ≤ b+ d− c

Prop 2.2. For any continuous function f : U → C and any curve γ : [a, b]→ C, we have that∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ length(γ) sup
γ
|f |

where supγ |f | = supt∈[a,b] |f(γ(t))|

Proof. If γ is C1, then |
∫
γ
f(z) dz| = |intbaf(γ(t))γ′(t) dt| ≤

∫ b
a
|f(γ(t))||γ′(t)|dt ≤

supt∈[a,b] |f(γ(t))|length(γ)|. If γ is piecewise C1 then the result follows from the definition∫
γ
f(z) dz =

∑n
j=1

∫
γj
f(z) dz where γj is C1, and the triangle inequality

We have the complex version of the fundamental theorem of calculus

Theorem 2.3. Suppose that f : U → C is continuous, U ⊂ C open. If there is a function F : U → C
such that F ′(z) = f(z) for all z ∈ U , then for any curve γ : [a, b]→ U ,∫

γ

f(z) dz = F (γ(b))− F (γ(a))

If additionally γ is a closed curve, i..e. γ(b) = γ(a), then
∫
γ
f(z) dz = 0

Proof. ∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

d

dt
F (γ(t)) dt = F (γ(b)) = F (γ(a))

Definition. Such F as in Theorem 2.3 is called an anti-derivative of f

Note. We shall see late (by infinite differentiability of holomorphic functions) that if F ′(z) = f(z),
then f is automatically continuous
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Example.
∫
γ
zn dz for n an integer, where γ : [0, 1] → C, γ(t) = Re2πit t ∈ [0, 1], for some R > 0.

(The image of γ is the circle of radius R centered at the origin.)
For n 6= −1 : zn+1/(n + 1) is an anti-derivative of zn in C\{0} (in C if n ≥ 0), so by Theorem 2.3,∫
γ
zn dz = 0 (since γ is a closed curve)/

For n = −1, use the definition of integral:∫
γ

1

z
dz =

∫ 1

0

1

γ(t)
γ′(t) dt =

∫ 1

0

1

Re2πit
2πiRe2πit dt = 2πi

Since
∫
γ

1/z dz 6= 0, we can conclude that for any R > 0, 1/z has no anti-derivative in any open set
containing the circle {|z| = R}.
In particular, since any branch λ(z) of logarithm the derivative λ′(z) = 1/z, there is no branch of
logarithm on C∗ = C\{0}
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Theorem 2.4 (Converse to FTC). Let U ⊂ C be a domain. If f : U → C is continuous and if∫
γ
f(z) dz = 0 for every closed curve γ in U , then f has an anti-derivative. i.e. there is a holomorphic

function F : U → C such that F ′(z) = f(z) for each z ∈ U

Proof. Fix any a0 ∈ U . For w ∈ U define

F (w) =

∫
γw

f(z) dz

where γw : [0, 1] → C is a curve with γw(0) = a0, γw(1) = w. (Such a continuous curve
exists since U is path-connected; starting with this we can find a piecewise C1 curve, in fact a
polygonal curve. Exercise.) The definition of F is independent of the choice of γw (connecting
a0 to w) since, by hypothesis,

∫
γ
f(z) dz = 0 for all closed curves γ. So we have a well defined

function F : U → C.
Fix w ∈ U . Since U is open, there is r > 0 such that D(w, r) ⊂ U . For h ∈ C with 0 < |h| < r,
let δh be the radial path t 7→ w + th, t ∈ [0, 1]. Let

γ = γw + δh + (−γw+h)

γ is a closed curve, so
∫
γ
f(z) dz = 0, which implies that∫
γw+h

f(z) dz =

∫
γw

f(z) dz +

∫
δh

f(z) dz

In terms of F , this says that

F (w + h) = F (w) +

∫
δh

f(z)f(z) dz = F (w) + hf(w) +

∫
δh

(f(z)− f(w)) dz

So ∣∣∣∣F (w + h)− F (w)

h
− f(w)

∣∣∣∣ =
1

|h|

∣∣∣∣∫
δh

(f(z)− f(w)) dz

∣∣∣∣
≤ 1

|h|
length(δh) sup

z∈image(δh)

|f(z)− f(w)|

= sup
z∈image(δh)

|f(z)− f(w)| → 0

as h→ 0, since f is continuous. Thus F is differentiable at w with F ′(w) = f(2)

Definition. A domain U is star-shaped (or is a star domain) if there is a0 ∈ U such that for each
w ∈ U , the straight-line segment [a0, w] ⊂ U

Note. U is a disk =⇒ U is convex =⇒ U is star-shaped =⇒ U is path-connected. None of the
reverse implications hold

Definition. A triangle in C is the convex hull of three points in C. The three points are the vertices
of the triangle. Thus the triangle T whose vertices are z1, z2, z3 ∈ C is the (closed) set

T = {az1 + bz2 + cz3 : 0 ≤ a, b, c ≤ 1, a+ b+ c = 1}

17



Notation. For a triangle T , we write
∫
∂T
f(z) dz to denote the integral of f along the piecewise affine

closed curve γ = γ1 +γ2 +γ3 where γ1, γ2, γ3 are affine functions parametrising the three straight-line
segments making up the boundary of T , with the parametrisations chosen so that T lies to the left
of each directed segment

Corollary 2.5. If U is star-shaped, f : U → C is continuous and
∫
∂T
f(z) dz = for any triangle

T ⊂ U , then f has an anti-derivative in U

Proof. Suppose U is star shaped with respect to a point a0 ∈ U and let w ∈ U be an arbitrary
point. Let γw be the affine function parametrising the (directed) line segment [a0, w], and let
F (w) =

∫
γw
f(z) dz. With h and δh as in the proof of Theorem 2.4, and γ = γ2 +δh+(−γw+h),

we hthen have that
∫
γ
f(z) dz = ±

∫
∂T
f(z) dz for a triangle T ⊂ U (with the − sign if T lies

to the right of the directed boundary segments). Since
∫
∂T
f(z) = 0 by hypothesis, we have

that
∫
γ
f(z) dz = 0. We can now proceed exactly as in the proof of Theorem 2.4

Recap:
(i) For a domain U ⊂ C and a continuous function f : U → C:∫

γ
f(z) dz = 0 for any closed curve γ in U ⇐⇒ f has an anti-derivative in U ( =⇒ f is

holomorphic in U ; see later.)
(ii) The example f(z) = 1/z on U = C\{0} (or U = D(0, R)\D(0, r) for 0 < r < R ≤ ∞) shows

that f holomorphic on U 6 =⇒ f has an anti-derivative in U
(iii) If U is a star domain, then for continuous f : U → C,∫

∂T
f(z) dz = 0 for ant triangle T ⊂ U ⇐⇒ f has an anti-derivative in U .

Moral. The validity of
∫
γ
f(z) dz = 0 for any holomorphic f on U and any closed curve γ in U has

important consequences, as we shall see.
A central aim in the rest of the course: answer the following question, and examine the consequences
of the answer:
Whcihc domains U ⊂ C have the property that

∫
γ
f(z) dz = 0 for any holomorphic f : U → C and

any closed curve γ ∈ U?
We will eventually give the complete short answer: simply connected domains. This is called Cauchy’s
theorem. First step: do the special case of star domains. This can be handled as an immediate
corollory (Corollary 2.8 below) of the following
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Theorem 2.6 (Cauchy’s Theorem for triangles). Let U ⊂ C be open and f : U → C be holomorphic.
Then

∫
∂T
f(z) dz = 0 for any triangle T ⊂ U

Proof. Let η(T ) =
∫
∂T
f(z) dz. First key idea: subdivide T into four smaller triangles

T (1), T (2), T (3), T (4) by joining the mid-points of the sides of T , and note that

η(T ) =

∫
∂T (1)

f(z) dz +

∫
∂T (2)

f(z) dz +

∫
∂T (3)

f(z) dz +

∫
∂T (4)

f(z) dz

So by the triangle inequality ∣∣∣∣∫
∂T (j)

f(z) dz

∣∣∣∣ ≥ |η(T )

4

for some j ∈ {1, 2, 3, 4}. Let T1 = T (j) for this j, and write T0 = T . So |η(T1)| ≥ 1
4 |η(T0)|.

Also length(∂T1) = 1
2 length(∂T0).

Now repeate the process: subdivide T1 and choose a new triangle T2 ⊂ T1 exactly the same
way. Doing this indefinitely generates a sequence of triangles T0 ⊃ T1 ⊃ T2 ⊃ . . . satisfying
for n = 1, 2, 3, . . .

η(Tn)| ≥ 1

4
|η(Tn−1) and length(∂Tn) =

1

2
length(∂Tn−1)

Iterating these,

|η(Tn)| ≥ 1

4b
|η(T0)|, length(∂Tn) =

1

2n
length(∂T0) for n = 1, 2, . . .

Since Tn are non-empty, nested closed subsets with diam(Tn) → 0, we have that
⋂∞
n=1 Tn =

{z0} for some z0 ∈ C. (Exercise).
Now let ε > 0. Since f is differentiable at z0, there is δ > 0 such that

z ∈ U, |z − z0| < δ =⇒ |f(z)− f(z0)− f ′(z0)(z − z0)| ≤ ε|z − z0|

Second key idea: oberve that for any n,∫
∂Tn

f(z) dz =

∫
∂Tn

(f(z)− f(z0)− f ′(z0)(z − z0))

Since
∫
∂Tn

1 dz =
∫
∂Tn

z dz = 0 by the FTC.
So choosing n with Tn ⊂ D(z0, δ) (possible since z0 ∈ Tn for all n and diam(Tn)→ 0)

1

4n
|η(T0) ≤ |η(Tn)| =

∣∣∣∣∫
∂Tn

f(z) dz

∣∣∣∣
=

∣∣∣∣∫
∂Tn

(f(z)− f(z0)− f ′(z0)(z − z0)) dz

∣∣∣∣
≤
(

sup
z∈∂Tn

|f(z)− f(z0 − f ′(z0)(z − z0)|)
)
length(∂Tn)

≤ ε
(

sup
z∈∂Tn

|z − z0|
)
length(∂Tn) ≤ ε(length(∂Tn))2 =

ε

4n
(length(∂T0))2

Cancel 1/4n on both sides and let ε→ 0. This gives η(T0) = 0
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For later applications, it is important to generalise theroem 2.6 to continuous f which are (a priori)
holomorphic except at a finite number of points

Theorem 2.7. Let U ⊂ C be open and f : U → C be continuous. Let S ⊂ U be a finite set and
suppose that f is holomorphic on U\S. Then

∫
partialT

f(z) ds = 0 for every triangle T ⊂ U

Proof. Subdivide T into a total of N = 4n smaller triangles by iterative procedure before,
where at each step we join up the mid points of the sides of the triangles at the previous step.
This time, we keep all the smaller triangles call them T1, T2, . . . , TN . (Note the notational
difference from before.) Then, since the integrals along the sides (of the smaller triangles)
that are interior to T cancel, we get that∫

∂T

f(z) dz =

N∑
j=1

∫
∂Tj

f(z) dz

Now by the previous theorem,
∫
∂Tj

f(z) dz = 0 unless Tj ∩ S 6= ∅. So letting UI = {j :

Tj ∩S 6= ∅}, we have that
∫
∂T
f(z) dz =

∑
j∈I
∫
∂Tj

f(z) dz. Since any point can be in at most
6 smaller triangles and length(∂Tj) = 1

2n length(∂T ), we get that∣∣∣∣∫
∂T

∣∣∣∣ ≤ 6|S|
(

sup
z∈T
|f(z)|

)
length(∂T )

2n

Let n→∞

Corollary 2.8. Let U ⊂ C be convex, or more generally, a star domain. Let f : U → C be continuous
and holomorphic in U\S where S is a finite set. Then

∫
γ
f(z) dz = 0 for any closed curve γ in U

Proof. By Theorem 2.7,
∫
∂T
f(z) dz = 0 for any triangle T ⊂ U . Since U is a star domain

and f is continuous, this means (by Corollary 2.5) that f has an anti-derivative in U . The
result now follows from the FTC (Theorem 2.3)

Remark. We will see soon that if f : U → C is continuous and holomorphic in U\S where S is finite,
then f is holomorphic in U . Our proof of this fact will rely on Corollary 2.8
Now we are ready to draw a series of very nice corollaries of “convex Cauchy”. The main corollary
is a representation formula known as the Cauchy integral formula, from which the other results will
follow.

