Differential Equations

Hasan Baig

Michaelmas 2020

Contents

1	Diff	erentiation error er	3
	1.1	L'Hopital's Rule	3
	1.2	Partial Differentiation	3
		1.2.1 Chain rule	3
	1.3	Polar Co-ordinates Transform	4
	1.4		4
	1.5		5
	1.6	Differentiating Integrals	5
2	Firs	st order DEs	5
	2.1	Definitions	5
	2.2	Linear	5
	2.3		5
	2.4	Perturbation analysis	6
			7
	TT* :		_
3	_	her order DEs	7
	3.1		7
	3.2		7
	3.3		7
	3.4		8
	3.5	1	8
	3.6		8
		1 0	8
		3.6.2 Transients	
	3.7	Discrete Equations	
	3.8	Method of Frobenius	2
4	Mu	ltivariate Functions: Applications 1	3
	4.1	Directional Derivative	3
	4.2	Taylor Series for Multivariate Functions	
	4.3	Stationary Points	.3
		4.3.1 Classifying Stationary points	
5	Syst	tems of ODEs	4
•	5.1	Systems of Linear ODEs	
	5.2	Phase Portraits	
	5.2	Non linear system of ODEs	
6	PDI	${f Es}$	6
9		1st Order Wave Equation 1	

6.2	2 nd Order Wave Equation	16
6.3	Diffusion Equation	1

Differentiation 1

L'Hopital's Rule

Theorem (L'Hopital). If:

$$\lim_{x \to x_0} f(x) = f(x_0) = 0$$

$$\lim_{x \to x_0} g(x) = g(x_0) = 0$$

Then:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

(if $g'(x) \neq 0$)

Proof. Consider f(x) expanded to $f'(x_0)$ in Taylor series.

Partial Differentiation 1.2

Notes.

- Shorthand Notation:

 $\frac{\partial f}{\partial x} = f_x$ $\frac{\partial^2 f}{\partial x \partial y} = f_{xy}$

1.2.1 Chain rule

Equation (Chain rule). Given f(x, y)

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$

if x and y vary with t

Proof. Consider definition of derivative/ partial derivative

Equation. if f(x, y(x)),

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}x} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x}$$
$$= \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}x}$$

Proof. Consider t = x in previous eqn

Equation (Infinitesimal form).

$$\mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y$$

Equation. Integrating along path:

$$\int df = \int \frac{\partial f}{\partial x} dx + \int \frac{\partial f}{\partial y} dy$$

Note. Visualising path going along x to x_2 then up y to y_2

$$f(x_2, y_2) - f(x_1, y_1) = \int_{x_1}^{x_2} \frac{\partial f}{\partial x} dx + \int_{y_1}^{y_2} \frac{\partial f}{\partial y} dy$$

1.3 Polar Co-ordinates Transform

Equation. $x = r \cos \theta$, $y = r \sin \theta$

$$\begin{split} \frac{\partial f}{\partial r}\Big|_{\theta} &= \left.\frac{\partial f}{\partial x}\right|_{y} \left.\frac{\partial x}{\partial r}\right|_{\theta} + \left.\frac{\partial f}{\partial y}\right|_{x} \left.\frac{\partial y}{\partial r}\right|_{\theta} \\ \Longrightarrow \left.\frac{\partial f}{\partial r}\right|_{\theta} &= \left.\frac{\partial f}{\partial x}\right|_{y} \cos\theta + \left.\frac{\partial f}{\partial y}\right|_{x} \sin\theta \end{split}$$

Note. $f_r = f_x \cos \theta + f_y \sin \theta$ Similarly, $f_\theta = r(f_y \cos \theta - f_x \sin \theta)$

1.4 Surfaces

Equation. if f(x, y, z(x, y)) = c: We have:

$$df = \frac{\partial f}{\partial x} \Big|_{y,z} dx + \frac{\partial f}{\partial y} \Big|_{z,x} dy + \frac{\partial f}{\partial z} \Big|_{x,y} dz$$

$$\implies \frac{\partial z}{\partial x} \Big|_{y} = -\frac{\frac{\partial f}{\partial x} \Big|_{y,z}}{\frac{\partial f}{\partial z} \Big|_{x,y}}$$

By taking partial wrt x holding y on both sides and rearranging.

Note. LHS at top becomes zero as the function on x, y is constant. The function on x, y, z independent takes value at any point in 3-D space. So it can be a bit bruh at first sight lol.

