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0 Overview

0.1 Groups

Continuing from IA Groups. We pay particular attention to simple groups, p-groups and p-subgroups.
The main highlight of this part of the course will be the Sylow theorems.

0.2 Ring

These are sets where we can add, subtract and multiply, for example Z or C[x]. Important examples
include “rings of integers” (e.g. Z[i], Z[

√
2]) studied further in Part II Number Fields, and polynomial

rings which are central to Part II Algebraic Geometry. A ring where division is always possible is
called a field for example Q, R, C, or Z/pZ for p a prime.

0.3 Modules

A module is the analogue of a vector space where the scalars belong to a ring instead of a field. We
will attempt to classify modules over certain nice rings. This will allow us to prove the Jordan Normal
Theorem for matrices and to classify finite abelian groups.
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1 Groups

1.1 Revision and Basics

Definition. A group is a pair (G, ·) consisting of a set G and binary operation · : G × G → G
satisfying

• Associativity
a · (b · c) = (a · b) · c ∀a, b, c ∈ G

• Identity
∃e ∈ G s.t. e · g = g · e = g ∀g ∈ G

• Inverses
∀g ∈ G ∃g−1 ∈ G s.t. g · g−1 = g−1 · g = e

Remarks.
(i) In checking · is well defined, need to check closure. I.e.

a, b ∈ G =⇒ a · b ∈ G

(ii) If using additive (or multiplicative) notation then we often write 0 (or 1) for the identity

Definition. A subset H ⊆ G is a subgroup (written H ≤ G) s.t. it is a group w.r.t. · restricted to
H ×H

Remark. A non-empty subset H of G is a subgroup if

a, b ∈ H =⇒ a · b−1 ∈ H

Examples.
(i) Additive groups (Z,+) ≤ (Q,+) ≤ (R,+)
(ii) Cyclic & dihedral groups

Cn = cyclic group of order n

D2n = symmetries of a regular n-gon

(iii) Symmetric & alternating groups

Sn = all permutations of {1, 2, . . . , n}

An ≤ Sn subgroup of even permutations

(iv) Q8 = {±1,±i,±j,±k} ij = k, ji = −k, i2 = −1 etc.
(v) Matrix groups. For F a field

GLn(F ) = all n× n matrices over F with det 6= 0

SLn(F ) ≤ GLn(F ), subgroup of matrices with det = 1

(general and special linear groups)
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Definition. The (direct) product of groups G and H is G×H with operation

(g1, h1) · (g2, h2) = (g1g2, h1h2)

Definition. For a subgroup H ≤ G, the left cosets of H in G are sets

gH = {gh : h ∈ H} for g ∈ G

Note. These partition G, and each has the same cardinality as H. We deduce Lagrange’s
Theorem.

Theorem 1.1. Let G be a finite group, H a subgroup. Then |G| = |H| · |G : H| where |G : H| is the
number of left cosets of H in G, and is called the index of H in G.

Note. There is a partial converse.

Claim. |G| = pam p prime, p 6 |m then ∃H ≤ G with |H| = pa (proof later) (1st Sylow Theorem)

Definition. Let g ∈ G. If ∃n ≥ 1 s.t. gn = 1, then the least such n is called the order of g.
Otherwise g has infinite order.

Remark. If g has order d then
(i) gn = 1 ⇐⇒ d|n
(ii) {1, g, g2, . . . , gd−1} ≤ G and so if G is finite then by Lagrange d| |G|

Definition. A subgroup H ≤ G is normal if g−1Hg = H ∀g ∈ G. We write H EG.