Notation. For a disk D(a, ρ), we will write
∫
∂D(a,ρ)

f(z) dz to mean
∫
γ
f(z) dz where γ : [0, 1]→ C

is the curve γ(t) = a+ ρe2πit (which parametrises the boundary of the disk with positive orientation,
i.e. so that the dsik lies to the left of the directed boundary circle.)
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Theorem 2.9 (Cauchy Interal Formula (CIF) for a disk). Let D = D(a, r) and let f : D → C be
holomorphic. Then for any ρ with 0 < ρ < r and any w ∈ D(a, ρ), we have that

f(w) =
1

2πi

∫
∂D(a,ρ)

f(z)

z − w
dz

In particular (taking w = a)

f(a) =
1

2πi

∫
∂D(a,ρ)

f(z)

z − a
f(z) dz =

∫ 1

0

f(a+ ρe2πit) dt

Proof. Fix w ∈ D(a, ρ) and define h : D → C by

h(z) =

{
f(z)−f(w)

z−w z 6= w

f ′(w)z = w

Then h is continuous on D and holomorphic in D\{w}, so by “Convex Cauchy” (corollary 2.8)∫
∂D(a,ρ)

h(z) dz = 0

substituting for h, we get

f(w)

∫
∂D(a,ρ)

dz

z − w
=

∫
∂D(a,ρ)

f(z) dz

z − w

Now we just have to show that
∫
partialD(a,ρ)

1
z−w dz = 2πi. To do this, note that

1

z − w
=

1

z − a+ a− w
=

1

(z − a)(1− w−a
z−a )

=

∞∑
j=0

(w − a)j

(z − a)j+1

where the convergence is uniform for z ∈ ∂D(a, ρ) by the WeierstrassM -test (since |(w−az−a )j | =
( |w−a|ρ )j = Mj and

∑
Mj <∞). Therefore, by the above fact, we can interchange summation

and integration to get∫
∂D(a,ρ)

dz

z − w
=

∞∑
j=0

(w − a)j
∫
∂D(a,ρ)

1

(z − a)j+1
dz

Now for j ≥ 1, the function 1/(z − a)j+1 has an anti-derivative (= − 1
j(z−a)j ) in a neighbour-

hood of ∂D(a, ρ), so by FTC, all integrals on the right for j ≥ 1 are zero. For j = 0, by
direct computation

∫
∂D(a,ρ)

1
z−a dz = 2πi. So

∫
∂D(a,ρ)

1
z−w dz = 2πi, and the proof of CIF is

complete.
Taking w = a in CIF, get f(a) = 1

2πi

∫
∂D(a,ρ)

f(z)
z−a dz/ By direct computation using the

parametrisation t 7→ a+ ρe2πit, t ∈ [0, 1], this gives f(a) =
∫ 1

0
f(a+ ρe2πit) dt

Remark. The result f(a) =
∫ 1

0
f(a + ρe2πit) dt is called the mean value property for holomorphic

functions
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For the proof above, we used the following fact:
if γ : [a, b] → C is a curve and (fn) is a sequence of continuous complex functions on image(γ)
converging uniformly to a function f on image(γ) then

∫
γ
fn(z) dz →

∫
γ
f(z) dz. This is true because∣∣∣∣∫

γ

fn(z) dz −
∫
γ

f(z) dz

∣∣∣∣ =

∣∣∣∣∫
γ

(fn(z)− f(z)) dz

∣∣∣∣
≤ sup
z∈image(γ)

|fn(z)− f(z)|length(γ)

Theorem 2.10 (Liouville’s Theorem). If C → C is entire (i.e. holomorphic everywhere on C), and
bounded (i.e. |f(z)| ≤ K for some fixed K ≥ 0 and all z ∈ C), then f is constant. More generally if f
is entire with sub-linear growth (i.e. thre are constantsK ≥ 0 and α < 1 such that |f(z)| ≤ K(1+|z|α)
for all z ∈ C), then f is constant

Proof. For any given w ∈ C and any ρ > |w|, we have by CIF that f(w) = 1
2πi

∫
∂D(0,ρ)

f(z)
z−w dz

and
f(0) =

1

2πi

∫
∂D(0,ρ)

f(z)

z
dz

Thus

|f(w)− f(0)| = 1

2π

∣∣∣∣∣
∫
∂D(0,ρ)

wf(z)

z(z − w)
dz

∣∣∣∣∣
≤ |w|

2π
sup

z∈∂D(0,ρ)

|f(z)|
|z|||z| − |w||

length(∂D(0, ρ))

≤ |w|K(1 + ρα)

2πρ(ρ− |w|)
2πρ =

|w|K(1 + ρα)

ρ− |w|

Let ρ→∞ in this, keeping w fixed to conclude that f(w) = f(0)

Theorem 2.11 (Fundamental Theorem of Algebra). Every non-constant polynomial with complex
coefficients has a complex root

Proof. Let p(z) = anz
n+an−1z

n−1 + · · ·+a1z+a0 be a complex polynomial of degree n ≥ 1.
Then an 6= 0, and for z 6= 0 we can write

p(z) = zn
(
an +

an−1

z
+ · · ·+ a0

zn

)
So by the triangle inequality

|p(z)| ≥ |z|n
(
|an| −

|a1|
|z|
− · · · − |a0|

|z|n

)
This implies that we can find R > 0 such that |p(z)| ≥ 1 for |z| > R (in fact |p(z)| → ∞ as
|z| → ∞).
Now if p(z) 6= 0 for all z, then g(a) = 1/p(z) is entire. By the above, |g(z)| ≤ 1 for |z| > R.
By continuity of g, we also have that |g(z)| bounded from above on the compact set {|z| ≤ R}.
thus g is a bounded entire function, so by Liouville’s theorem g is constant. Since p is non-
constant, this is impossible. Thus p must have a zero
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Theorem 2.12 (Local maximimum modulus principle). If f : D(a,R) → C is holomorphic and if
|f(z)| ≤ |f(a)| for all z ∈ D(a,R), then f is constant

Proof. By the mean value property (Theorem 2.9), for any ρ ∈ (0, R) we hae that

f(a) =

∫ 1

0

f(a+ ρe2πit dt)

Therefore

|f(a)| =
∣∣∣∣∫ 1

0

f(a+ ρe2πit) dt

∣∣∣∣ ≤ sup
t∈[0,1]

|f(a+ ρe2πit)| ≤ |f(a)|

where the last inequality is by hypothesis. Thus both inequalities must be equality. Equality
in the first inequality implies, by proposition 2.1 that f(a + ρe2πit) = cp for some cp and all
t ∈ [0, 1]. But then by the first equality |cp| = |f(a)| for each ρ ∈ (0, R). Thus |f(a+ ρe2πit)|
is constant for all ρ ∈ (0, R) and t ∈ [0, 1], i.e. |f(z)| is constant on D(a,R). By the Cauchy-
Riemann equations, it follows that f is constant.

We have seen that power series are a way to construct holomorphic functions on disks.
The next theorem says that in fact every holomorphic function on a disk arises this way
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Theorem 2.13. Let f : D(a,R)→ C be holomorphic. Then f has a convergent series representation
on D(a,R). More precisely, there is a sequence of complex numbers c0, c1, c2 . . . such that

f(w) =

∞∑
n=0

cn(w − a)n

for all w ∈ D(a,R). The coefficient cn is given by

cn =
1

2πi

∫
∂D(a,ρ)

f(z)

(z − a)n+1
dz

for any ρ ∈ (0, R)

Proof. Let 0 < ρ < R. Then for any w ∈ D(a, ρ), we have that by CIF that

f(w) =
1

2πi

∫
∂D(a,ρ)

f(z)

z − w
dz

=
1

2πi

∫
∂D(a,ρ)

f(z)

∞∑
n=0

w − a
(z − a)n+1

dz

=

∞∑
n=0

(
1

2πi

∫
∂D(a,ρ)

f(z)

(z − a)n+1

)
dz(w − a)n

The last equality is true by uniform convergence of the series
∑∞
n=0

w−a
(z−a)n+1 for z ∈ ∂D(a, ρ).

Write (temporarily) cn(ρ) = 1
2πi

∫
∂D(a,ρ)

f(z)
(z−a)n+1 dz. Then we have shown that f(w) =∑∞

n=0 cn(ρ)(w − a)n+1 for w ∈ D(aρ).
So by Theorem 1.5, the function f (being given by a power series in D(a, ρ)) has derivatives
of all orders in D(a, ρ), and the coefficient cn(ρ) = f(n)(a)

n! . In particular, cn(ρ) is independent
of ρ, so call it cn. Since ρ ∈ (0, R) is arbitrary, we then have that

f(w) =

∞∑
n=0

cn(w − a)n

for all w ∈ D(amR), where

cn =
f (n)(a)

n!
=

1

2πi

∫
∂D(a,ρ)

f(z)/(z − a)n+1 dz

for any ρ ∈ (0, R)

Corollary 2.14 (Higher order differentiability). If f is holomorphic on an open set U ⊂ C, then f
has derivatives of all orders in U which are themselves holomorphic on U

Proof. f has a power series representation near every point, so its derivatives of all orders
exist everywhere This also of course means that the derivatives of all orders are holomorphic
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Remarks.
(i) Suppose D(a,R) ⊂ U . In the proof of Theorem 2.13, we have established the formula valid for

any ρ ∈ (0, R). This is a special case of a Cauchy integral formula for derivatives (Theorem
2.16 below)

(ii) Taking n = 1 in the above formula and estimating, we get

|f ′(a)| ≤ 1

ρ

(
sup

z∈∂D(a,ρ)

|f(z)|

)

This estimate can be thought of as a “localisation of Liouville’s Theorem,” and it directly implies
Liouville’s theorem: if f is entire and bounded, we can choose any a ∈ C, apply the estimate
and let ρ→∞ to conclude that f ′ = 0 on C and hence f is constant

(iii) A funtion f (real or complex) is said to be analytic at a point a if, in a neighbourhood of a,
f is given by a convergent power series about a. We know that f analytic at a =⇒ f has
derivatives of all orders near a.
Corollary 2.14 says that if f is a complex function, then: f is analytic at a ⇐⇒ f has complex
derivatives of all orders in a neighbourhood of a ⇐⇒ f is complex differentiable once in a
neighbourhood of a (i.e. f is holomorphic at a).
For real functions, existence of derivatives of all orders 6 =⇒ analyticity. (e.g. f : R → R
defined by f(x) = e−1/x2

for x 6= 0 and f(0) = 0; this function is differentiable to any order
and has f (n) = 0 for all n, so f is not given by a conergent power series near 0.) From now on
we use “analytic” and “holomorphic” interchangably.

(iv) Let U ⊂ C be open. We now have (from Corollary 2.14) that f = u + iv is holomorphic in
U ⇐⇒ u, v have continuous (first) partial derivatives in U (i.e. u, v are C1 in U) and u, v
satisfy the Cauchy-Riemann equations

(v) Corollary 2.14 provides C2 regularity of u and v if f = u + iv is holomorphic in U . So we
now have fully justified that real and imaginary parts of a holomorphic function are harmonic
functions

Corollary 2.14 (higher order differentiability) leads to the following very useful integral criteroion for
holomorphicity of a continuous function

Theorem 2.15 (Morera’s Theorem). Let U ⊂ C be open. If f : U → C is continuous and
∫
γ
f(z) = 0

for every clused curve γ in U , then f is holomorphic in U

Proof. By Theorem 2.5, f has an antiderivative F on U . Such F is of course holomorphic.
By corollar 3.14 then F is twice differentiatble in U . Since F ′ = f , this means that f is
holomorphic

Corollary 2.16. Let U ⊂ C be open. If U → C is continuous and holomrophic in U\S where S is a
finite set, then f is holomorphic in U

Proof. For each a ∈ U , there is r > 0 such that D = D(a, r) ⊂ U . Since D is convex, we can
apply Corollary 2.8 (convex Cauchy) to see that

∫
γ
f(z) dz = 0 for any closed curve in D. By

Morera’s theorem f is holomorphic in D.
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As a further application of Taylor series, we next show that zeros of a non-zero holomorphic function
are isolated points.
Suppose f is a non-zero holomorphic function on a disk D = D(a,R). Then by the Taylor series
theorem, there are constants cn such that

f(z) =

∞∑
n=0

cn(z − a)n for all z ∈ D

Since f 6≡ 0 in D, there is n such that cn 6= 0. Let m = min{n : cn 6= 0} Then

f(z) = (z − a)mg(z)

where g(z) =
∑∞
n=m cn(z − a)n−m. The function g is holomorphic on D since it is given by a power

series, and g(a) = cm 6= 0.

Notation. If m ≥ 1, we say that f has a zero of order m at z = a. From the formula cn = f (n)(a)/n!,
it is clear that m is the smallest of the positive integers n such that f (n)(a) 6= 0

Note. Recall that if S ⊂ C, then a point w ∈ S is an isolated point of S if there is r > 0 such that
S ∩D(w, r) = {w}

Theorem 2.17 (Principle of isolated zeros). Let f : D(a,R)→ C be holomrophic and not identically
zero. Then there is r with 0 < r ≤ R such that f(z) 6= 0 whenever 0 < |z − a| < r

Proof. If f(a) 6= 0, then by continuity of f we can fund r > 0 such that f(z) 6= 0 for
z ∈ D(a, r) and we are done.
If f(a) = 0, then by preceding discussion, there is an integer m ≥ 1 such that f(z) =
(z − a)mg(z) for z ∈ D(a,R), where g is holomorphic with g(a) 6= 0.
So again we find r > 0 such that g(z) 6= 0 for z ∈ D(a, r), and hence f(z) 6= 0 for z ∈
D(a, r)\{a}

Remarks.
(i) If f(a) = 0, the theorem says that {z : f(z) = 0}∩D(a, r) = {a}, i.e. that a is an isolated point

of the zero set (unless f ≡ 0). So e.g. there is no non-zero holomorphic function vanishing on
a line segment or a half-disk

(ii) This theorem allows us to csee that certain familar identities from real analysis hold for complex
functions: e.g. sin2 z + cos2 z = 1. g(z) = sin2 + cos2 z − 1 is holomorphic and vanishes on the
real line. So g ≡ 0 by the principle of isolated zeros

(iii) It is possible that the zero set may have an accumulation point on the boundary of the domain
of f . Consider for example f(z) = sin 1/z, z ∈ D(1, 1). If an = 1

2nπ , n = 1, 2, 3, . . . , then
an = 1

2nπ ∈ D(1, 1), f(an) = 0 and an → 0 ∈ ∂D(1, 1)
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2.1 Unique Continuation for analytic functions

Consider a holomrphic function f : D(a, r)→ C defined on a disk. We know by Taylor series theorem,
f is uniquely determined by its values in any arbitrary small disk D(a, ρ) ⊂ D(a, r) (because the
Taylor series coefficient cn = f(n)(a)

n! for n = 0, 1, 2, . . . )
This can be generalised to arbitrary domains

Theorem 2.18 (Unique Continuation for analytic functions). Let U, V be domains such that U ⊂ V .
If g1, g2 : V → C are analytic and g1 = g2 on U , then g1 = g2 on V .
Equivalently, if f : U → C is analytic, then there is at most one analytic function g : V → C such
that g = f on U

Proof. Let g1, g2 : V → C be analytic with g1|U = g2|U . Then h = g1−g2 : V → C is analytic
and h(z) = 0 on U . We want to show that h ≡ 0 on V .
Let

V0 = {z ∈ V : h is identically zero in some open disk D(z, r), r > 0}

and
V1 = {z ∈ V : h(n)(z)6=0 for some n≥0}

Let z ∈ V and suppose z 6∈ V0. Then for any disk D = D(z, r) ⊂ V , we have that h 6≡ 0 in D.
Hence by Taylor series, h(n)(z) 6= 0 for some n, so z ∈ V1. Thus V = V0 ∪ V1.
We also have that V0∩V1 = ∅. Moreover, V0 is open by definition, and V1 is open by continuity
of the derivatives h(n). Hence by connectedness of V , one of V0 or V1 must be empty. But
U ⊂ V0, so V1 = ∅. Hence V = V0. Therefore h = 0 on V