1.5 Reciprocal Rule

Equation. Reciprocal rule holds as long as same variables held fixed:

$$\left. \frac{\partial r}{\partial x} \right|_{y} = \frac{1}{\left. \frac{\partial x}{\partial r} \right|_{y}}$$

1.6 Differentiating Integrals

Equation.

$$I(\alpha) = \int_{a(\alpha)}^{b(\alpha)} f(x; \alpha) dx$$

$$\implies \frac{dI}{d\alpha} = \int_{a(\alpha)}^{b(\alpha)} \frac{\partial f}{\partial \alpha} dx + f(b; \alpha) \frac{db}{d\alpha} - f(a; \alpha) \frac{da}{d\alpha}$$

Proof. Consider definition of derivative applied to α .

Note. If $b(\alpha)$ or $a(\alpha)$ constant then $\frac{db}{d\alpha}$ or $\frac{da}{d\alpha}$ respectively is 0 so can remove term.

2 First order DEs

2.1 Definitions

Definition. ODE: DE involving function of one variable

Definition. PDE: DE involving functions of more than one variable (and partial derivative)

Definition. Linear: dependent variable appears linearly e.g. $x^2 \frac{dy}{dx} + \sin(x)y = e^x$

2.2 Linear

Note. Linear case trivial \square

2.3 Non-linear

Note. General form:

$$Q(x,y)\frac{\mathrm{d}y}{\mathrm{d}x} + P(x,y) = 0$$

Definition. Equation **separable** if it can be written in the form:

$$q(y)dy = p(x)dx$$

Then can solve for y(x) by integrating both sides.

Definition. Equation exact iff Q(x,y)dy + P(x,y)dx is an exact differential of a function f(x,y)

$$df = Q(x, y)dy + P(x, y)dx$$

Can easily solve if:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Method. Solving such DEs: Have: $\frac{\partial f}{\partial x} = P(x,y)$ and $\frac{\partial f}{\partial y} = Q(x,y)$ for some f (chain rule). (i) Integrate P w.r.t. x giving constant h(y)

- (ii) Substitute f into equation for Q to find h(y)

Definition. Isocline: curve along which $f = \dot{y} = \text{constant}$

Note. When drawing isoclines, have arrows pointing in same direction along line.

Perturbation analysis

Method. To determine stability of fixed point, let $y = a + \varepsilon(t)$. If $\frac{dy}{dt} = f(y, t)$, Taylor Series approx

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} \simeq \varepsilon \frac{\partial f}{\partial y}$$

If $\frac{\partial f}{\partial y} > 0$ unstable. If $\frac{\partial f}{\partial y} < 0$ stable. If $\frac{\partial f}{\partial y} = 0$ need higher order terms.

Method. Plotting 2D phase portrait:

 $\frac{dy}{dt}$ on vertical axis, y on horizontal axis i.e. how $\frac{dy}{dt}$ varies with y

Method. Plotting 1D phase portrait:

y on the horizontal axis, arrows to show sign of $\frac{dy}{dt}$, solid circle shows stable fixed point, hollow circle shows unstable fixed point.

2.4.1 Discrete fixed points

Method. To find stability of fixed point in discrete equation:

$$x_{n+1} = f(x_n)$$

Expand f(x) in Taylor Series to see:

 x_f is stable if $\left|\frac{\mathrm{d}f}{\mathrm{d}x}\right| < 1$ at x_f (goes closer to x_f)

 x_f is unstable if $\left|\frac{\mathrm{d}f}{\mathrm{d}x}\right| > 1$ at x_f (goes further from x_f)

Need higher order terms if $\left| \frac{\mathrm{d}f}{\mathrm{d}x} \right| = 1$ at x_f

3 Higher order DEs

3.1 Detuning

Method. Finding second solution when repeated roots:

- (i) Consider slightly modified equation e.g. $y'' 4y' + (4 \varepsilon^2)y = 0$
- (ii) Solve this equation
- (iii) Expand Taylor Series to $O(\varepsilon)$
- (iv) Substitute using boundary conditions

3.2 Reduction of order

Method. Given y_1 a solution to a DE, let $y_2 = vy_1$ to reduce the order. Trivial algebra leads to:

$$v''y_1 + (2y_1 + py_1)v' = 0$$

Which we can solve as 1st order in v' (as we are given y_1 solution.)