Prop 1.2. If H EG then the set G/H of left cosets of H in G is a group (called the quotient group)
with operation g1H · g2H = g1g2H

Proof. We must check · is well defined. Suppose g1H = g′1H and g2H = g′2H. Then g′1 = g1h1
and g′2 = g2h2 for some h1, h2 ∈ H so g′1g′2H = g1h1g2h2H. This is equal to g1g2H iff

(g1g2)−1g1h1g2︸ ︷︷ ︸
g−1
2 h1g2

∈ H

which is true since H EG.
Associativity is inherited from G, the identity is H = eH and the inverse of gH is g−1H
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Definition. If G,H are groups, a function φ : G→ H is a group homomorphism if

φ(g1g2) = φ(g1)φ(g2) ∀g1, g2 ∈ G

It has kernel ker(φ) = {g ∈ G : φ(g) = 1} ≤ G and image Im(φ) = {φ(g) : g ∈ G} ≤ H. If
a ∈ ker(φ) and g ∈ G then φ(g−1ag) = φ(g)−1φ(a)φ(g) = 1

=⇒ g−1ag ∈ ker(φ) therefore ker(φ) EG

Definition. An isomorphism of groups is a group homomorphism that is also a bijection.
We say G and H are isomorphic (written G ∼= H) if ∃ isomorphism φ : G→ H
(Exercise: check φ−1 : H → G is a group homomorphism)

Theorem 1.3 (Isomorphism Theorem). Let φ : G→ H be a group homomorphism.
Then ker(φ) EG and G/ ker(φ) ∼= Im(φ)

Proof. Let K = ker(φ). We already checked that K EG
Define Φ : G/K → Im(φ)
gK 7→ φ(g)
Φ is well defined and injective:

g1K = g2K ⇐⇒ g−12 g1 ∈ K
⇐⇒ φ(g−12 g1) = 1

⇐⇒ φ(g2)−1φ(g1) = 1

⇐⇒ φ(g1) = φ(g2)

Φ is a group homomorphism:

Φ(g1Kg2K) = Φ(g1g2K)

− φ(g1g2)

= φ(g1)φ(g2)

Φ(g1K)Φ(g2K)

Φ is surjective:
Let x ∈ Im(φ), say x = φ(g) some g ∈ G.
Then x = Φ(gK) ∈ Im(Φ)

Example.
Let φ : C→ C∗ = {x ∈ C : x 6= 0}
z 7→ ez

As ez+w = ezew this is a group homomorphism from (C,+) to (C∗,×)

ker(φ) = {z ∈ C : ez − 1} = 2πiZ

Im(φ) = C∗(by existence of log)

∴ C/2πiZ ∼= C∗
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Note. Sometimes the Isomorphism Theorem is called the “First Isomorphism Theorem”.
It has the following corollaries:

Theorem 1.4 (2nd Isomorphism Theorem). Let H ≤ G and K ≤ G. Then

HK = {hk : h ∈ H, k ∈ K} ≤ G and H ∩K EH

Moreover
HK/K ∼= H/H ∩K

Proof. Let h1k1, h2k2 ∈ HK (so h1, h2 ∈ H, k1, k2 ∈ K)

h1k1(h2k2)−1 = h1h
−1
2︸ ︷︷ ︸

∈H

h2k1k2h
−1
2︸ ︷︷ ︸

∈K

∴ HK ≤ G

Let φ : H → G/K
h 7→ hK (this is the composite of the inclusion H → G and the quotient map G→ G/K)
∴ φ is a group homomorphism.

ker(φ) = {h ∈ H : hK = K} = H ∩K EH

Im(φ) = {hK : h ∈ H} = HK/K

First isomorphism theorem =⇒ H/H ∩ J ∼= HK/K

Remark. Suppose K EG. There is a bijection:

{subgroups of G/K} ↔ {subgroups of G containing K}

X 7→ {g ∈ G : gK ∈ X}

H/K ←[ H

This restricts to a bijection

{normal subgroups of G/K} ↔ {normal subgroups of G containing K}

Theorem 1.5 (3rd Isomorphism Theorem). Let K ≤ H ≤ G be normal subgroups of G.
Then

G/K

H/K
∼= G/H

Proof. Let φ : G/K → G/H
gK 7→ gH If g1K = g2K then g−12 g1 ∈ K ≤ H =⇒ g1H = g2H ∴ φ is well defind.
φ is a surjective group homomorphism with kernel H/K
Now apply the first isomorphism theorem
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Note. If K EG then studying the groups K and G/K gives some information about G.
However this approach is not always available

Definition. A group G is simple if {1} and G are its only normal subgroups

Lemma 1.6. An abelian group is simple iff it is isomorphic to Cp for some prime number p