Notation. Given analytic f : U → C, f a function g as inthe theorem exists, it is called the analytic
continuation of f to V

Remark. The above proof relies on analyticity of h, i.e. the property of having a convergent Taylor
series about every point. So the theorem holds for real analytic functions aswell. E.g. for harmonic
functions (which are C2 to begin with, but are automatically real analytic by verture of “elliptic
regularity;” see Part II, Analysis of Functions)

Given a holomorphic function f on a disk, we can ask for the largest domain containing the disk to
which there is an analytic continuation of f .
In general this is a difficult quesiton to answer, but we can illustrate it with some not so difficult
examples

Example. f(z) =
∑∞
n=0 z

n. This sereis has r.o.c. = 1, os f is analytic in D(0, 1), and there is no
larger disk D(0, r) ⊃ D(0, 1), r > 1, such that g has ana alytic continuation to D(0, r). (If there is
then r.o.c. > 1.) However, since f(z) = 1/(1−z) for z ∈ D(0, 1), and the function 1/(1−z) is analytic
in C\{1}, f does have analytic continuation to a domain containing D(0, 1), namely to C\{1}.
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Example. f(z) =
∑∞
n=1

(−1)n+1zn

n . Again r.o.c. = 1, so f is analytic on D(0, 1). It has the analytic
continuation Log(1 + z) to the domain C\{x ∈ R : x ≤ −1 containing D(0, 1).
Analytic continuation to a larger domain need not always exist

Example. f(z) =
∑∞
n=0 z

n!. The power series has r.o.c = 1. So f is analytic in D(0, 1). But f has
no analytic continuation to any larger domain containing D(0, 1). See example sheet 2. (∂D(0, 1) is
called the “natural boundary” of f)

Note. The non-extendability pheneomenon illustrated by this example is not special to functions
defined by power series on disks; it is in fact unavoidable in the following sense: for any given domain
U ⊂ C, there is a holomorphic funtion f : U → C which has no analytic continuation to a domain
properly containing U . (See ES2)

Remark. The failure of analytic continuation in some cases can be explained as the result of loss of
“regularity” (i.e. boundedness, continuity, differentiability etc) on approach to the boundary of the
domain (as in third example above); however, this is not alyways the reason, and analytic continuation
may still fail even when the function is well behaved up to the boundary in terms of regularity. This
is quite remarkable at a first glace since holomrophicity after all is a regularity requirement. However,
it is not so surprising form a PDE theoretic point of view, i.e. if one looks at analytic continuation
as extendability of real functions as solutions ot a set of PDEs

Example. f(z) =
∑∞
n=0 e

2n/2z2n . This has r.o.c. = 1. The function and its derivatives of any order
are uniformly continuous on the closed disk D(0, 1) (as can be seen by checking uniform convergence
of the corresponding series on the closed disk). However, by the following theroem (which we don’t
prove), this has natural boundary ∂D(0, 1): Ostrowski-Hadamard gap theorem: Let (pn) be a se-
quence of positive integers suhc that pn+1 > (1 + δ)pn for all n and some fixed δ > 0. If (cn) is a
sequence of complex numbers such that the power series f(z) =

∑∞
n=0 cnz

pn has r.o.c. = 1, then
∂D(0, 1) is the natural boundary of f .

Recall: w ∈ S is a non-isolated point of S if for every ε > 0, S ∩ (D(w, ε)\{w}) 6= ∅

Corollary 2.19. Let f, g : U → C be holomorphic in a domain U . If the set S = {z ∈ U : f(z) =
g(z)} contains a non-isolated point, then f = g in U

Proof. Let h = f − g os that S = {z ∈ U : h(z) = 0}. Suppose S has a non-isolated point
w. If for some r > 0 the function h is not identically zero in D(w, r), then by the principle
of isolated zeros (Theorem 2.17) we can find ε > 0 s.t. f(z) 6= 0 whenever 0 < |z − w| < ε,
i.e. S ∩D(w, ε)\{w} = ∅. This directly contradicts the assumption that w is a non-isolated
point of S. Therefore h ≡ 0 on D(w, r) for every D(w, r) ⊂ U . Theorem 2.18 then says that
h ≡ 0 on U , i.e. f = g on U
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Corollary 2.20 (Global maximum principle). Let U be a bounded open set. Let U be the closure
of U , and suppsoe that f : U → C is a continuous function such that f is holomorphic in U . Then
|f | attains its maximum on ∂U = U\U

Proof. U is a closed, bounded subset of R2, and |f | is continuous on U . so there is a point
w ∈ U such that |f(w)| = maxz∈U |f(z)|. If w 6∈ U , then w ∈ ∂U and we are done. So suppose
that w ∈ U , and choose a disk D = D(w, r) ⊂ U . Since |f(z)| ≤ |f(w)| for all z ∈ D, it
follows from the local maximum principle (Theorem 2.12) that f = c on D for some constant
c. Hence by the identity principle (applied with g = c), f = c on the connected component
of U containing D. If this component is U ′, then by continuity we have that f = c on U ′. In
particular |f(z)| = |c| = |f(w)| for any z ∈ ∂U ′ ⊂ ∂U , so the conlusion holds again

Next we turn to the question of limits of sequences of holomorphic functions. We can consider limits
in various topologgies, but uniform limits are an important and natural first question to study.
We’d like to understand differentiablity of the limits, so we start by deriving a respresentation formula
for the derivatives
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Theorem 2.21 (CIF for derivatives and Cauchy estimates). (i) Let f : D(a,R)→ C be holomor-
phic. If f (n) denotes the n-th derivative, then for any ρ ∈ (0, R) and any w ∈ D(a, ρ), we have
that

f (n)(w) =
n!

2πi

∫
∂D(a,ρ)

f(z)

(z − w)n+1
dz

(ii)

sup
z∈D(a,R/2)

|f (k)(z)| ≤ C

Rk
sup

z∈D(a,R)

|f(z)|

where C = C(k) is a constant depending only on k; in fact we can take C = k!2k+1

Proof. (i) Case k = 0 is the usual CIF. For the case k = 1, consider g(z) = f(z)/(z − w).
This is holomorphic in D(a,R)\{w}, with derivative

g′(z) =
f ′(z)

z − w
− f(z)

(z − w)2

Since ∂D(a, ρ) ⊂ D(a,R)\{w},
∫
∂D(a,ρ)

g′(z) dz = 0 by FTC. So∫
∂D(a,ρ)

f ′(z)

z − w
dz =

∫
∂D(a,ρ)

f(z)

(z − w)2
dz

By the usual CIF formula applied to f ′

f ′(w) =
1

2πi

∫
∂D(a,ρ)

f ′(z)

z − w
dz

Combining these gives the result for k = 1.
For general k ≥ 2, use this idea plus induction on k. So fix k ≥ 2, and suppose the
formula is valid (i.e. f (k)(w) = k!

2πi

∫
∂D(a,ρ)

f(z)
(z−w)k+1 dz) for that k and all holomorphic

f : D(a,R)→ C (induction hypothesis)
Given any holomorphic f : D(a,R)→ C, consider g(z) = f(z)

(z−w)k+1 which has derivative

g′(z) =
f ′(z)

(z − w)k+1
− (k + 1)f(z)

(z − w)k+2

in D(a,R)\{w}. Since ∫
∂D(a,ρ)

g′(z) dz = 0

we get ∫
∂D(a,ρ)

f ′(z)

(z − w)k+1
dz = (k + 1)

∫
∂D(a,ρ)

f(z)

(z − w)k+2

But by the induction hypothesis with f ′ in place of f

f (k+1)(w) =
k!

2πi

∫
∂D(a,ρ)

f ′(z)

(z − w)k+1
dz

Combining the preceding two expressions,

f (k+1)(w) =
(k + 1)!

2πi

∫
∂D(a,ρ)

f(z)

(z − w)k+2
dz

This completes the induction step and the proof of part (i)
(ii) We may assume that supz∈D(a,R) |f(z)| < ∞ (else there is nothing to prove). Pick any

ρ ∈ (R/2, R). Then by part (i), for any w ∈ D(, R/2), we have that

|f (k)(w)| ≤ k!

2π

(
sup

z∈∂D(a,ρ)

|f(z)|
|z − w|k+1

)
length(∂D(a, ρ))

Since |z − w| ≥ ρ − R/2 for any z ∈ ∂D(a, ρ) and any w ∈ D(a,R/2), this implies
supw∈D(a,R/2) |f (k)(w)| ≤ k!ρ

(ρ−R/2)k+1 supz∈D(a,R) |f(z)|. Now let ρ→ R.
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Remarks.
(i) If we directly apply CIF to f (n) (can do this as f (n) is holomorphic), we get a formula for

f (n)(w) in terms of an integral involving f (n). The significance of Theorem 2.21 is that right
hand side involves only f , and not any of its derivatives

(ii) We have already seen the special case w = a of this formula in the proof of Taylor series (see
Remark 1 after Corollary 2.14)

2.2 Uniform Limits of Holomorphic Functions

Definition. Let U ⊂ C be open, and let fn : U → C be a sequence of functions. We say that
(fn) converges locally uniformly on U if for each a ∈ U , there is r > 0 such that (fn) converges
uniformly on D(a, r).

Example. fn(z) = zn. Then fn → 0 locally uniformly on D(0, 1), but not uniformly on D(0, 1). In
fact fn → 0 uniformly on any disk D(0, r) if r < 1. But supz∈D(0,1) |fn(z)| = 1 for each n

Prop 2.22. (fn) converges locally uniformly on U ⇐⇒ (fn) converges uniformly on each compact
subset K ⊂ U

Proof. “ =⇒ ”: A straightforward exercise using the definition of compactness (every open
cover has a finite subcover)
“ ⇐= ”: Clear since ∀a ∈ U, ∃ compact disk D(a, r) ⊂ U
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Theorem 2.23 (Uniform limit of holomorphic functions). Let U ⊂ C be open, and fn : U → C be
holomorphic for each 1, 2, 3, . . . . If (fn) converges locally uniformly on U ofr some function f : U → C,
then f is holomorphic. Moreover, f ′n → f ′ locally uniformly on U . (By applying this iteratively, we
get that for each k, f (k)

n → f (k) locally uniformly on U as n→∞)

Proof. The first part is an immediate consequence of convex Cauchy and Morera theorems.
Indeed, let a ∈ U , and choose r > 0 such that D(a, r) ⊂ U and fn → f uniformly on D(a, r).
Since fn are continuous, by a result from Analysis & Topology, we have that f is continuous
in D(a, r).
Let γ be a closed curve in D(a, r).
Since D(a, r) is convex, we have by “convex Cauchy”

∫
γ
fn(z) dz = 0.

Since fn → f uniformly on D(a, r), it follows that∫
γ

f(z) dz − lim
n→∞

∫
γ

dn(z) dz = 0

Since f is continuous and γ is an arbitrary closed curve, by Morera’s theorem (Theorem 2.15)
f is holomorphic in D(a, r). Since a is arbitrary f is holomrophic on U .
To see that f ′n → f ′ locally uniformly on U , let a ∈ U be arbitrary and let D(a, r) be as above
(so fn → f uniformly on D(a, r)). Apply the Cauchy estimate (Theorem 2.21 (ii)) with k = 1
(the first derivative), R = r and with fn − f in place of f . This gives

sup
z∈D(a,r/2)

|f ′n(z)− f ′(z)| ≤ 4

r
sup

z∈D(a,r)

|fn(z)− f(z)|

Since the RHS → 0 as n→∞, the claim follows.

Remark. This result spectacularly fails for real functions, as seen by the following theorem:
Weierstrass approximation theorem: Let f : [a, b]→ R be a continuous function on a compact interval
[a, b] ⊂ R. Then there is a sequence of polynomials (pn) converging uniformly to f on [a, b] (see Part
II, Linear Analysis).
There exist continuous nowhere differentiable functions f : [a, b] → R. (IB Analysis & Topology).
Applying the Weierstrass approximation theorem to such f shows that the uniform limit of real
analytic functions need not have a single point of differentiability
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Aside: links with the theory of harmonic functions:
Some of the key results we have proves for holomorphic functions have direct analogues for (real)
harmonic function son domains not just in R2 but in Rn for any n. For example:

• if u : Rn → R is a bounded harmonic function, then u is constant (Liouville’s theoerm)
• if u : D = D(a, r) → R is a C2 harmonic function on an open ball D(a, r) = {x ∈ Rn :
‖x − a‖ < r} and if u(x) ≤ u(a) (or u(x) ≥ u(a)) for all x ∈ D, then u is constant (local
maximum principle, also known as the strong maximum principle)

• global maximum principle also holds (also known as the weak maximum principle): a harmonic
function on a bounded open set U that is conitnuous on U attains its maximum (and its
minimum) on the boundary ∂U = U\U

• harmonic functions are real analytic
• unique continuation principle holds (follows from analyticity exactly as in the case of holomor-
phic functions)

• uniform limits of harmonic functions are harmonic
• derivative estimates hold: if u : D(a,R) ⊂ Rn → R is harmonic, then supD(a,R/2) |Dku| ≤
CR−k supD(a,R) |u|, C = C(n, k)

When n = 2, results for harmonic functions often can be deduced from the corresponding results for
holomorphic funtions.
For instance, for the Liouville theorem, given u a harmonic function on R2, find a function f : R2 → R
(the harmonic conjugate of u) such that f = u + iv is holomorphic on C [Warning: a harmonic
conjugate need not always exist; it does exist if the domain is simply connected (ex. sheet 3).] Then
g = ef is holomorphic with |g| = eu; so if u is bounded then g is bounded, so by Liouville for
holomorphic functions, g and hence f is constant. The proof of Liouville’s theorem for harmonic
functions in higher dimensions will have to be different.
Exercise (ex. sheet 3): give a Complex Analysis proof of the derivative estimate for harmonic u :
D(a,R) ⊂ R2 → R

3 Complex Integration: Part II

Recall the version of Cauchy’s theorem we have proved: if U is a star-shaped domain, then
∫
γ
f(z) dz =

0 for any holomorphic f : U → C and any closed curve in U (“convex Cauchy”).
There are domains for which the conclusion of Cauchy’s theorem fails for some holomorphic functions
and some closed curves (e.g. U = C\{0} then

∫
∂D(0,1)

dz
z = 2πi)

