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1 Differentiation

1.1 L’Hopital’s Rule

Theorem (L’Hopital). If:
lim f(z) = f(z0) =

zll“%o g(x) = g(wo) =
hen: i) 7(z)
. ) x
Ili)nxlo M — Ili)ngo g/(x)
(if g'(x) # 0)

Proof. Consider f(z) expanded to f’(zp) in Taylor series.

1.2 Partial Differentiation

Notes.
Shorthand Notation:
of _
O dxr — fac

*f _
® Swoy = Jey

1.2.1 Chain rule

Equation (Chain rule). Given f(z,y)

df _0fds  ofdy
dt Oz dt = oy dt

if x and y vary with ¢

Proof. Consider definition of derivative/ partial derivative

Equation. if f(z,y(z)),

df _0fde  ofdy
dz  Oxdx Oydx

_of 0y
Oz Oydx
Proof. Consider t = x in previous eqn
Equation (Infinitesimal form).
of of
df = —d —d
/ oz " * dy g




Equation. Integrating along path:

_ [9of 8f

Note. Visualising path going along x to x5 then up y to yo

8
f(x2,92) — f(z1,91) /8 dz + af
Ty Y1
1.3 Polar Co-ordinates Transform
Equation. © =rcosf, y =rsinf
o5 _of| o o
Bre_f)xyc")‘re 8y 31"9
of of af| .
ar |, = 5 ycos@—l— 3y Zsm@
Note. f,. = fycost + f,sind
Similarly, fo = r(f, cosf — f,sin0)
1.4 Swurfaces
Equation. if f(z,y, 2(z,y)) = ¢
We have:
df:g dx+af dy+ﬁ dz
ox v dy . 0z oy
of
0z oz B
__— — = —
ox af
Y 0z
z,y

By taking partial wrt = holding y on both sides and rearranging.

Note. LHS at top becomes zero as the function on z,y is constant. The function on z,y, z
independent takes value at any point in 3-D space. So it can be a bit bruh at first sight lol.




1.5 Reciprocal Rule

Equation. Reciprocal rule holds as long as same variables held fixed:

or 1
a.. =~ oz

1.6 Differentiating Integrals

Equation.
b(a)
I(a):/f(x;a)dx
a(a)

dI () g db da
= G-/ selriGag —fEag

Proof. Consider definition of derivative applied to «.

Note. If b(c) or a(a) constant then {2 or % respectively is 0 so can remove term.

2 First order DEs

2.1 Definitions

Definition. ODE: DE involving function of one variable

Definition. PDE: DE involving functions of more than one variable (and partial derivative)

Definition. Linear: dependent variable appears linearly e.g. 322%% + sin(z)y = e*

2.2 Linear

Note. Linear case trivial [

2.3 Non-linear

Note. General form:

Q(x,y)j—i + P(z,y) =0




Definition. Equation separable if it can be written in the form:

q(y)dy = p(z)dz

Then can solve for y(x) by integrating both sides.

Definition. Equation exact iff Q(z,y)dy + P(x,y)dz is an exact differential of a function f(z,vy)
ie.
df = Q(z,y)dy + P(z,y)dx
Can easily solve if:
oe_ of
oy Oz

Method. Solving such DEs:

Have: %ﬁ = P(z,y) and %5 = Q(z,y) for some f (chain rule).
(i) Integrate P w.r.t.  giving constant h(y)
(ii) Substitute f into equation for @ to find h(y)

Definition. Isocline: curve along which f = ¢ = constant

Note. When drawing isoclines, have arrows pointing in same direction along line.

2.4 Perturbation analysis

Method. To determine stability of fixed point, let y = a+e(t). If d_zt; = f(y,t), Taylor Series approx
gives:
de 90
dt Oy
It %5 > 0 unstable.
If $L < 0 stable.

If g—£ = 0 need higher order terms.

Method. Plotting 2D phase portrait:
dy
dt

on vertical axis, y on horizontal axis i.e. how % varies with y

Method. Plotting 1D phase portrait:
y on the horizontal axis, arrows to show sign of %, solid circle shows stable fixed point, hollow circle
shows unstable fixed point.




2.4.1 Discrete fixed points

~

Method. To find stability of fixed point in discrete equation:

Tnt+1 = f(zn)

Expand f(z) in Taylor Series to see:

xy is stable if %) < 1at zy (goes closer to x¢)

xy is unstable if %ﬂé‘ > 1 at ¢ (goes further from zy)

Need higher order terms if

d
gg‘:latxf

3 Higher order DEs

3.1 Detuning

Method. Finding second solution when repeated roots:
(i) Consider slightly modified equation e.g. y” — 4y’ + (4 —?)y =0
(ii) Solve this equation
(iii) Expand Taylor Series to O(g)
(iv) Substitute using boundary conditions

3.2 Reduction of order

Method. Given y; a solution to a DE, let y5 = vy; to reduce the order. Trivial algebra leads to:
v"y1 + (251 + py1)v’ =0

Which we can solve as 1st order in v" (as we are given y; solution.)