Proof. By Lagrange’s Theorem, a subgroup H ≤ Cp has order |Cp| = p, hence order 1 or
p ∴ H = {1} or Cp. Thus Cp is simple.
Let G be an abelian simple group and 1 6= g ∈ G.
Any subgroup of an abelian group is normal.
G contains the subgroup 〈g〉 = {. . . , g−2, g−1, 1, g, g2, . . . }
Since G is simple, this must be the whole group i.e. G is cyclic.
If G is infinite, then G ∼= (Z,+), and 2ZE Z
Otherwise G ∼= Cn for some n.
Let g be a generator. If m|n, then gn/m generates a subgroup of order m.
G simple =⇒ only factors of n are 1 and n =⇒ n is prime

Lemma 1.7. If G is a finite group then G has a composition series

{1} = G0 EG1 E · · ·EGm−1 EGm = G

with each quotient Gi/Gi−1 simple

Warning. Gi need not be normal in G.

Proof. By induction on |G|. Case |G| = 1 X
If |G| > 1, then let Gm−1 be a normal subgroup of largest possible order 6= |G|. Previous
remark =⇒ G/Gm−1 is simple.
Apply induction hypothesis to Gm−1

2 Group Actions

Definition. For X a set, let Sym(X) be the group of all bijections X → X under composition
(identity id = idX )

Definition. A group G is a permutation group (of degree n) if G ≤ Sym(X) (with |X| = n)

Examples. Sn = Sym({1, 2, . . . , n}) is a permutation group of degree n, as is An ≤ Sn.
D2n (symmetries of a regular n-gon) is a subgroup of Sym({vertices of n-gon})
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Definition. An action of a group G on a set X is a function ∗ : G×X → X satisfying
(i)

e ∗ x = x ∀x ∈ X

(ii)
(g1g2) ∗ x = g1 ∗ (gx ∗ x) ∀g1, g2 ∈ G ∀x ∈ X

Prop 2.1. An action of a group G on a set X is equivalent to specifying a group homomorphism
φ : G→ Sym(X)

Proof. For each g ∈ G there is a function φg : X → X
x 7→g∗x

We have
φg1g2(x) = (g1g2) ∗ x = g1 ∗ (g2 ∗ x) = φg1(φg2(x))

∴ φg1g2 = φg1 · φg2 (†)

In particular
φ · φg−1 = φg−1 · φg = φe = id ∴ φg ∈ Sym(X)

We define
φ : G→ Sym(X)

g 7→φg

(this is a group homomorphism by (†))
Conversely, let φ : G→ Sym(X) be a group homomorphism
Define

G×X → X
(g,x)7→φ(g)(x)

Then
(i)

e ∗ x = φ(e)(x) = id(x) = x

(ii)
(g1g2) ∗ x = φ(g1g2)(x) = φ(g1)(φ(g2)(x)) = g1 ∗ (g2 ∗ x)

Definition. We say φ : G→ Sym(X) is a permutation representation of G

Definition. Let G act on a set X
(i) The orbit of x ∈ X is orbG(x) = {g ∗ x : g ∈ G} ⊆ X
(ii) The stabiliser of x ∈ X is Gx = {g ∈ G|g ∗ x = x} ≤ G

Theorem 2.2. We recall from IA: Orbit-Stabiliser Theorem: there is a bijection orbG(x) ↔ G/Gx
(set of left cosets of Gx in G)
In particular, if G is finite then

|G| = |orbG(x)| · |Gx|
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Remarks.
(i) kerφ =

⋂
x∈X

Gx is called the kernel of the group action

(ii) The orbits partition X. If there is just one orbit, then we say that the action is transitive
(iii) Gg∗x = gGxg

−1, so if x, y ∈ X belong to the same orbit, then their stabilisers are conjugate.

Examples.
(i) Let G act on itself by left multiplication, i.e. g ∗ x = gx

The kernel of the action is {g ∈ G|gx = x ∀x ∈ G} = {1} ∴ G ↪→ Sym(G) This proves theorem
below

Theorem 2.3 (Cayley’s Theorem). Any finite group G is isomorphic to a subgroup of Sn for some
n. (Indeed we may take n = |G|)

Examples (Continued).
(ii) Let H ≤ G. Then G acts on G/H by left multiplicationi.e. g ∗ xH = gxH.