Next goal:
(i) For a given domain, characterise the closed curves in it for which Cauchy’s theorem holds for

all holomorphic functions
(ii) Use this characterisation to enlarge the class for which Cauchy’s theorem holds (for all holo-

morphic functions and all closed curves).
To do this, we will utilise a notion called the winding number of a closed curve about a point not in
its image. Informally, this is the number of times the curve γ “winds around” the point.
Let γ : [a, b]→ C be a closed (piecewise C1) curve, and let w 6∈ Image(γ).
For each t, there is r(t) > 0 and θ(t) ∈ R such that γ(t) = w + r(t)eiθt. This is true because
γ(t)− w 6= 0 for all t.
Then the function r : [a, b]→ R is given by r(t) = |γ(t)− w|, so it is uniquely determined (by γ and
w), and is piecewise C1
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Definition. If we have a continuous choice of θ : [a, b] → R such that γ(t) + r(t)eiθ(t), then define
the winding number or the index of γ about w as

l(γ;w) =
θ(b)− θ(a)

2π

Remark. l(γ;w) is an integer ((γ(a) = γ(b)), so r(a) = r(b) and ei(θ(b)−θ(a)) = 1; hence θ(b)−θ(a) =
2πn for some n ∈ Z.)
If θ1 : [a, b] → C is also a continuous function such that γ(t) = w + r(t)eiθ1(t) then, ei(θ(t)−θ1(t)) = 1

so θ1(t)−θ(t)
2π ∈ Z. Since θ1 − θ is continuous, it must be constant. Hence l(γ;w) is well defined,

independent of the (continuous) choice of θ
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Lemma 3.1. If w ∈ C, γ : [a, b] → C\{w} is a piecewise C1 curve, then there exists a piecewise C1

function θ : [a, b]→ R such that γ(t) = w+ r(t)eiθ(t) where r(t) = |γ(t)−w|. Moreover, if γ is closed,
then

l(γ;w) =
1

2πi

∫
γ

dz

z − w

Motivation: if γ is C1 and there is a C1 function θ such that γ(t) = w + r(t)eiθ(t), then
γ′(t) = (r′(t) + ir(t)θ′(t))eiθ(t) =

(
r′(t)
r(t) + iθ′(t)

)
r(t)eiθ(t) =

(
r′(t)
r(t) + iθ′(t)

)
(γ(t)−w). Hence

θ′(t) = Im
γ′(t)

γ(t)− w

and so

θ(t) = θ(a) + Im
∫ t

a

γ′(s)

γ(s)− w
ds

Proof. Let h(t) =
∫ t
a

γ′(s)
γ(s)−w ds. The integrand is bounded on [a, b], and is continuous except

at the finite number of points where γ′ may be discontinuous. So h : [a, b]→ C is continuous.
Moreover, h is differentiable with h′(t) = γ′(t)

γ(t)−w at each t where γ′ is continuous (so for all
t ∈ [a, b] except possibly for a finite set). This also shows that h is piecewise C1. Thus we
have an ode for (γ(t)− w) in the form

(γ(t)− w)′ − (γ(t)− w)h′(t) = 0

valid for t ∈ [a, b] except possibly for a finite set. This says that

d

dt

(
(γ(t)− w)e−h(t)

)
= γ′(t)e−h(t) − (γ(t)− w)e−h(t)h′(t) = 0

except possibly for finitely many t’s.
Hecne (γ(t)− w)e−h(t) is continuous, it must be constant, and equal to its value at t = a. So
γ(t) − w = (γ(a) − w)eh(t) = (γ(a) − w)eReh(t) · eiImh(t) = |γ(a) − w|eReh(t)ei(α+Imh(t)) for a
choice of α such that

eiα =
γ(a)− w
|γ(a)− w|

So just set θ(t) = α+ Imh(t).
To see the second part, not that

l(γ;w) =
θ(b)− θ(a)

2π
=

Im(h(b)− h(a))

2π
=

Imh(b)

2π

Since γ(t) − w = (γ(a) − w)eh(t) and γ(b) = γ(a), we have eh(b) = 1 so Reh(b) = 0 and
Imh(b) = h(b)/i. Hence

l(γ;w) =
1

2πi
h(b) =

1

2πi

∫ b

a

γ′(s)

γ′(s)− w
ds =

∫
γ

dz

z − w

Remark. The ‘continuous version’ of the first part of the lemma is also true. That is if γ is merely
continuous, then it is true that there is a continuous θ such that γ(t) = w + r(t)eiθ(t). We do not
need this, so will omit its proof. (The formula for l(γ;w) is not meaningful for continuous γ)
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Prop 3.2. If γ : [a, b] → C is a closed curve then the function w 7→ l(γ;w) is continuous on
C\Image(γ). Hence (since l(γ;w) is integer-valued), l(γ;w) is locally constant, or equivalently, con-
stant on each connected component of (the open set) C\Image(γ)

Proof. Exercise. Use the formula for l(γ;w). For a different proof, see ES2, Q11

Prop 3.3. (i) If γ : [a, b]→ D(z0, R) is a closed curve, then l(γ;w) = 0 for any w ∈ C\D(z0, R)
(ii) If γ : [a, b]→ C is a closed curve, then there is a unique unbounded connected component Ω of

C\γ([a, b]), and l(γ;w) = 0 for all w ∈ Ω

Proof. (i) If w ∈ C\D(z0, R), then the function z 7→ 1
z−w is holomorphic in D(z0, R). So

l(γ;w) = 1
2πi

∫
γ

dz
z−w = 0 by convex Cauchy.

(ii) Since γ([a, b]) ⊂ C is compact (by continuity of γ), there is a R > 0 such that γ([a, b]) ⊂
D(0, R). Since C\D(0, R) is a connected subset of C\γ([a, b]), there is a component Ω of
C\γ([a, b]) such that C\D(0, R) ⊂ Ω, so is contained in D(0, R) and hence is bounded.
So the unbounded component is unique. Since l(γ;w) is locally constant and zero on
C\D(0, R) (by (i)), it is zero on Ω.

We will soon need the following lemma for the proof of the general Cauchy theorem

Lemma 3.4. Let f : U → C be holomorphic, and define g : U × U → C by

g(z, w) =

{
f(z)−f(w)

z−w z 6= w

f ′(w) z = w

Then g is continuous. Moreover, if γ is a closed curve in U , then the function h(w) =
∫
γ
g(z, w) dz is

holomorphic on U

Proof. Continuity of g at (z, w) is clear if z 6= w. To check continuity at (a, a) ∈ U ×U , pick
any ε > 0 and choose δ > 0 such that D(a, δ) ⊂ U and |f ′(z) − f ′(a)| < ε for all z ∈ D(a, δ)
(possible by continuity of f ′).
Let z, w ∈ D(a, δ). If z = w, then

|g(z, w)− g(a, a)| = |f ′(z)− f ′(a)| < ε

If z 6= w, we have tz + (1− t)w ∈ D(a, δ) for t ∈ [0, 1] (by convexity of D(a, δ)). So

f(z)− f(w) =

∫ 1

0

d

dt
f(tz + (1− t)w) dt

=

∫ 1

0

f ′(tz + (1− z)w)(z − w) dt

= (z − w)

∫ 1

0

f ′(tz + (1− t)w) dt
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Proof (continued). Thus

|g(z, w)− g(a, a)| =
∣∣∣∣f(z)− f(w)

z − w
− f ′(a)

∣∣∣∣
= |
∫ 1

0

(f ′(tz + (1− t)w)− f ′(a)) dt

≤ sup
t∈[0,1]

|f ′(tz + (1− t)w)0f ′(a)| < ε

So we’ve shown that |(z, w)− (a, a) < δ =⇒ |g(z, w)− g(a, a)| < ε, i.e. g is continuous at (a, a).
To show h is holomorphic, first check h is continuous. So fix w0 ∈ U and suppose that wn →
w0. Choose δ > 0 such that D(w0, δ) ⊂ U . The function g is continuous on U × U , so it is
uniformly continuous on the compact subset Image(γ) × D(w0, δ) ⊂ U × U . This means that if we
let gn(z) = g(z, wn) and g0(z) = g(z, w0) for z ∈ Image(γ), then gn → g0 uniformly on Image(γ). So∫
γ
gn(z) dz →

∫
γ
g0(z) dz, i.e. h(wn)→ h(w0). Thus h is continuous.

Now use convex Cauchy and Morera theorems to check h is holomorphic on U . Specifically, given
w0 ∈ U choose disk D(w0, δ) ⊂ U . Suppose that γ is parametrized over [a, b] and let β : [c, d] →
D(w, δ) be any closed curve. Then h(w) =

∫
γ
g(z, w) dz =

∫ b
a
g(γ(t), w)γ′(t) dt, so,

∫
β

h(w) dw =

∫ d

c

(∫ b

a

g(γ(t), β(s))γ′(t)β′(s) dt

)
ds

=

∫ b

a

(∫ d

c

g(γ(t), β(s))γ′(t)β′(s) ds

)
dt

=

∫
γ

(∫
β

g(z, w) dw

)
dz

by Fubini’s theorem - Lemma 3.5 below - (applied on each C1 piece of the curves).
But by Theorem 2.16, for each fixed z ∈ U , the function w 7→ g(z, w) is holomorphic in D(w0, δ) (in
fact in U), because it is continuous in U and holomorphic except at one point (namely z). Hence
by convex Cauchy,

∫
β
g(z, w) dw = 0. So

∫
β
h(w) dw = 0 and hence by Morera’s theorem h is

holomorphic in D(w0, δ), and hence on U .

Lemma 3.5 (Fubini’s theorem, special case). If ϕ : [a, b]× [c, d]→ R is continuous, then the function
f1 : s 7→

∫ d
c
ϕ(s, t) dt is continuous on [a, b], the function f2 : t 7→

∫ b
a
ϕ(s, t) ds is continuous on [c, d],

and ∫ b

a

(∫ d

c

ϕ(s, t) dt

)
ds =

∫ d

c

(∫ b

a

ϕ(s, t) ds

)
dt

Proof. Since ϕ is continuous on the compact set [a, b]× [c, d], it is uniformly continuous. So
given ε > 0, there is δ > 0 such that |s1 − s2| < δ =⇒ |ϕ(s1, t)− ϕ(s2, t)| < ε ∀t ∈ [c, d] =⇒
|f1(s1) − f1(s2)| < (d − c)ε. i.e. f1 is continuous. Similarly, f2 is continuous. To see the
equality of the iterated integrals, note that since ϕ is uniformly continuous, it is the uniform
limit of a sequence of step functions, i.e. functions of the form g(x, y) =

∑N
j=1 αjχRj (x, y)

where αj are constants; Rj , j = 1, . . . N are sub-rectangles of the form Rj = [aj , bj) × [c, d),
and χRj such that

⋃
Rj is a (finite) partition of [a, b) × [c, d), and χRj is the characteristic

function of Rj (so χRj (x, y) = 1 if (x, y) ∈ Rj and χRj (x, y) = 0 if (x, y) 6∈ Rj). But for step
functions it is trivial to check the validity of the iterated integral.
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Definition. Let U ⊂ C be open. A closed curve γ : [a, b] → U is said to be homologous to zero
in U if I(γ;w) = 0 for every w ∈ C\U .

Moral. The concept of a closed curve being “homologous to zero” is precisely what is needed for the
definitive versions of Cauchy’s theorem and the CIF
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Theorem 3.6 (General Cauchy theorem and the Cauchy Integral Formula). Let U be an open subset
of C and f : U → C a holomorphic function. If γ is a closed curve in U homologous to zero in U then
(i)

I(γ;w)f(w) =
1

2πi

∫
γ

f(z)

z − w
dz for every w ∈ U\ Image(γ)

(ii) ∫
γ

f(z) dz = 0

Proof. Part (ii) follows from part (i) (remark (ii) below) so we only need to prove part (i).
Part (i) ⇐⇒

∫
γ
f(z)−f(w)

z−w dz = 0 ∀w ∈ U\ Image(γ)

⇐⇒
∫
γ

g(z, w) dz = 0 ∀w ∈ U\ Image(γ)

where g(z, w) = f(z)−f(w)
z−w for z 6= w. Extend g to U × U by setting g(w,w) = f ′(w), so

g(z, w) =

{
f(z)−f(w)

z−w z 6= w

f ′(w) z = w

Define h : U → C, h(w) =
∫
γ
g(z, w) dz. By Lemma 3.4, h is holomorphic on U . Our goal is

to show h = 0.
Key idea: show that

• h extends to all of C as a holomorphic function H and
• H(w)→ 0 as w →∞

Then by Liouville’s theorem H = 0.
To extend h to C, note that by the definition of γ being homologous to zero in U , we have
C\U ⊂ V = {w ∈ C\ Image(γ) : I(γ;w) = 0}. So C = U ∪V , and also V is open (since I(γ; ·)
is locally constant).
For w ∈ U ∩ V, h =

∫
γ
f(z)−f(w)

z−w dz =
∫
γ
f(z)
z−w dz (since

∫
γ

dz
z−w = 2πiI(γ;w) = 0 if w ∈ V ).