3.3 Wronskian

Definition.

$$W(x) = \begin{vmatrix} \uparrow & \uparrow & & \uparrow \\ \mathbf{Y}_1 & \mathbf{Y}_2 & \dots & \mathbf{Y}_n \\ \downarrow & \downarrow & & \downarrow \end{vmatrix}$$

Note. Usually, \mathbf{Y}_i are solutions to DE.

Warning. $W(x) \neq 0$ sufficient for independent solutions but NOT necessary.

Method. Can find W(x) without solving DE:

$$W(x) = W(x_0)e^{-\int_{x_0}^x p(u) du}$$

Method. Finding W(x) if $\mathbf{Y}' + A\mathbf{Y} = \mathbf{0}$: Then $W(x) = W(x_0)e^{-\int_{x_0}^x \mathrm{Tr}(A)\,\mathrm{d}u}$

Equidimensional equation 3.4

Definition. Form of **equidimensional** DE:

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + Ax \frac{\mathrm{d}y}{\mathrm{d}x} + By = 0$$

Method. To solve equidimensional DE, try solutions of form x^k

Forced equations

Method. Determining y_p :

(i) Guess P.I. form and check

$$y_p = y_2 \int^x \frac{y_1(t)f(t)}{W(t)} dt - y_1 \int^x \frac{y_2(t)f(t)}{W(t)} dt$$

Note. Can derive equation by supposing $\mathbf{Y}_p = u(x)\mathbf{Y}_1 + v(x)\mathbf{Y}_2$ then subbing y_p into DE and solving for u, v.

Forced oscillating systems

3.6.1 Damping

Method. To analyse DE of form $\ddot{y} + \frac{L}{M}\dot{y} + \frac{k}{M}y = \frac{F(t)}{M}$:

(i) Let $\tau \equiv \sqrt{\frac{k}{M}}t$ to transform to $y'' + 2Ky' + y = f(\tau)$ Where $y' \equiv \frac{\mathrm{d}y}{\mathrm{d}\tau}$, $K \equiv \frac{L}{2\sqrt{kM}}$, $f \equiv \frac{F}{k}$

Have: $\lambda = -K \pm \sqrt{K^2 - 1}$

(ii) Consider value of K to determine response:

Equation $y = e^{-K\tau} [A\sin(\omega\tau) + B\cos(\omega\tau)]$ $y = (A + B\tau)e^{-k\tau}$ $y = Ae^{\lambda_1\tau} + Be^{\lambda_2\tau}$ Value of KRoots of char. eq. Name Underdamped K < 1 λ_1, λ_2 complex K = 1 $\lambda_1 = \lambda_2 = -K$ degenerate Critically Damped K > 1 $\lambda_1, \lambda_2 < 0$, real Overdamped

8

Where $\omega = \sqrt{1 - K^2}$

Note. Damped oscillator has period $\frac{2\pi}{\sqrt{1-K^2}}$

3.6.2 **Transients**

Definition. Dirac δ function properties:

(i)
$$\delta(x) = 0 \,\forall x \neq 0$$

(ii)
$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$

 $\begin{array}{ll} \text{(i)} & \delta(x) = 0 \, \forall x \neq 0 \\ \text{(ii)} & \int_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1 \\ \text{(iii)} & \text{Sampling property:} \end{array}$

$$\int_{-\infty}^{\infty} g(x)\delta(x) dx = g(0) \int_{-\infty}^{\infty} \delta(x) dx = g(0)$$
$$\int_{a}^{b} g(x)\delta(x - x_0) dx = \begin{cases} g(x_0) & a \le x_0 < b \\ 0 & x_0 < a \text{ or } x_0 > b \end{cases}$$

Definition.

$$H(x) = \int_{-\infty}^{\infty} \delta(t) \, \mathrm{d}t$$

$$\frac{\mathrm{d}H}{\mathrm{d}x} = \delta(x)$$
 from F.T.C

Properties:

(i)
$$H(x) = 0$$
 for $x < 0$

(ii)
$$H(x) = 1$$
 for $x > 0$

(iii) H(0) undefined

Definition.

$$r(x) = \int_{-\infty}^{\infty} H(t) \, \mathrm{d}t$$

Note. Functions get smoother as we integrate

Method. Solving δ function forcing:

- (i) Solve for $x < x_0$ and $x > x_0$, 2 cases, giving 4 unknown constants
- (ii) Use 2 jump conditions and 2 ICs/BCs to solve

Note.

$$\lim_{\varepsilon \to 0} [y]_{\frac{\pi}{2} - \varepsilon}^{\frac{\pi}{2} + \varepsilon} = [y]_{\frac{\pi}{2} - \varepsilon}^{\frac{\pi}{2} + \varepsilon}$$

Shorthand.