This is a transitive group action (since x2x−1 ∗ x1H = x2H) with

GxH = {g ∈ G : gxH = xH} = {g ∈ G : x−1gx ∈ H} = xHx−1

ker(φ) =
⋂
c∈G

xHx−1

This is the largest normal subgroup of G that is contained in H.
(iii) Let G act on itself by conjugation, i.e. g ∗ x = gxg−1.

The orbits and stabilisers have special names:

orbG(x) = {gxg−1 : g ∈ G} = cclG(x)

is the conjugacy class of x in G.

Gx = {g ∈ G : gx = xg}

is the centraliser of x in G.

ker(φ) = {g ∈ G : gx = xg ∀x ∈ G} = Z(G)

is the centre of G.

Note. G also acts by conjugation on any normal subgroup

(iv) Let X be the set of all subgroups of G.
Then G acts on X by conjugation, i.e. g ∗H = gHg−1

The stabiliser of H is {g ∈ G : gHg−1 = H} = NG(H) - the normaliser of H in G.
This is the largest subgroup of G to contain H as a normal subgroup.
In particular H EG ⇐⇒ NG(H) = G
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Theorem 2.4. Let G be a non-abelian simple group, and H ≤ G a subgroup of index n > 1.
Then n ≥ 5 and G is isomorphic to a subgroup of An

Proof. Let G act on X = G/H by left multiplication, and let φ : G→ Sym(X) = Sn be the
associated permutation representation. As G is simple ker(φ) = 1 or G.
If ker(φ) = G then Im(φ) = 1, contradicting that G acts transitively on X (since n > 1)

∴ ker(φ) = 1 & G ∼= Im(φ) ≤ Sn
Since G ≤ Sn and An E Sn, the second isomorphism theorem gives

G ∩An EG and
G

G ∩An
∼=
GAn
An

≤ Sn/An ∼= C2

G simple =⇒ G ∩An = 1 or G
If G ∩An = 1, G ↪→ C2 to G non-abelian so G ∩An = G
Hence G ≤ An.
Finally if n ≤ 4 then An has no non-abelian simple subgroups. (By listing them)
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Example. Let G be the group of rotations of an icosahedron (20 faces, 12 vertices, 30 edges)
Order # elements of G

1 1
2 15
3 20
5 24

Total 60
Then check for G acting on the set of vertices

|G| = |orbit| · |stabiliser| = 12 · 5 = 60

The elements of order 2 are all conjugate. As are those of order 3. The elements of order 5 split into
2 conjugacy classes of size 12 (rotation by ± 2π

5 & ± 4π
5 )

If H EG then |H| = 1 + 15a+ 30b+ 12c for a, b ∈ {0, 1}, c ∈ {0, 1, 2}, and |H| divides 60 ∴ |H| = 1
or 60. This shows G is simple.

We claim that the sets H\{1} for H ≤ G subgroup of order 4 (|H| = 4) partition the 15 elements of
order 2 into 5 sets of 3.
(i)

|H| = 4 =⇒ H ∼= C2 × C2 or C4

Cannot be C4 as G has no elements order 4. C2 × C2 has 3 elements order 2.
(ii) If g ∈ G has order 2 then

g ∈ CG(g) & |CG(g)| = |G|
|cclG(g)|

=
60

15
= 4

(iii) Suppose 1 6= g ∈ H ∩K where H and K are distinct subgroups of order 4.
Then |CG(g)| ≥ |H ∪K| > 4 (since H and K are abelian)

This proves the claim.

Let G act on X = {Subgroups of G of order 4} by conjugation.
We obtain a group homomorphism G

φ−→ Sym(X) = S5

G simple =⇒ kerφ = 1 or G

If kernel is G then G has normal subgroup order 4
So G ∼= Im(φ) ≤ S5

Exactly as in proof of Thm 2.3, either G ∼= C2 or G ≤ A5

But |G| = |A5| = 60 ∴ G ∼= A5
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3 Alternating Groups

As seen in IA, permutations in Sn are conjugate iff they have the same cycle type.