This says that on U ∩ V , the function h agrees with

h1 : V → C, h1(w) =

∫
γ

f(z)

z − w
dz

h1 is holomorphic on V .[In fact on C\ Image(γ); either use argument of Lemma 3.4 (working
in a disk about any point w0 ∈ C\ Image(γ) using Convex Cauchy + Morera), or use more ele-
mentary reasoning that h1 has a power series expansion about every point w0 ∈ C\ Image(γ),
by expanding 1

z−w appropriately. See also ES2 Q8]. Hence the function

H : C→ C, H(w) =

{
h(w) w ∈ U
h1(w) w ∈ V

is well defined and holomorphic.
Claim: H(w)→ 0 as |w| → ∞.
To see this, fix R > 0 such that Image(γ) ⊂ D(0, R) (possible since Image(γ) is compact). By
Prop 3.3, C\D(0, R) ⊂ V . If |w| > R,

|H(w)| = |h1(w)| =
∣∣∣∣∫
γ

f(z)

z − w
dz

∣∣∣∣ ≤ 1

|w| −R

(
sup

z∈Image(γ)

|f(z)|

)
length(γ)

which shows that H(w)→ 0 as |w| → ∞, as claimed.
So H is bounded (Since H is continuous, and by the claim |H(w)| ≤ 1 outside some closed
disk D(0, R1)). By Liouville’s theorem, H is constant, and by the claim H = 0. In particular
h = 0. 39



Remarks.
(i) Cauchy’s theorem says that if

∫
γ
f(z) dz = 0 for a special family of holomorphic functions on

U , namely for f(z) = 1
z−w , w ∈ C\U , then

∫
γ
f(z) dz = 0 for any holomorphic f : U → C

(ii) Parts (i) and (ii) of the theorem are equivalent statements.
“(i) =⇒ (ii)”: given any holomorphic f : U → C, pick any w ∈ U\ Image(γ) and apply (i) with
F (z) = (z − w)f(z) in place of f . Since F (w) = 0, it follows that

∫
γ
f(z) dz = 0

“(ii) =⇒ (i)”: if f : U → C is holomorphic, then for any w ∈ U , the function g(z) =
f(z)−f(w)

z−w , z 6= w, g(w) = f ′(w) is holomorphic in U . (Corollary 2.16; application of Convex
Cauchy + Morera). So (ii) =⇒

∫
γ
g(z) dz = 0, which says

1

2πi

∫
γ

f(z)

z − w
dz = I(γ;w)f(w)

whenever w 6∈ Image(γ)
(iii) Let γ be a closed curve in U . We have: γ being hologous in U is equivalent to Cauchy’s theorem

being valid (or to CIF being valid by remark (ii)) with respect to γ for all holomorphic f : U →
C. The non-trivial direction of this is Theorem 3.7 (γ homologous to zero =⇒

∫
γ
f(z) dz = 0);

the other direction is obvious: given any w ∈ C\U , we can just apply the Cauchy theorem to
the function f(z) = 1

z−w , which is holomorphic on U , to get I(γ;w) = 0.
So in fact have: γ homologous to zero in U ⇐⇒ (i) ⇐⇒ (ii)

Note. This proof actually gives a more general theorem involving several curves:

Corollary 3.7. Let U ⊂ C be open and γ1, γ2, . . . , γn be closed curves in U such that∑
+j = 1nI(γj ;w) = 0 for all w ∈ C\U . Then for any holomorphic f : U → C, we have
(i)

f(w)

n∑
j=1

I(γj ;w) =

n∑
j=1

1

2πi

∫
γj

f(z)

z − w
dz

for every w ∈ U\
⋃n
j=1 Image(γj) and

(ii)
∑n
j=1

∫
γj
f(z) dz = 0

Proof. For part (i), define g(z, w) as before, but take

V = {w ∈ C\
n⋃
j=1

Image(γj) :

n∑
j=1

I(γj ;w) = 0}

In the definitions of h and h1, use the sum of the integrals over γj . Then process as above.
Part (ii) follows from part (i) as before.
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Corollary 3.8. Let U ⊂ C be open and let β1, β2 be two closed curves in U such that I(β1, w) =
I(β2, w) for all w ∈ C\U . Then ∫

β1

f(z) dz =

∫
β2

f(z) dz

for any holomorphic function f : U → C

Proof. Apply Corollary 3.7(ii) with n = 2, γ1 = β1 and γ2 = (−β2) (the inverse path to β2),
noting that I((−β2);w) = −I(β2, w) for any w 6∈ Image(β2) = Image(−β2)

Concerning the question “for which closed curves in a given domain U is the Cauchy theorem valid”,
we have the definitive answer: curves that are homologous to zero in U . This condition may be
difficult to check.
There is a more restrictive but more geometric and easier-to-visualise condition, called being null-
homotopic, that implies being homologous to zero. We want to explore this next.

Definition. Let U ⊂ C be a domain, and let γ0, γ1 : [a, b] → U be closed curves. We say that γ0 is
homotopic to γ1 in U if there is a continuous map H : [0, 1]× [a, b]→ U suhc that

H(0, t) = γ0(t) ∀t ∈ [a, b]

H(1, t) = γ1(t) ∀t ∈ [a, b] and
H(s, a) = H(s, b)∀s ∈ [0, 1]

Such a map H is called a homotopy between γ0 and γ1.
For 0 ≤ s ≤ 1, if we let γs : [a, b] → U be defined by γs(t) = H(s, t) for t ∈ [a, b], then the above
conditions imply that {γs : s ∈ [0, 1]} is a family of continuous closed curves in U which “deforms γ0

to γ1 continuously without ever leaving U ”

Definition. A closed curve γ : [a, b]→ U is said to be null-homotopic in U if it is homotopic to a
constant curve in U , i.e. homotopic to a curve with image equal to one point in U
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Theorem 3.9. If γ0, γ1 : [a, b] → U are homotopic closed curves in U , then I(γ0;w) = I(γ1;w) for
every w ∈ C\U . In particular, if a closed curve γ in U is null-homotopic in U , then it is homologous
to zero in U

Proof. Let H : [0, 1] × [a, b] → U be a homoropy between γ0 and γ1. Since H is continuous
and [0, 1] × [a, b] is compact, K = H([0, 1] × [a, b]) is a compact subset of the open set U .
Therefore, there exists ε > 0 such that

|w −H(s, t)| > 2ε for each (s, t) ∈ [0, 1]× [a, b] (1)

Also H is uniformly continuous on [0, 1] × [a, b], so we can choose a positive integer n such
that

(s, t), (s′, t′) ∈ [0, 1]× [a, b], |s− s′|+ |t− t′| ≤ 1

n
=⇒ |H(s, t)−H(s′, t′)| < ε (2)

For k = 0, 1, 2, . . . , n, set Γk(t) = H( kn , t), a ≤ t ≤ b. Then Γk : [a, b] → U are closed
continuous curves, with Γ0 = γ0 and Γn = γ1.
By (1) and (2), for each k = 1, 2, . . . , n

|Γk−1(t)− Γk(t)| < |w − Γk−1(t)| for all t ∈ [a, b] (3)

If Γk are piecewise C1, then this implies I(Γk−1;w) = I(Γk;w) for k = 1, 2, . . . , n, and hence
I(γ0;w) = I(γ1;w) (by ES2 Q11, which says |γ(t) − γ̃(t)| < |w − γ(t)|∀t =⇒ I(γ;w) =
I(γ̃;w)).
Since H is only assumed to be continuous, Γk need not be piecewise C1. But this is easily
handled as we can approximate Γk by a polygonal closed curve. Specifically, take in place of
Γk the curve Γ̃k : [a, b]→ U defined by

Γ̃k(t) =

(
1− n(t− aj−1)

b− a

)
H(

k

n
, aj−1) +

n(t− aj−1)

b− a
H(

k

n
, aj)

for aj−1 ≤ t ≤ aj where aj = a+ (b−a)j
n for j = 0, 1, . . . , n. These still satisfy (3).

Remark. For both being null-homotopic and being homologous to zero, the domain matters. E.g.
the circle γ(t) = e2πit, t ∈ [0, 1]. This is null-homotopic (and homologous to zero) in C, but not
homologous to zero in U = C\{0} ( and hence not null-homotopic in U by the theorem)

Remark. As mentioned, theorem 3.9 gives that γ null-homotopic in U =⇒ γ is homologous to zero
in U . The converse of this is false, i.e. for a given closed curve γ in U ,

γ is homologous in U 6 =⇒ γ is null-homotopic in U

For instance, take U = C\{w1, w2} for distinct points w1, w2, and let U1 = U ∪ {w1} = C\{w2} and
U2 = U ∪ {w2} = C\{w1}. Consider a curve γ not null-homotopic in U , but null-homotpic in each of
the larger domains U1 and U2. (ES3: draw a picture of suhc a curve). Then γ is homologous to zero
in Uj , j = 1, 2 (Theorem 3.9). This means that I(γ;wj) = 0 for j = 1, 2, so γ is homologous to zero
in U
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Corollary 3.10. If γ0, γ1 : [a, b]→ U are homotopic closed curves in U , then
∫
γ0
f(z) dz =

∫
γ1
f(z) dz

for any holomorphic function f : U → C

Proof. Immediate from Theorem 3.9 (γ0, γ1 homotopic =⇒ I(γ0;w) = I(γ1;w) ∀w ∈ C\U)
and Corollary 3.8 (I(γ0;w) = I(γ1;w) ∀w ∈ C\U =⇒

∫
γ0
f(z) dz =

∫
γ1
f(z) dz)

Remark. Using Corollary 3.8 to prove Corollary 3.10 is actually overkill!
Direct proof of Corollary 3.10: With Γ̃k as above, the closed curve made up of Γ̃k

∣∣∣
[aj−1,aj ]

, the line

segment [Γ̃k−1(aj), Γ̃k(aj)], the curve (− Γ̃k

∣∣∣
[aj−1,aj ]

) and the line segment [Γ̃k(aj−1), Γ̃k−1(aj−1)] is

contained in the disk D(Γ̃k−1(aj−1), ε) ⊂ U ; apply convex Cauchy to this curve and sum over j to
get

∫
Γ̃k−1

f(z) dz =
∫

Γ̃k
f(z) dz. Similar reasoning also gives∫

Γ̃0

f(z) dz =

∫
γ0

f(z) dz

and ∫
Γ̃n

f(z) dz =

∫
γ1

f(z) dz

Definition. A domain U is said to be simply connected if every clused curve in U is null-homotopic
in U

Example. A star domain (in particular a convex domain) Ω is simply connected. (proof: there is
a ∈ Ω such that the line segment [a, z] ⊂ Ω for each z ∈ Ω. If γ : [a, b] → Ω is a closed curve, set
H(s, t) = (1 − s)a + sγ(T ) ∈ Ω ∈ [0, 1] × [a, b]. Then H(s, t) ∈ U , and H is a homotopy between γ
and the constant curve γ0(t) = a)

Theorem 3.11 (Cauchy’s theorem for simply connected domains). If U is simply connected, then∫
γ
f(z) dz = 0 for every holomorphic function f : U → C and every closed curve γ in U

Proof. Immediate from Corollary 3.10 (γ0, γ1 homotopic =⇒
∫
γ0
f(z) dz =

∫
γ1
f(z) dz) and

the fact that
∫
γ
f(z) dz = 0 if γ is a constant curve

Remark. The converse of Theorem 3.11 is also true (but is harder to prove). Thus:
U is simply connected ⇐⇒

∫
γ
f(z) dz = 0 for every closed curve in U and every holomorphic

function function f on U .
This should spark some surprise: one condition (simply connected) is topological, based only on
continuous deformation of curves in the domain. The other (validity of Cauchy thm) is analytic,
involving the behaviour of differential functions on the domain; these are equivalent!
The “ ⇐= ” direction of the above together with Theorem 3.6 (Cauchy for curves homologous to zero
in U) says that U is simply connected iff every closed curve in U is homologous to zero in U .
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Contras tthis to the Remark preceding Corollary 3.10: for a given closed curve γ in U ,
γ is homologours to zero in U 6 =⇒ γ is null-homotopic in U .
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4 Isolated Singularities, Laurent Series and the Residue Theorem

Moral. Let U be open, and γ be a closed curve in U homologous to zero in U . If f : U → C is
holomorphic then we have CIF:∫

γ

f(z)

z − a
dz = 2πiI(γ; a)f(A) for a ∈ U\ Image(γ)

We can look at this formula in the following way. It lets us compute
∫
γ
g(z) dz for a holomorphic

function g : U\{a} → C when γ does not pass through the “bad point a” (the singular point of g)
provided g satisfies a condition: (z − a)g(z) is the restriction to U\{a} of a holomorphic function
f : U → C. What if we drop this condition? i.e. how can we compute

∫
γ
g(z) dz for arbitrary

holomorphic g : U\{a} → C where a ∈ U and γ misses a? E.g. g(z) = e1/z, U = C, a = 0, γ =
∂D(0, 1)? (Note: zg(z) = ze1/z is not holomorphic. not even continous at z = 0.) More generally,
what about the case of several bad points, i.e.

∫
γ
g(z) dz for holomorphic g : U\{a1, . . . , ak} → C

where a1, . . . , ak ∈ U , with γ missing all aj? The answer is an important theorem (the Residue
Theorem), which we will prove. We first discuss types of behaviour of a holomorphic function g on
U\{a} on approach to a

4.1 Isolated Singularities

Definition. Let U ⊂ C be open. If a ∈ U and f : U\{a} → C is holomorphic, then we say f has an
isolated singularity at a (or a is an isolated singularity of f)

Definition. An isolated singularity a of f is a removable singularity of f if f can be defined at
a so that the extended function is holomorphic on U
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Prop 4.1 (characterising removable singularities). Suppose U is open, a ∈ U and f : U\{a} → C is
holomorphic. Then the following are equivalent:
(i) f has a removable singularity at a
(ii) limz→a f(z) exists in C
(iii) There is a disk D(a, ε) ⊂ U such that |f(z)| is bounded in D(a, ε)\{a}
(iv) limz→a(z − a)f(z) = 0

Proof. The implication (i) =⇒ (ii) is clear: if a is a reovable singularity of f , then by
definition there is holomorphic g : U → C such that f(z) = g(z) ∀z ∈ U\{a}. Then
limz→a f(z) = limz→a g(z) = g(a) ∈ C. Also the implications (ii) =⇒ (iii) and (iii) =⇒ (iv)
are clear.
To check (iv) =⇒ (i), consider h : U → C defined by

h(z) =

{
(z − a)2f(z) z 6= a

0 z = a

We have limz→a
h(z)−h(a)

z−a = limz→a(z − a)f(z) = 0 where the second equality holds by as-
sumption. So h is differentiable at a with h′(a) = 0. Since h is clearly differentiable in U\{a},
it follows that h is holomorphic in U . Since h(a) = h′(a) = 0, Taylor series theorem gives r > 0
and holomorphic g : D(a, r) → C such that h(z) = (z − a)2g(z) for z ∈ D(a, r). Comparing
this to the definition of h, we have that f(z) = g(z) for z ∈ D(a, r)\{a}. Define f(a) = g(a).
then f is differentiable at a (with f ′(a) = g′(a)). So a is a removable singularity of f

Example. f(z) = ez−1
z . Then f is holomorphic in C\{0}, and limz→0 zf(z) = 0. So z = 0 is a

removable singularity by the proposition. We also see directly, by the Taylow series of ez at z = 0,
that f(z) =

∑∞
k=1

zk−1

k! for z 6= 0; the series on the right defines a holomorphic function on all of C

Remark (Removable singularities of harmonic functions). If u : D(0, 1)\{0} → R is a C2 harmonic
function, when can we say that z = 0 is a removable singularity, i.e. that u extends to z = 0 as a
harmonic function (equivalently, u has an extension of class C2)?
One way to answer this is to relate it to holomorphic functions. However, unlike with some of the
parallels we’ve already seen between harmonic and holomorphic functions (e.g. Liouville’s theorem),
here one needs to proceed with care. The naive idea of finding a harmonic conjugate (i.e. harmonic
v on U = D(0, 1)\{0} such that f(z) = u(z) + iv(z) is holomorphic in U) does not work; the problem
is that U is not simply connected, so a conjugate function need not exist a priori.
Still, the answer has a close parallel: if limz→0 u(z) exists (i.e. if u extends continuously to z = 0),
then the extended function is C2 and harmonic. More generally, if u is bounded near z = 0, then
there is a harmonic extension. We can also ask, in parallel with the holomorphic case, what if
limz→0 |z||u(z)| = 0? (Exercise: give complex analysis proofs; see ex. sheet 3.)