3.3 Wronskian

Definition.
T T
W(l’) = Y1 Y2 Yn
I 4

Note. Usually, Y; are solutions to DE.

Warning. W (z) # 0 sufficient for independent solutions but NOT necessary.

Method. Can find W (z) without solving DE:

W (z) = W (w)e Jao PV 4




Method. Finding W (z) if Y + AY = 0:
Then W (z) = W(xzg)e Sy Tr(A) du

3.4 Equidimensional equation

Definition. Form of equidimensional DE:

d?y dy

2

—~ + Az—= + By =
mdx2+ xdx+ y=0

Method. To solve equidimensional DE, try solutions of form 2*

3.5 Forced equations

Method. Determining y,:
(i) Guess P.I. form and check

(i1)
= / yléé)(J; )(t) dt -y / yzét/)(]; )(t) dt

Note. Can derive equation by supposing Y, = u(z)Y1+v(z)Y3 then subbing y, into DE and solving
for u,v.

3.6 Forced oscillating systems

3.6.1 Damping

Method. To analyse DE of form 4j + %y + %y — %:
(i) Let 7 = /£t to transform to y” + 2Ky’ +y = f(1)
_d _ L _F
Where /:ﬁ’K:—z\/W’f:?
Have: \= - K+ VK2 -1

(if) Consider value of K to determine response:

Name ‘ Value of K ‘ Roots of char. eq. ‘ Equation
Underdamped K<1 A1, A2 complex y = e B7[Asin(wt) + B cos(wT)]
Critically Damped K=1 A1 = Ay = — K degenerate y=(A+ Br)e k"
Overdamped K>1 A1, A2 < 0, real y = AeMT + BeleT

Where w = v1 — K2

Note. Damped oscillator has period \/%




Underdamped
Y

4

N

Critically damped

4

Y

N

7> X

Overdamped

4

Y

N

[
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3.6.2 Transients

Definition. Dirac § function properties:
(i) é(x) =0Vx #0
(i) [, 3(x)dz'=1

(iii) Sampling property:

| s@i@ar =g [ s)ae = 400

b
<
/ g(x)é(x — o) dx = {g(xo) a<zo<b
¢ 0 Tog < aorxg>Db
Definition. )
H(z) = / 5(t) dt
% = §(z) from F.T.C

Properties:

(i) H(z) =0for z <0
(ii) H(z) =1for z >0
(iii) H(0) undefined

Definition.

r(xz) = /jo H(t)dt

Note. Functions get smoother as we integrate

Method. Solving ¢ function forcing:
(i) Solve for < xg and = > x¢, 2 cases, giving 4 unknown constants
(ii) Use 2 jump conditions and 2 ICs/ BCs to solve

Note. .
. e 5
lim[y]z_. = [vlz-

Shorthand.

Method. Solving Heaviside step function forcing:
y" +py +q=0for z <z

y' +py +q=1for x> x

10



3.7 Discrete Equations

Method. Finding particular integral:

Form of f, | Particular Integral
k™ AE™ if k # Ky, ko
kY Ank} + Bnky
nP AnP + BnP~ ' +...4+Cn+ D

11




3.8 Method of Frobenius

Method. To solve DE py” + qy’ + r = 0, use flowchart below: (Sub n = 0 to determine value of o)

Do £ have

yes

Both s%l)utions of form:

' p
Tayfor Series
about zg?

no

Do @ and

rz==0)® }ve no
= an(x — x9)"
¢ nZ::O n ) Taylor Series
about zg?
yes
Regular singular point Irregular singular point
‘ At leas‘go 1 solution of form ’
y= Y an(x — 20)" "7
& |
ifog — oy & Z: ifoy — o9 € Z,01 < 09: ifo, = o2 = o:
o0 o0 o0
Y1 = Y ap(z — 20)" 7 1 = Y ap(z — xo)" T2 o= > ap(x — xo)"°
n=0 n=0 n=0
oo o0 oo
yo = Y bp(x — mp)" T2 Yo = > bp(x—20)" T ey In(z — z0) | |y2 = Y bn(x — 20)" 7 + y1 In(z — x0)
n=0 n=0 n=0

12



4 Multivariate Functions: Applications

4.1 Directional Derivative

Definition.

Method. To find directional derivative in a given direction:
df _
& =S- Vf

Where $ is unit vec in direction desired.