Method. Solving Heaviside step function forcing:

$$y'' + py' + q = 0$$
 for $x < x_0$

$$y'' + py' + q = 1$$
 for $x > x_0$

3.7 Discrete Equations

	Method. Fin	ding particular integral:
П	Form of f_n	Particular Integral
П	k^n	$Ak^n \text{ if } k \neq k_1, k_2$
П	k_{1}^{n}, k_{2}^{n}	$Ank_1^n + Bnk_2^n$
П	n^p	$An^p + Bn^{p-1} + \dots + Cn + D$

3.8 Method of Frobenius

Method. To solve DE py'' + qy' + r = 0, use flow chart below: (Sub n = 0 to determine value of σ)

4 Multivariate Functions: Applications

4.1 Directional Derivative

Definition.

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Method. To find directional derivative in a given direction:

$$\frac{\mathrm{d}f}{\mathrm{d}s} = \hat{\mathbf{s}} \cdot \nabla f$$

Where $\hat{\mathbf{s}}$ is unit vec in direction desired.

Note. ∇f is perpendicular to contours of f(x,y)

4.2 Taylor Series for Multivariate Functions

Equation. Multivariate Taylor Series:

$$f(x,y) = f(x_0, y_0) + (x - x_0) f_x|_{x_0, y_0} + (y - y_0) f_y|_{x_0, y_0} + \frac{1}{2} [(x - x_0)^2 f_{xx}|_{x_0, y_0} + (y - y_0)^2 f_{yy}|_{x_0, y_0} + 2(x - x_0)(y - y_0) f_{xy}|_{x_0, y_0}] + \dots$$

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \delta \mathbf{x} \cdot \nabla f(\mathbf{x}_0) + \frac{1}{2} \delta \mathbf{x} H \delta \mathbf{x}^T + \dots$$

Where H, defined below, evaluated at \mathbf{x}_0

Definition. Hessian matrix for a function f:

$$H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}$$

4.3 Stationary Points

- \bullet Near min/max contours of f are elliptical
- \bullet Near saddle, contours of f are hyperbolic
- \bullet Contours of f can only cross at saddle points

4.3.1 Classifying Stationary points

Definition. Since H symmetric, it can be diagonalised wrt principal axes with evals on diagonal. **Signature** is sequence of determinants:

$$|f_{x_1x_1}|, \begin{vmatrix} f_{x_1x_1} & f_{x_1x_2} \\ f_{x_2x_1} & f_{x_2x_2} \end{vmatrix}, \dots, \begin{vmatrix} f_{x_1x_1} & \dots & f_{x_1x_n} \\ \vdots & \ddots & \vdots \\ f_{x_nx_1} & \dots & f_{x_nx_n} \end{vmatrix}$$

Method. Classifying stationary points:

- Minimum $(\lambda_i > 0) \iff \text{signature } +, +, +, +, \dots$
- Maximum $(\lambda_i < 0) \iff \text{signature } -, +, -, +, \dots$
- Otherwise saddle

5 Systems of ODEs

5.1 Systems of Linear ODEs

Method. Solving system of equations:

$$\dot{y_1} = ay_1 + by_2 + f_1(t)$$

$$\dot{y_2} = cy_1 + dy_2 + f_2(t)$$

Or more generally:

$$\dot{\mathbf{Y}}_1 = M\mathbf{Y} + \mathbf{F}$$

(i) Write $\dot{\mathbf{Y}} = \mathbf{Y}_c + \mathbf{Y}_p$

$$\mathbf{Y}_c = A\mathbf{v}_1 e^{\lambda_1 t} + B\mathbf{v}_2 e^{\lambda_2 t}$$

Where \mathbf{v}_i evecs and λ_i evals

(ii) For \mathbf{Y}_p try same guess as with only 1 equation but with vector in front e.g. if you see $\begin{bmatrix} 4 \\ 1 \end{bmatrix} e^t$ then try $\mathbf{u}e^t$.

if you see $\begin{bmatrix} 2 \\ 3 \end{bmatrix} t^2$ then try $\mathbf{u}_1 t^2 + \mathbf{u}_2 t + \mathbf{u}_3$ etc.

Remember can have component zero and can sum for different terms.

(**u** is constant vector)

If forcing term matches, put a t in front as usual.