By Prop 4.1, if f has a non-removable singularity at a, then f is not bounded in D(a, r)\{a} for any
r > 0. We analyse this case next.

Definition. If a ∈ U is an isolated singularity of f , then a is a pole of f if limz→a |f(z)| =∞
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Example. f(z) = (z − a)−k for a constant integer k ≥ 1. This has a pole at a

Definition. If a ∈ U is an isolated singularity of f , then a is an essential singularity of f if a is
neither a removable singularity nor a pole

Remark. a is an essential singularity ⇐⇒ limz→a |f(z)| does not exist in [0,∞]. This follows from
Proposition 3.1 and the definition of pole.

Example. f(z) = e1/z. We have |f(iy)| = 1 for all y ∈ R\{0}, while limx→0+ f(x) =∞. So z = 0 is
an essential singularity of f

Prop 4.2 (characterising poles). Let f : U\{a} → C be holomorphic. The following are equivalent:
(i) f has a pole at a
(ii) There is ε > 0 and holomorphic h : D(a, ε) → C with h(a) = 0 and h(z) 6= 0 for z 6= a such

that f(z) = 1
h(z) for z ∈ D(a, ε)\{a}

(iii) ∃ a unique integer k ≥ 1 and a unique holomorphic g : U → C with g(a) 6= 9 such that
f(z) = (z − a)−kg(z) for z ∈ U\{a}

Proof. (i) =⇒ (ii): Since limz→a |f(z)| = ∞, there is ε > 0 such that 0 < |z − a| < ε =⇒
|f(z)| ≥ 1. Hence 1/f(z) is holomorphic and bounded in D(a, ε)\{a}. By Prop 4.1, 1/f has a
removable singularity at a, i.e. there is holomorphic h : D(a, ε)→ C such that 1/f(z) = h(z),
or equivalently f(z) = 1/h(z) for z ∈ D(a, ε)\{a}. Since |f(z)| → ∞ as z → a, we also have
h(a) = 0.
(ii) =⇒ (iii): Let ε and h be as in (ii). By Taylor series, there is an integer k ≥ 1 and a
holomorphic h1 : D(a, ε)→ C with h1(z) 6= 0 ∀z ∈ D(a, ε) such that h(z) = (z − a)kh1(z). If
we let g1 = 1/h1, then g1 is holomorphic in D(a, ε), g1 6= 0 in D(a, ε) and

f(z) = (z − a)−kg1(z) in D(a, ε)\{a} (*)

Define g : U → C by h1(z) for z ∈ D(a, ε) and g(z) = (z − a)kf(z) for z ∈ U\{a}.
By (*), the definitions agree on D(a, ε)\{a}, so g is well-defined and holomorphic in U , and
g(a) = g1(a) 6= 0. This proves the existence of an integer k ≥ 1 and a holomorphic g : U → C
with g(a) 6= 0 such that

f(z) = (z − a)−kg(z) for all z ∈ U\{a}

To prove uniqueness of k and g, suppose there is an integer k̃ ≥ 1 and a holomorphic function
g̃ : U → C with g̃(a) 6= 0 such that f(z) = (z−a)−k̃g̃(z) for all z ∈ U\{a}. Then we must have
g(z) = (z − a)k̃−kg̃(z) for z ∈ U{a}. Since g, g̃ are holomorphic with g(a) 6= 0 and g̃(a) 6= 0,
this can only be true if k̃ = k, in which case we also have g̃ = g (first on U\{a}, and hence
also at z = a by continuity).
(iii) =⇒ (i): this is clear
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Remark. The implication (i) =⇒ (iii) says, remarkably, the following: there is no holomorphic
function on a punctured disk
f : D(a,R)\{a} → C such that |f(z)| → ∞ as z → a “at the rate of a negative, non-integer power of
|z − a|,” i.e. with c|z − a|−s ≤ |f(z)| ≤ C|z − a|−s for some constants s ∈ (0,∞)\N, c > 0, C > 0
and all z ∈ D(a,R)\{a})

Notation. (i) If f has a pole at z = a, then the unique positive integer k given by Proposition
4.3 is the order of the pole at a. If k = 1, then f has a simple pole at a.

(ii) Let U be open and S ⊂ U be a discrete subset of U (which means that all points of S are isolated
points). If f : U\S → C is holomorphic and each a ∈ S is either a removable singularity or
a pole of f , then f is said to be a meromorphic function on U . (This includes the possibility
S = ∅, in which case f is holomorphic.)

Note. If f : U\{a} → C is holomorphic and the singularity z = a is a pole of f , we can regard f as
a continuous mapping f : U → Ĉ = C ∪ {∞}, where Ĉ is the Riemann sphere, by setting f(a) =∞.
As such f is in fact holomorphic on U . [Holomorphicity of the extended map near the pole a follows
from (i) in a a punctured disk about a, 1/f has the form (z − a)k/g(z) for some holomorphic g with
g(z) 6= 0 near a; and (ii) any function h defined in a neighbourhood of ∞ ∈ Ĉ is holomorphic, by
definition, if the function h̃(z) = h(1/z) if z 6= 0, h̃(0) = h(∞) is holomorphic near 0. These two facts
make h ◦ f = h̃ ◦ (1/f) holomorphic near a whenever h is a holomorphic function in a neighbourhood
of ∞ in Ĉ]
This way, any meromorphic function f : U\S → C becomes a holomorphic function f : U → Ĉ.
Thus, from this geometric point of view, poles are not singularityies at all, and the only genuine
isolated singularityies are the essential singularities. (Note that the above reasoning cannot be carried
out if the singularity is essential). See Part II, Riemann Surfaces for more on this.

Behaviour near an essential singularity: Suppose z = a is an essential singularity of holomorphic
f : U\{a} → C. Then there is a sequence of points an ∈ U\{a}, an → a such that f(an)→∞ (else
z = a would be a removable singularity by Proposition 4.1), and there is another sequence of points
bn ∈ U\{a}, bn → a such that (f(bn)) is bounded (else z = a would be a pole). In fact much more
can be said:

Theorem 4.3 (Casorati–Weierstrass theorem). If f : U\{a} → C is holomorphic and a ∈ U is an
essential singularity of f , then for any ε > 0, the set f(D(a, ε)\{a}) is dense in C

Proof. ES2

Even more remarkably, we have the following (more difficult) result:

Theorem 4.4 (Picard’s Theorem). If f : U\{a} → C is holomorphic and a ∈ U is an essetnial
singularity of f , then there is w ∈ C such that for any ε > 0, C\{w} ⊂ f(D(aε)\{a}). i.e. in any
neighbourhood D(a, ε)\{a}, f attains all possible complex numbers except possibly one

Proof. Omitted
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Note. Picard’s theorem is optimal: the function f(z) = e1/z does not attain w = 0

4.2 Laurent Series

Moral. If z = a is a removable singularity of f , then for some R > 0, f is given by a power
series

∑∞
n=0 cn(z − a)n (the Taylor series of the holomorphic extension of f to D(a,R)) for all z ∈

D(a,R)\{a}. If a is a pole of some order k ≥ 1, then for some R > 0, f(z) = (z − a)−kg(z) for some
holomorphic g : D(a,R)→ C and all z ∈ D(a,R)\{a}, so using the Taylor series of g, we get a series
of the form f(z) =

∑∞
n=−k cn(z − a)n, z ∈ D(a,R)\{a}. When a is an essential singularity, we still

have a series expansion, now of the form f(z) =
∑∞
n=−∞ cn(z − a)n. In fact we have more generally

the following
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Theorem 4.5 (Laurent expansion). Let f be holomorphic on an annulus A = {z ∈ C : r < |z− a| <
R} where 0 ≤ r < R ≤ ∞. Then:
(i) f has a unique convergent series expansion

f(z) =

∞∑
z=−∞

cn(z − a)n(≡
∞∑
n=1

c−n(z − a)−n +

∞∑
n=0

cn(z − a)n)

where cn are constants
(ii) For any ρ ∈ (r,R), the coefficient cn is given by

cn =
1

2πi

∫
∂D(a,ρ)

f(z)

(z − a)n+1
dz

(iii) If r < ρ′ ≤ ρ < R, then the series in (i) converges uniformly (i.e. the two series separate;y
converge uniformly) on the set {z ∈ C : ρ′ ≤ |z − a| ≤ ρ}

Proof. Fix w ∈ A and consider the function

g(z) =

{
f(z)−f(w)

z−w z 6= w

f ′(w) z = w

Then g is continuous in A and clearly holomorphic in A\{w} and hence (by Theorem 2.16)
holomorphic in A. Choose ρ1, ρ2 such that r < ρ1 < |w − a| < ρ2 < R. The two positively
oriented curves ∂D(a, ρ1) and ∂D(a, ρ2) (i.e. the curves γ1, γ2 : [0, 1] → C given by γj =
a+ ρje

2πit, j = 1, 2) are homotopic in A. So by Corollary 3.10∫
∂D(a,ρ1)

g(z) dz =

∫
∂D(a,ρ2)

g(z) dz

Substituting for g, this gives∫
∂D(a,ρ1)

f(z)

z − w
dz − 2πiI(∂D(a, ρ1);w)f(w) =

∫
∂D(a,ρ2)

f(z)

z − w
dz − 2πiI(∂D(a, ρ2);w)f(w)

Since I(∂D(a, ρ1);w) = 0 (Prop. 3.3) and I(∂D(a, ρ2);w) = I(∂D(a, ρ2); a) = 1 (since a,w
are in the same component of C\∂D(a, ρ2)), this says

f(w) =
1

2πi

∫
∂D(a,ρ2)

f(z)

z − w
dz − 1

2πi

∫
∂D(a,ρ1)

f(z)

z − w
dz

For the first integral, use the expansion

1

z − w
=

1

z − a− (w − a)
=

∞∑
n=0

(w − a)n

(z − a)n+1

where the series converges uniformly over z ∈ ∂D(a, ρ2).
For the second integral, use

1

z − w
=

1

z − a− (w − a)
= − 1

(w − a)(1− z−a
w−a )

= −
∞∑
n=0

(z − a)n

(w − a)n+1

where the series converges uniformly over z ∈ ∂D(a, ρ1).
Substituting these and switching integration and summation (OK by uniform convergence),
get

f(w) =

∞∑
n=0

cn(w − a)n −
∞∑
m=1

dm(w − a)−m
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Proof (continued). where

cn =
1

2πi

∫
∂D(a,ρ2)

f(z)

(z − a)n+1
for n ≥ 0 and

dm =
1

2πi

∫
∂D(a,ρ1)

f(z)(z − a)m−1 dz for m ≥ 1

Writing dn = c−n for n ≥ 1, we have (i) (existence).
For (ii) and (iii), suppose there are constants cn such that

f(z) =

∞∑
−∞

cn(z − a)n (*)

for z ∈ A, and lt r < ρ′ ≤ ρ < R. Then the power series
∑∞
n=0 cn(z − a)n converges for z ∈ A, so

it must have r.o.c. ≥ R and converge uniformly for |z − a| ≤ ρ. also, the series
∑∞
n=1 c−n(z − a)−n

converges on A. Putting ζ = (z − a)−1, this means that the power series
∑∞
n=1 c−nζ

n converges for
1/R < |ζ| < 1/r, so it must have r.o.c. ≥ 1/r and converge unfirmly for |ζ| ≤ 1/ρ′. thus hte series∑∞
n=1 c−n(z − a)−n converges uniformly for |z − a| ≥ ρ′. So (*) converges uniformly in the common

region ρ′ ≤ |z − a| ≤ ρ. Hence∫
∂D(a,ρ)

f(z)

(z − a)m+1
dz =

∞∑
n=−∞

cn

∫
∂D(a,ρ)

(z − a)n−m−1 dz

By the FTC, the only non-zero integral on the right occurs when n−m− 1 = −1, i.e. when n = m.
Computing this integral gives

cm =
1

2πi

∫
∂D(a,ρ)

f(z)

(z − a)m+1
dz

for any ρ ∈ (r,R). This formula also implies the uniqueness of the coefficients cn so that the series
expansion is valid.

Remark. If f is the restriction to A of a holomorphic function g on the full disk D(a,R), then by
the formula in part (ii), we have for any negative integer n = −m, m ≥ 1, the coefficient

c0m =

∫
∂D(a,ρ)

g(z)(z − a)m−1 dz

is zero by Cauchy’s theorem.
So in this case, Laurent series of f is the Taylor series of g restricted to A. The new content of the
theorem is when f has no holomorphic extension to D(a, r)
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Remark. The proof of the theorem shows that if f : A = D(a,R)\D(a, r)→ C is holomorphic, then
there is a holomorphic function f1 : D(a,R)→ C and a holomorphic function f2 : C→ D(a, r)→ C
such that

f = f1 + f2 on A

Indeed, with cn as in the theorem, we can take f1(z) =
∑∞
n=0 cn(z − a)n and f2(z) =

∑∞
n=1 c−n(z −

a)−n. This decomposition is not unique (since we can also take f! + g in place of f1 and f2 − g in
place of f2 for any entire function g). If we also require f2(z)→ 0 as z →∞ then the decomposition
is unique (ES3). (For the above choice of f2, we do have f2(z)→ 0 as z →∞ by uniform convergence
of
∑∞
n=1 c−n(z − a)−n in {|z − a| ≥ ρ′} for any ρ′ > r).