Example. In S5 we have:
cycle type # elements sign

id 1 +
(··) 10 −

(··)(··) 15 +
(· · ·) 20 +

(··)(· · ·) 20 −
(· · ··) 30 −

(· · · · ·) 24 +
Total 120

Let g ∈ An. Then CAn(g) = CSn(g) ∩An.
If ∃ odd permutation commuting with g then

|CAn(g)| = 1

2
|CSn(g)| & |cclAn(g)| = |cclSn(g)|

Otherwise
|CAn(g)| = |CSn(g)| & |cclAn(g)| = 1

2
|cclSn(g)|

e.g. Taking n = 5, (1 2)(3 4) commutes with the odd permutation (1 2)
(1 2 3) commutes with the odd permutation (4 5)
But if h ∈ CS5

(g) where g = (1 2 3 4 5) then

(1 2 3 4 5) = h(1 2 3 4 5)h−1 = (h(1)h(2)h(3)h(4)h(5))

=⇒ h ∈ 〈g〉 ≤ A5 ∴ |cclA5(g)| = 1

2
|cclS5(g)| = 12

∴ A5 has conjugacy classes of sizes 1, 15, 20, 12, 12.
Exactly as in earlier example, this shows A5 simple.

Lemma 3.1. An is generated by 3-cycles

Proof. Each σ ∈ An is a product of an even number of transpositions.
So it suffices to write the product of any two transpositions as a product of 3-cycles. For
a, b, c, d distinct

(a b)(b c) = (a b c)

(a b)(c d) = (a c b)(a c d)

Lemma 3.2. If n ≥ 5 then all 3-cycles in An are conjugate.

Proof. We claim that every 3-cycle is conjugate to (1 2 3)
Indeed if (a b c) is a 3-cycle then (a b c) = σ(1 2 3)σ−1 for some σ ∈ Sn. If σ 6∈ An then replace
σ by σ(45)
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Theorem 3.3. The alternating group An is simple ∀n ≥ 5

Proof. Let 1 6= N EAn. It suffices to show that N contains a 3-cycle.
Since then by Lemmas 3.1 and 3.2, we have N = An.
We take 1 6= σ ∈ N and write it as a product of disjoint cycles.

• Case 1: σ contains a cycle of length r ≥ 4 w.l.o.g.

σ = (1 2 3 . . . r)τ

Let δ = (1 2 3)

σ−1︸︷︷︸
∈N

δ−1σδ︸ ︷︷ ︸
∈N

= (r . . . 2 1)(1 3 2)(1 2 . . . r)(1 2 3) = (2 3 r)

∴ N contains a 3-cycle.
• Case 2: σ contains two 3-cycles.

w.l.o.g.
σ = (1 2 3)(4 5 6)τ

Let δ = (1 2 4)

σ−1δ−1σδ = (1 3 2)(4 6 5)(1 4 2)(1 2 3)(4 5 6)(1 2 4) = (1 2 4 3 6)

∴ we care done by case 1.
• Case 3: σ contains two 2-cycles w.l.o.g. σ = (1 2)(3 4)τ

Let δ = (1 2 3)

σ−1δ−1σδ︸ ︷︷ ︸
∈N

=

(2 4 1)︷ ︸︸ ︷
(1 2)(3 4)(1 3 2)(1 2)(3 4)(1 2 3) = (1 4)(2 3) = π say

Let ε = (2 3 5)
Then

π−1ε−1πε = (1 4)(2 3)(2 5 3)(1 4)(2 3)(2 3 5) = (2 3 5)

Therefore N contains a 3-cycle

• Conclusion of proof: It remains to consider σ with cycle type

(· ·) =⇒ σ 6∈ An

(· · ·) =⇒ σ is a 3-cycle

(· ·)(· · ·) =⇒ σ 6∈ An

Definition. An automorphism of a group G is an isomorphism G ∼= G.
The automorphisms form a subgroup

Aut(G) ≤ Sym(G)
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4 p-groups and p-subgroups