5.2 Phase Portraits

Method. Drawing phase portraits:

- (i) Eigenvectors give direction of straight lines, eigenvalue tells you whether the line points towards/away
- (ii) In between straight lines, fill as appropriate. In $\lambda_1\lambda_2 > 0$, consider which has greater modulus to determine which influences more.

Note. Types of phase portrait (near fixed points):

- (i) Saddle Node $\lambda_1, \lambda_2 \in \mathbb{R}$ and $\lambda_1 \lambda_2 < 0$
- (ii) Stable Node $\lambda_1, \lambda_2 \in \mathbb{R}, \lambda_1 \lambda_2 > 0$ and $\lambda_1, \lambda_2 < 0$
- (iii) Unstable Node $\lambda_1, \lambda_2 \in \mathbb{R}, \lambda_1 \lambda_2 > 0$ and $\lambda_1, \lambda_2 > 0$
- (iv) Stable spiral λ_1, λ_2 complex conjugate pair, $Re(\lambda_1, \lambda_2) < 0$
- (v) Unstable spiral λ_1, λ_2 complex conjugate pair, $\text{Re}(\lambda_1, \lambda_2) > 0$
- (vi) Center $\text{Re}(\lambda_1, \lambda_2) = 0$ (determine direction of rotation by evaluating system near point to find sign of \dot{y}_1, \dot{y}_2)

5.3 Non linear system of ODEs

Method. To determine the stability of stationary points and behaviour around:

$$\dot{x} = f(x, y)$$

$$\dot{y} = g(x, y)$$

$$(x, y) = (x_0 + \xi(t), y_0 + \eta(t))$$

$$\Longrightarrow \begin{bmatrix} \dot{\xi} \\ \dot{\eta} \end{bmatrix} = \begin{bmatrix} f_x & f_y \\ g_x & g_y \end{bmatrix} \Big|_{x_0, y_0} \begin{bmatrix} \xi \\ \eta \end{bmatrix}$$

Evals of matrix above determine stability and behaviour accordingly to note above.

6 PDEs

6.1 1st Order Wave Equation

Method. To solve PDE of form:

$$\frac{\partial y}{\partial t} - c \frac{\partial y}{\partial x} = 0$$

with c constant:

Use method of characteristics:

(i) Consider sampling y along path x(t) where:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -c \implies \frac{\mathrm{d}y}{\mathrm{d}t} = 0$$

(from chain rule) so y = const. along paths $x = x_0 - ct$

(ii) This gives general solution y = f(x + ct). Use boundary condition to find $f(x_0)$.

Note. If forcing term g(t) on RHS, solve $\frac{dy}{dt} = g(t)$

6.2 2nd Order Wave Equation

Method. To solve PDE of form:

$$\frac{\partial^2 y}{\partial t^2} - c^2 \frac{\partial^2 y}{\partial x^2} = 0$$

Have:

$$\left(\frac{\partial}{\partial t} - c\frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + c\frac{\partial}{\partial x}\right) y = 0$$

So:

$$\frac{\partial y}{\partial t} - c \frac{\partial y}{\partial x} = 0 \text{ or } \frac{\partial y}{\partial t} + c \frac{\partial y}{\partial x} = 0$$

So y = f(x + ct) + g(x - ct).

Note. If forcing term g(t) on RHS, solve $\frac{d^2y}{dt^2} = g(t)$

Diffusion Equation 6.3

Method. To solve PDE of form:

$$\frac{\partial y}{\partial t} = \kappa \frac{\partial^2 y}{\partial x^2}$$

Define

$$\eta = \frac{x^2}{4\kappa t}$$

Seek solutions of form $y=t^{-\alpha}f(\eta)$ After subbing into PDE and trivial algebra:

$$\alpha f + f'\eta + f''\eta + \frac{f'}{2} = 0$$

Which simplifies to:

$$\eta \frac{\mathrm{d}}{\mathrm{d}\eta} + \frac{1}{2}(f' + 2\alpha f) = 0$$

Let $\alpha = \frac{1}{2}$ as it is still arbitrary at this stage, yielding:

$$\eta \frac{F}{\eta} + \frac{F}{2} = 0$$

Where F = f + f'. Giving one solution $F = 0 \,\forall \eta$.

$$\implies f = Ae^{-\eta}$$

Hence

$$y = At^{-\frac{1}{2}}e^{\frac{-x^2}{4\kappa t}}$$

And we can set A from ICs.