Question: in the above proof, what if A is a domain (bounded or unbounded) whose boundary is two
disjoint non-concentric circles? (ES3)

4.2.1 Isolated Singularities and Laurent Coefficients

Suppose f : D(a,R)\{a} → C is holomorphic (so z = a is an isolated singularity of f). Then by the
Laurent series (taken with r = 0), we have a unique set of complex numbers cn so that

f(z) =

∞∑
n=−∞

cn(z − a)n for z ∈ D(a,R)\{a}

Classification of the singularity z = a (as removable, pole or essential) has evidently the following
formulation in terms of the coefficients cn:
(i) cn = 0 ∀n < 0 ⇐⇒ f(z) =

∑∞
n=0 cn(z − a)n ≡ g(z) ∀z ∈ D(a,R)\{a}, and g is holomorphic

on D(a,R) ⇐⇒ z = a is a removable singularity. (This uses uniqueness of Laurent series,
Taylor series of g and the definition of removable singularity.)

(ii) c−k 6= 0 for some k ≥ 1, and c−n = 0 for all n ≥ k + 1 ⇐⇒

f(z) =
c−k

(z − a)k
+

c−k+1

(z − a)k−1
+ · · ·+ c−1

(z − a)
+

∞∑
n=0

cn(z − a)n ∀z ∈ D(a,R)\{a} and c−k 6= 0

⇐⇒ f(z) = (z − a)−kg(z) ∀z ∈ D(a,R)\{a}

where g is holomorphic on D(a,R) with g(a) = c−k 6= 0 (This uses Taylor series of g and
uniqueness of Laurent series.)

⇐⇒ z = a is a pole of order k (by Proposition 4.2)

(iii) cn 6= 0 for infinitely many n < 0 ⇐⇒ z = a is an essential singularity. (This follows from (i)
and (ii))

Notation. Let f : D(a,R)\{a} → C be holomorphic. The coefficient c−1 of the Laurent series of f
in D(a,R)\{a} is called the residue of f at a denoted Resf (a).
fP ≡

∑∞
n=1 c−n(z − a)−n is called the principal part of f at a
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Recall (see remarks following the proof of the Laurent series theorem) that the principal part fP
is holomorphic on C\{a}, with the series defining fP converging uniformly on compact subsets of
C\{a}. By the Laurent series, f = fP + h on D(a,R)\{a}, with h holomorphic on D(a,R). Let γ be
a closed curve in D(a,R), with a 6∈ Image(γ). Then

∫
γ
h(z) dz = 0 by Cauchy’s theorem, and hence∫

γ
f(z) dz =

∫
γ
fP (z) dz = 2πiI(γ; a)Res(a), where the last equality is by uniform convergence of the

series for fP and the FTC.
This reasoning can easily be extended to the case of more than one isolated singularity, and leads to
the following imporant result:

4.3 Residue Theorem

Theorem 4.6 (Residue Theorem). Let U be an open set {a1, α2, . . . , ak} ⊂ U a finite set, and
f : U\{a1, a2, . . . , ak} → C be holomorphic. If γ is any closed curve in U homologous to zer oin U ,
and if aj 6∈ Image(γ) for each j, then

1

2πi

∫
γ

f(z) dz =

k∑
j=1

I(γ; aj)Resf (aj)

Proof. Let f (j)
P =

∑∞
n=1 c

(j)
−n(z − aj)−n be the principal part of f at aj . Then f (j)

P is holo-
morphic in C\{aj}, and hence in C\{a1, a2, . . . , ak}. So h ≡ f − (f

(1)
P + f

(2)
P + · · · + f

(k)
P ) is

holomorphic in U\{a1, a2, . . . , ak}. Fix a j. The function f − f (j)
P has a removable singularity

at z = aj . For each l 6= j, f (l)
p is holomorphic at aj . Hence h has a removable singularity at

aj . This is true for every j, so h extends to all of U as a holomorphic function and hence by
Cauchy’s theorem,

∫
γ
h(z) dz = 0. So

1

2πi

∫
γ

f(z) dz =

k∑
j=1

∫
γ

f
(j)
P dz

But
1

2πi

∫
γ

f
(j)
P (z) dz = I(γ; aj)Res(aj)

(by term-wise integration of the series for f (j)
P , which converges uniformly on compact subsets

of C\{aj})
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Notes. Useful facts for residue calculation:
(i) If f has a simple pole at z = a, then Resf (a) = limz→a(z − a)f(z). (Near a, we have f(z) =

(z − a)−1g(z) with g holomorphic and g(a) 6= 0, so by Taylor series of g, Resf (a) = g(a))
(ii) If f has a pole of order k at a, then near a we have f(z) = (z − a)−kg(z) with g holomorphic

and g(a) 6= 0. In this case

Resf (a) = coefficient of (z − a)k−1 of the Taylor series of g at a =
g(k−1)(a)

(k − 1)!

(iii) If f = g/h with g, h holomorphic at z = a, g(a) 6= 0, and h has a simple zero (i.e. a zero of
order 1) at z = a, then

Resf (a) =
g(a)

h′(a)

This follows from (i):

Resf (a) = lim
z→a

(z − a)g(z)

h(z)
= lim
z→a

g(z)
h(z)−h(a)

z−a

=
g(a)

h′(a)

Remark. Note that this generalises the CIF (Theorem 3.6)

Two useful lemmas for computing
∫
γ
f(z) dz:

• Integrals on large semi-circles
• Integrals on small circular arcs
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Lemma 4.7 (Jordan’s lemma). Let f be a continuous complex-values function on the semi-circle
C+
R = Imageγ+

R in the upper-half plae, where R > 0, and γ+
R (t) = Reit, 0 ≤ t ≤ π. Then for α > 0∣∣∣∣∣

∫
γ+
R

f(z)eiαz dz

∣∣∣∣∣ ≤ π

α
sup

z∈C+R+

|f(z)|

In particular, if f is continuous in H+\D(0, R0) for some R0 > 0 where H+ = {z : Im(z) ≥ 0}, and
if supz∈C+

R
|f(z)| → 0 as R→∞, then for each α > 0,∫

γ+
R

f(z)eiαz dz → 0 as R→∞

Proof. Letting MR = supz∈C+
R
|f(z)|, we have∣∣∣∣∣

∫
γ+
R

f(z)eiαz dz

∣∣∣∣∣ =

∣∣∣∣∫ π

0

f(Reit)e−αR sin t+iαR cos tiReit dt

∣∣∣∣
≤ RMR

∫ π

0

e−αR sin t dt

= RMR

(∫ π/2

0

e−αR sin t dt+

∫ π

π/2

e−αR sin t dt

)

= 2RMR

∫ π/2

0

e−αR sin t dt

≤ 2RMR

∫ π/2

0

e−2αRt/π dt

=
πMR

α
(1− e−2αR)

≤ πMR

α

where we have used the fact that for t ∈ (0, π/2], ϕ(t) ≡ sin t
t ≥

2
π (since ϕ(π/2) = 2/π and

ϕ′(t)) ≤ 0 on [0, π/2]

Remark. A similar statement holds for α < 0 and for the semi-circle C−R =Image(γ−R ) in the lower
half-plane, where γ−R (t) = −Reit for R > 0 and 0 ≤ t ≤ π
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Lemma 4.8. Let f be holomorphic in D(a,R)\{a} with a simple pole at z = a. If γε : [α, β]→ C is
the circular arc γε(t) = a+ εeit, then

lim
ε→0+

∫
γe

f(z) dz = (β − α)iResf (a)

Proof. Write f(z) = c
z−a + g(z) with g holomorphic in D(a,R) and c = Resf (a). Then∣∣∣∣∫

γε

g(z) dz

∣∣∣∣ =

∣∣∣∣∣
∫ β

α

g(a+ εeit)εieit dt

∣∣∣∣∣
≤ ε(β − α) sup

t∈[α,β]

|g(a+ εeit)| → 0

as ε→ 0+. and ∫
γε

c

z − a
dz = (β − α)ic

by direct calculation. The claim follows.
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Examples. (i)
∫∞

0
sin x
x dx. Let f(z) = eiz/z. Consider the integral

∫
γ
f(z) dz over the curve

γ = γR+γ1+γε+γ2, where γR(t) = Reit for 0 ≤ t ≤ π, γ1(t) = t for −R ≤ t ≤ −ε, γε(t) = εe−it

for −π ≤ t ≤ 0 and γ2(t) = t for ε ≤ t ≤ R (Draw a picture!)
By Jordan’s lemma,

∫
γR
f(z) dz → 0 as R→∞.

f has a simple pole at z = 0 with Resf (0) = limz→0 zf(z) = 1. So by Lemma 4.7,
∫
−γε f(z) dz →

πi as ε→ 0+.
Now f is holomorphic in U = C\{0} and the curve γ is homologous to zer oin U (either convince
yourself that γ is null-homotopic in U or use the fact that C\U = {0}, and I(γ; 0) = 0 since 0
is in the unbounded component of C\ Image(γ)). Hence by Cauchy’s theorem

∫
γ
f(z) dz = 0.

So
∫
γR
f(z) dz +

∫ ε
−R

eit

t dt +
∫
γε
f(z) dz +

∫ R
e

eit

t dt = 0. Combining the two integrals on the
real acis after a simple change of variables, this gives∫ R

ε

eit − e−it

t
dt+

∫
γR

f(z) dz +

∫
γε

f(z) dz = 0

Letting R→∞, ε→ 0+, this gives ∫ ∞
0

sin t

t
dt =

π

2

(ii) A proof of
∑
n≥1

1
n2 = π2

6 .
For this, consider the function

f(z) =
π cot(πz)

z2
=
π cos(πz)

z2 sin(πz)

which is holomorphic in C except for simple poles at each point in Z\{0}, and an order 3 pole
at 0. Near n ∈ Z\{0}, we have f(z) = g(z)/h(z), where g(n) 6= 0 and h has a simple zero at n
and so

Resf (n) =
g(n)

h′(n)
=

1

n2

To compute Resf (0), use:

cot(z) = cos(z) · [sin(z)]−1 =

(
1− z2

2
+O(z4)

)
·
(
z − z3

6
+O(z5)

)
=

1

z
− z

3
+O(z2)

which gives
π cot(πz)

z2
=

1

z3
− π2

3z
+ . . .

and so Resf (0) = 0π2/3. Now for N ∈ N, take γN to be the positively oriented boundary of the
square defined by the lines x = ±(N + 1/2) and y = ±i(N + 1/2). Then by the residue theorem∫

γN

f(z) dz = 2πi

[
2

(
N∑
n=1

1

n2

)
− π2

3

]
(*)
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Examples (continued). (ii) But since length(γN ) = 4(2N + 1), we have∣∣∣∣∫
γN

f(z) dz

∣∣∣∣ ≤ sup
γN

∣∣∣∣π cot(πz)

z2

∣∣∣∣ · 4(2N + 1)

≤ sup
γN

| cot(πz)| · 4(2N + 1)π

(N + 1/2)2

=
16π

(2N + 1)
· sup
γN

| cot(πz)|

On γN , cot(πz) is bounded independently on N (exercise), and hence
∫
γN
f(z) dz → 0 as

N →∞. Letting N →∞ in (*), we get

∞∑
n=1

1

n2
=
π2

6

5 The Argument Principle, Local Degree and Rouché’s Theorem

Prop 5.1. If f has a zero (pole) of order k ≥ 1 at z = a, then f ′/f has a simple pole at z = a with
residue Resf ′/f (a) = k (−k resp.)

Proof. If z = a is a zero of order k, then there si a disk D(a, r) such that f(z) = (z− a)kg(z)
for z ∈ D(a, r), where g : D(a, r)→ C is holomorphic with g(z) 6= 0 ∀z ∈ D(a, r). So

f ′(z) = k(z − a)k−1g(z) + (z − a)kg′(z)

and
f ′(z)

f(z)
=

k

z − a
+
g′(z)

g(z)
∀z ∈ D(a, r)\{a}

Since g′/g is holomorphic in D(a, r), the claim follows from this.
In the case of a pole of order k, use the same argument and the fact that f(z) = (z−a)−kg(z)
in D(a, r)\{a}.

Notation. Denote by ordf (a), the order of the zero or pole of f at z = a
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Theorem 5.2 (Argument Principle). Let f be a meromorphic function on a domain U with finitely
many zeros a1, a2, . . . .ak and finitely many poles b1, b2, . . . , bl. If γ is a closed curve in U homologous
to zero in U , and if ai, bj 6∈ Image(γ) for all i, j then

1

2πi

∫
γ

f ′(z)

f(z)
=

k∑
i=1

I(γ; ai)ordf (ai)−
l∑

j=1

I(γ; bj)ordf (bj)

Proof. Apply the residue theorem to g = f ′/f . IF z0 ∈ U is not a pole of f , then f , and
also f ′, is holomorphic near z0. If additionally z0 not a zero of f , this makes g holomorphic
near z0. So the set of singularities of g is precisely {a1, . . . , ak} ∪ {b1, . . . , bl}. By Prop 5.1,
Resg(ai) = ordf (ai) for each i and Resg(bj) = −ordf (bj) for each j.

Remark. Let f, γ be as in the theorem, and let Γ(t) = f(γ(t)). Then Γ is a closed curve with
Image(Γ) ⊂ C\{0} (since no zeros or poles of f on Image(γ) so f(γ(t)) 6= 0,∞); moreover,

I(Γ; 0) =
1

2πi

∫
γ

f ′(z)

f(z)
dz

(Proof: If [a, b] is the domain of γ. I(Γ; 0) = 1
2πi

∫
Γ

dz
z = 1

2πi

∫ b
a

Γ′(t)
Γ(t) = 1

2πi

∫ b
a
f ′(γ(t))γ′(t)
f(γ(t)) dt =

1
2πi

∫
γ
f ′(z)
f(z) dz.) Thus 1

2πi
f ′(z)
f(z) dz is the number of times the image curve f ◦ γ winds around 0 as we

move along γ.