Note. Vf is perpendicular to contours of f(z,y)

4.2 Taylor Series for Multivariate Functions

Equation. Multivariate Taylor Series:
f(xvy) :f(mo’y0>

+ (@ = 20) falygyo T W = ¥0) fylagpo

Fooc

Where H ,defined below, evaluated at xq

1
+ 5[(50 — x0)” fxw|xo,y0 + (y — %) fyy|m0,yo +2(z — 20)(y — yo) fxy|mo,yo]

f(x) = f(x0) +0x - Vf(xo) + %(5XH6XT +...

Definition. Hessian matrix for a function f:

" [fym Fuy

4.3 Stationary Points

e Near min/max contours of f are elliptical
e Near saddle, contours of f are hyperbolic
e Contours of f can only cross at saddle points

13



4.3.1 Classifying Stationary points

~

Definition. Since H symmetric, it can be diagonalised wrt principal axes with evals on diagonal.
Signature is sequence of determinants:

fxlxl e fflfn
f:L‘l:L‘l f:E1:E2 . . .

|fmlﬂ71| ) wawl fw2w2

g ey

fxnxl e fxnxn

Method. Classifying stationary points:
e Minimum (\; > 0) < signature +,+,+,+, ...
e Maximum (\; < 0) < signature —,+, —,+, ...
e Otherwise saddle

5 Systems of ODEs

5.1 Systems of Linear ODEs

Method. Solving system of equations:
Y1 = ay1 + by + f1(t)

Yo = cy1 + dya + fa(t)

Or more generally: )
Y =MY+F

(i) Write Y =Y.+ Y,

Y, = AvieMt 4+ Bvye?t

Where v; evecs and \; evals
(ii) For Y, try same guess as with only 1 equation but with vector in front

. 4
e.g. if you see [ } e’ then try uel.

1

. 2
if you see ] t? then try u;t? + ust + us ete.

3
Remember can have component zero and can sum for different terms.
(u is constant vector)

If forcing term matches, put a t in front as usual.

5.2 Phase Portraits

Method. Drawing phase portraits:
(i) Eigenvectors give direction of straight lines, eigenvalue tells you whether the line points towards/
away
(ii) In between straight lines, fill as appropriate. In A\; Ay > 0, consider which has greater modulus
to determine which influences more.

14



Note. Types of phase portrait (near fixed points):
(i) Saddle Node A1, A2 € R and A\ Ay < 0
(11) Stable Node A1, A2 € R, AyAs > 0 and A\, A2 <0
(iii) Unstable Node A1, Ay € R, Aj Ao > 0 and A\, Ay >0
(iv) Stable spiral A1, A2 complex conjugate pair, Re(A1, A2) < 0
(v) Unstable spiral A, Ay complex conjugate pair, Re(A1, A3) > 0
)

sign of 91, 92)

(vi) Center Re(A1, A2) = 0 (determine direction of rotation by evaluating system near point to find

5.3 Non linear system of ODEs

Method. To determine the stability of stationary points and behaviour around:
&= f(z,y)

y=g(z,y)
(Ia y) = (1)0 + f(t), Yo + W(t))

= -1 2l
U S

Evals of matrix above determine stability and behaviour accordingly to note above.

15



6 PDEs

6.1 15* Order Wave Equation

Method. To solve PDE of form:

dy Oy
E — C% = O
with ¢ constant:
Use method of characteristics:
(i) Consider sampling y along path x(t) where:
dx dy
a = =C => E =0

(from chain rule) so y = const. along paths z = z¢ — ct

T
4

y = f(x0,0) on line \{Zo

? 1

(if) This gives general solution y = f(« + ct). Use boundary condition to find f(zg).

Note. If forcing term ¢(t) on RHS, solve %% =g(t)

6.2 2" Order Wave Equation

Method. To solve PDE of form:

o’y 0%
a2 Cgaz
Have:
0 ON(D 0N, _,
at ‘oz )\t " 9z ) 7
So: 8y @ 8y 8
vy Oy
a c%—OOrat—i—cax 0

Soy = f(z+ct)+g(x —ct).

Note. If forcing term g(t)on RHS, solve % =g(t)

16



6.3 Diffusion Equation

Method. To solve PDE of form:

o _ 5
ot 0x2
Define
_=
U= 4kt
Seek solutions of form y = t=% f(n)
After subbing into PDE and trivial algebra:
f/
af + f'n+ f'm+ 5 =0

Which simplifies to:

a 1,, 3
05T+?f+aqﬁ—0

Let a = § as it is still arbitrary at this stage, yielding:

FLOF_
n 7 5 =
Where F = f + f’. Giving one solution F' = 0Vn.
= f=Ae™"

Hence

And we can set A from ICs.

17
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