Definition. Let Ω be a domain and let γ be a closed curve in C. We say that γ bounds Ω if
I(γ;w) = 1 ∀w ∈ Ω and I(γ;w) = 0 ∀w ∈ C\(Ω ∪ Image(γ))

Example. ∂D(0, 1) bounds D(0, 1) but it does not bound D(0, 1)\{0}

Remark. If γ bounds a domain Ω, then
• Ω is bounded [proof: choose a disk D(a,R) such that Image(γ) ⊂ D(a,R). Then I(γ;w) = 0
for w ∈ C\D(a,R). Since I(γ;w) = 1 for each w ∈ Ω, we must have Ω ⊂ D(a,R)]

• The topological boundary ∂Ω ⊂Image(γ). (Exercise to check); it need not be true that ∂Ω =
Image(γ).
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There is a large class of closed curves that bound domains, namely, simple closed curved, i.e. curves
[a, b] → C with γ(a) = γ(b) such that γ(t1) = γ(t2) =⇒ t1 = t2 or {t1, t2} = {a, b} (so no self-
intersections)..
That a simple closed curve bounds a domain is a highly non-trivial fact guaranteed by the Jordan
curve theorem: if γ is a simple closed curve, then C\Image(γ) consists precisely of two connected
components, one unbounded and the other bounded, and moreover, γ (or −γ) bounds the bounded
component (in the sense defined above), and Image(γ) is the boundary of each of these two com-
ponenets. [Thus if Ω1 is the bounded component (the “inside” of γ) and Ω2 is the unbounded
component (the “outside”), then, after possibly changing the orientation of γ, we have I(γ;w) = 1
for w ∈ Ω1 and I(γ;w) = 0 for w ∈ Ω2; this last assertion is easy: for any disk D(a,R) ⊃ Image(γ),
I(γ;w) = 0 ∀w ∈ C\D(a,R).]
For a domain bounded by a closed curve, the argument principle says tha following

Corollary 5.3 (argument principle for domains bounded by closed curves). Let γ be a closed curve
bounding a domain Ω, and let f be meromorphic in an open set U with Ω∪ Image(γ) ⊂ U . Suppose
that f has no zeros or poles on Image(γ), and precisely N zeros and P poles in Ω, both counted with
multiplicity. Then N and P are finite, and

N − P =
1

2πi

∫
γ

f ′(z)

f(z)
dz = I(Γ; 0)

where Γ = f ◦ γ is the image of γ under f

Proof. Since f is meromorphic in U , its singularities form a discrete set S ⊂ U consisting of
poles or removable singularities. Since γ bounds Ω, we have that Ω is bounded and hence Ω is
compact; also, Ω ⊂ Ω ∪ Image(γ) ⊂ U . If Ω ∩ S is infinite, then (by compactness of Ω) there
is a point w ∈ Ω and distinct points wj ∈ Ω∩S such that wj → w. If w 6∈ S, then f is defined
and holomorphic near w which is impossible since wj ∈ S and wj → w. So w ∈ S, but this is
impossible since S is a discrete set. So Ω ∩ S is finite. In particular P is finite.
If f has infinitely many zeros in Ω, then (again by compactness of Ω) there is z ∈ Ω ⊂ U
and distinct zeros zj ∈ Ω such that zj → z. Then either z ∈ U\S or (if z ∈ S), z must be
a removable singularity (since otherwise z would be a pole and hence |f(ζ)| → ∞ as ζ → z
which is impossible since zj → z and f(zj) = 0.) In either case, by the principle of isolated
zeros, f must be identically zero in D(z, ρ)\{z} for some ρ > 0. Since f is holomorphic in
Ω\S and Ω\S is connected (since Ω ∩ S is finite and Ω is connected), it follows from the
unique continuation principle that f ≡ 0 in Ω. But this is not possible since f has no zeros in
Image(γ). Hence N must be finite.
By the defininition of “γ bounding Ω”, we have that I(γ;w) = 1 for every w ∈ Ω and I(γ;w) = 0
for every w ∈ C\(Ω ∪ Image(γ)). In particular, this makes γ homologous to zer oin U . The
final conclusions now follows from Theorem 5.2 and the remark after its proof (which says
that Γ is a closed curve in C\{0} and I(Γ; 0) = 1

2πi

∫
γ
f ′(z)
f(z) dz)

Note. “zeros counted with multiplicity” means each zero is counted as many times as its order; same
for poles

An important consequence of this is the local degree theorem below:
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Definition. Let f be a holomorphic function on a disk D(a,R) and assume that f is non-constant.
The local degree of f at a, denoted degf (a), is the order of the zero of f(z)− f(a) at z = a. This
is a (finite) positive integer.
E.g. f(z) = (z − 1)4 + 1 has degf (1) = 4

Theorem 5.4 (Local degree theorem). Le f : D(a,R)→ C be holomorphic and non-constant, with
degf (a) = d. There exists r0 > 0 with the following property: for any r ∈ (0, r0], there is ε > 0 such
that for every w with 0 < |f(a) − w| < ε, the equation f(z) = w has precisely d distinct roots in
D(a, r)\{a}

Proof. Let g(z) = f(z) − f(a). Since g is non-constant g′ 6≡ 0 in D(a,R). Apply the
principle of isolated zeros (to g′ and g to get r0 ∈ (0, R) such that g(z) 6= 0 and g′(z) 6= 0 for
z ∈ D(a, r0)\{a}.
Claim: the conclusion holds with this r0.
To see this, let r ∈ (0, r0], and for r ∈ [0, 1], let γ(t) = a + re2πit and Γ(t) = g(γ(t)). Note
that Image(Γ) is compact and hence cosed in C, and 0 6∈ Image(Γ) (since g 6= 0 on ∂D(a, r)).
So there is ε > 0 such that D(0, ε) ⊂ C\ Image(Γ). This is our choice of ε (corresponding to
r).
To check that it works, fix any w with 0 < |w − f(a)| < ε. Then w − f(a) ∈ D(0, ε) ⊂
C\ Image(Γ). Since z 7→ I(Γ; z) is locally constant, it is constant on D(0, ε)m so we have
I(Γ;w − f(a)) = I(Γ; 0).
By direct calculation

I(Γ;w − f(a)) =
1

2πi

g′(γ(t))γ′(t)

g(γ(t))− (w − f(a))
dt =

1

2πi

∫
∂D(a,r)

f ′(z)

f(z)− w
dz

By the argument principle (Cor. 5.3), I(Γ; 0) = d (I(Γ; 0) is the number of zeros of g in
D(a, r) counted with multiplicity; the zero of g at z = a has order d, and it is the only zero in
D(a, r)). So we have

1

2πi

∫
∂D(a,r)

f ′(z)

f(z)− w
dz = d

By Cor 5.3 again, this implies that the number of zeros of f(z) − w in D(a, r) is d. None of
these zeros are equal to a since w 6= f(a). Since f ′(z) = g′(z) 6= 0 in D(a, r)\{a}, it follows
(from the Taylor series) that these zeros are simple (i.e. have order 1). Thus f(z)− w has d
distinct zeros in D(a, r)\{a}

Corollary 5.5 (Open mapping theorem). A non-constant holomorphic function maps open sets to
opens

Proof. Let f : U → C be holomorphic and non-constant, and let V ⊂ U be open. Let
b ∈ f(V ). Then b = f(a) for some a ∈ V . Since V is open, there is r > 0 such thatD(a, r) ⊂ V .
By Theorem 5.4, if r is sufficiently small, there is ε > 0 such that w ∈ D(f(a), ε)\{f(a)} =⇒
w = f(z) for some z ∈ D(a, r)\{a}, i.e. D(f(a), ε)\{f(a)} ⊂ f(D(a, r)\{a}). This implies
that

D(b, ε) = D(f(a), ε) ⊂ f(D(a, r)) ⊂ f(V )

Thus for every b ∈ f(V ) there is a disk D(b, ε) ⊂ f(V ), so f(V ) is open

61



Theorem 5.6 (Rouché’s theorem). Let γ be a closed curve bounding a domain Ω, and let f, g be
holomorphic functions on an open set U containing Ω∪ Image(γ). If |f(z)− g(z)| < |g(z)| for every
z ∈ Image(γ), then f and g have the same number of zeros in Ω, counted with multiplicity

Proof. The strict inequality |f − g| < |g| on Image(γ) implies that f and g are never zero
on Image(γ), and hence never zero in some open set V containing Image(γ). So h = f/g is
holomorphic and never zero in V .
In particular, g is not identically zero in Ω, and hence the zeros of g in Ω ∪ V are isolated.
So h is heromorphic in Ω ∪ V , and h has no zeros or poles on Image(γ). Also f and g have
finitely many zeros in Ω.
Now |h(z)−1| < 1 for z ∈ Image(γ). This means that the curve Γ = h◦γ has image contained
in D(1, 1). since 0 is outside this disk, I(Γ; 0) = 0, and so by Corollary 5.3,∑

w∈P
ordh(w) =

∑
w∈Z

ordh(w)

where P and Z denote the sets of distinct poles and zeros of h respectively, and the sums are
finite. Now P = P1 ∪ P2 where

P1 = {w ∈ Ω : g(w) = 0, f(w) 6= 0}
P2 = {w ∈ Ω : g(w) = f(w) = 0, ordg(w) > ordf (w)}

and Z = Z ∪ Z2m where

Z1 = {w ∈ Ω : f(w) = 0, g(w) 6= 0}
Z2 = {w ∈ Ω : f(w) = g(w) = 0, ordf (w) > ordg(w)}

So by the above∑
w∈P1

ordg(w) +
∑
w∈P2

(ordg(w)− ordf (w)) =
∑
w∈Z1

ordf (w) +
∑
w∈Z2

(ordf (w)− ordg(w))

or equivalently∑
w∈P1

ordg(w) +
∑
w∈P2

ordg(w) +
∑
w∈Z2

ordg(w) =
∑
w∈Z1

ordf (w) +
∑
w∈Z2

ordf (w) +
∑
w∈P2

ordf (w)

adding
∑
w∈R ordg(w) to the left-hand side of this and the equal number

∑
w∈R ordf (w) to

the right hand side, where R = {w ∈ Ω : f(w) = g(w) = 0, ordf (w) = ordg(w)}, we conclude∑
{w∈Ω:g(w)=0

ordg(w) =
∑

{w∈Ω:f(w)=0

ordf (w)
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Example. z4 + 6z + 3 has 3 roots (counted with multiplicity) in {1 < |z| < 2}

Proof. Let f(z) = z4 + 6z + 3. On |z| = 2, we have |z|4 = 16 and |6z + 3| ≤ 6|z| + 3 = 15
so |z|4 > |6z + 3|. So by Rouché’s theorem, f has the same number of roots inside {|z| < 2}
as z4 (counting with multiplicity). Thus all roots of f(z) = z4 + 6z + 3 lie inside {|z| < 2}
(we know that this is all the roots as f is polynomial). On |z| = 1, we have |6z| = 6 and
|z4 + 3| ≤ |z|4 + 3 = 4, so |6z| > |z4 + 3|, and again by Rouché’s theorem, we see that f has
jsut one root inside {|z| < 1} as 6z has one roots there, from our strinct inequalities, no roots
lie on |z| = 2 or |z| = 1. So 3 roots of f must lie in {z ∈ C : 1 < |z| < 2}
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Example. For 0 < α < 1, sho that
∫∞

0
x−α

1+x dx = π
sinπα .

Let g(z) = z−α be the brainch of z−α defined by g(z) = e−αl(z) where l(z) is the (holomorphic)
branch of logarithm on U = C\{x ∈ R : x ≥ 0} given by l(z) = log |z| + i arg(z), with arg(z) the
argument of z in (0, 2π). Let f(z) = g(z)/(1 + z). Then

f(z) =
|z|−αe−iα arg(z)

1 + z

and f is holomorphic in U\{−1} iwth z = −1 a simple pole with Resf (−1) = limz→−1(z + 1)f(z) =
e−iπα.
Choose ε,R such that 0 < ε < 1 < R and θ > 0 small. Let γ be positively oriented “key-hole contour”
determined by the two circular arcs γR, γε : [θ, 2π − θ] → U, γR(t) = Reit, γε(t) = εei(2π−t), and
the two line segments γ1, γ2 : [ε,R] → U, γ1(t) = teiθ, γ2(t) = tei(2π−θ). The domain U is simply
connected (in fact star-shaped) and hence γ is homologous to zero in U . And I(γ;−1) = 1 (directly
from the definitions of γ and winding number). By the residue theorem,∫

γ

f(z) dz = 2πie6−iπα

Now ∫
γ1

f(z) dz =

∫ R

ε

f(teiθ)eiθ dt−
∫ R

ε

t−αei(1−α)θ

1 + teiθ
dt

and ∫
γ2

f(z) dz =

∫ R

ε

f(tei(2π−θ))ei(2π−θ) dt =

∫ R

ε

t−αei(1−α)(2π−θ)

1 + tei(2π−θ)
dt

As θ → 0+, the integrands (on the right) converge uniformly on [ε,R] to t−α

1+t and
e−2iπαt−α

1+t respectively
(exercise to check). So

lim
θ→0+

(∫
γ1

f(z) dz +

∫
(−γ2)

f(z) dz

)
= (1− 2−i2πα)

∫ R

ε

t−α

1 + t
dt

|f(z)| ≤ R−α

R−1 ∀z ∈ Image(γR), and |f(z)| ≤ ε−α

1−ε ∀z ∈ Image(γε). So∣∣∣∣∫
γR

f(z) dz +

∫
γε

f(z) dz

∣∣∣∣ ≤ 2πR1−α

R− 1
+

2πε1−α

1− ε

(Note: RHS is independent of θ, even though γR, γε depend on θ). Since∫
γ

f(z) dz − (

∫
γ1

f(z) dz +

∫
(−γ2)

f(z) dz) =

∫
γR

f(z) dz +

∫
γε

f(z) dz

we then have ∣∣∣∣∣2πie−iπα − (

∫
γ1

f(z) dz +

∫
(−γ2)

f(z) dz)

∣∣∣∣∣ ≤ 2πR1−α

R− 1
+

2πε1−α

1− ε

First letting θ → 0+ in this, and then letting ε→ 0+ and R→∞, we conclude

(1− e−2πiα

∫ ∞
0

t−α

1 + t
dt = 2πie−iπα)

so ∫ ∞
0

t−α

1 + t
=

π

sinπα
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