Definition. Let p be a prime. A finite group G is a p-group if |G| = pn

Theorem 4.1. If G is a p-group then Z(G) 6= 1

Proof. For g ∈ G, we have
|cclG(g)| · |CG(g)| = |G| = pn

So each conjugacy class has size a power of p.
Since G is a union of conjugacy classes

|G| ≡ #(conjugacy classes of size 1)(mod p)
=⇒ 0 ≡ |Z(G)|(mod p)

Can check g ∈ Z(G) ⇐⇒ cclG(g) = {g}
In particular |Z(G)| > 1

Corollary 4.2. The only simple p-group is Cp

Proof. Let G be a simple p-group. Since Z(G) EG, we have Z(G) = 1 or G
Nontrivial by 4.1 so G is abelian and apply lemma 1.3

Corollary 4.3. Let G be a p-group of order pn.
Then G has a subgroup of order pr for all 0 ≤ p ≤ n

Proof. By Lemma 1.4, G has a composition series

1 EG0 EG1 · · ·EGm−1 EGm EG

with each quotient G1/Gi−1 simple. Also, G a p group so Gi/Gi−1 a p-group

=⇒ Gi/Gi−1 ∼= Cp ∴ |Gi| = pi ∀0 ≤ i ≤ m &µ = n

Lemma 4.4. For G a group, if G/Z(G) is cyclic then G is abelian

Proof. Let gZ(G) be a generator for G/Z(G).
Then each coset is of the form grZ(G) for some r ∈ Z.

∴ G = {grz : r ∈ Z, z ∈ Z(G)}

(gr1z1)(gr2z2) = gr1+r2z1z2 since z1 is central

= gr1+r2z2z1 since z1 is central
= (gr2z2)(gr1z1) since z2 is central

∴ G is abelian
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Corollary 4.5. If |G| = p2 then G is abelian

Proof. |Z(G)| =


1 to Thm 4.1
p =⇒ |G/Z(G)| = p. Apply Lemma 4.4
p2 =⇒ Z(G) = G, so done

See example sheet for case

|G| = p3
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4.1 Sylow Theorems

Claim. Let G be a finite group of order pam where p is a prime with p - m. Then
(i) The set Sylp(G) = {P ≤ G : |P | = pa} of Sylow p-subgroups is non-empty
(ii) All elements of Sylp(G) are conjugate
(iii) The number np = |Sylp(G)| of Sylow p-subgroups satisfies np ≡ 1 (mod p) & np||G| (and so in

fact np|m

Proof.
(i) Let Ω be the set of all subsets of G of size pa.

|Ω| =
(
pam

pa

)
=
pam

pa
pam− 1

pa − 1
. . .

pm − pa + 1

1

For 0 ≤ k < pa the numbers pam− k and pa − k are divisible by the same power of p

∴ |Ω| is coprime to p (†)

Let G act on Ω by left multiplication, i.e. for g ∈ G and X ∈ Ω, we put

g ∗X = {gx : x ∈ X} ∈ Ω

For any X ∈ Ω we have
|GX | · |orbG(X)| = |G| = pam

By (†), we can pick X s.t. |orbG(X)| is coprime to p.

∴ pa||GX | (1)

On the other hand, if g ∈ G and x ∈ X then g ∈ (gx−1) ∗X

∴ G =
⋃
g∈G

g ∗X

=⇒ |G| ≤ |orbG(X)| · |X| =⇒ |GX | =
|G|

|orbG(X)|
≤ |X| = pa (2)

(1) and (2) =⇒ |GX | = pa, i.e. GX ≤ G is a Sylow p-subgroup
(ii) We prove a bit more: see lemma 4.7
(iii) Let G act on Sylp(G) by conjugation.

Sylow (ii) =⇒ this action is transitive.
So by the orbit-stabiliser theorem np = |Sylp(G)| divides |G|
Now let P ∈ Sylp(G). Then P acts on Sylp(G) by conjugation. Then the orbits have
size dividing |P |, so either 1 or a multiple of p.
To show np ≡ 1 (mod p), it suffices to show that {P} is the unique orbit size 1.
If {Q} is an orbit size 1, then P normalises Q i.e. P ≤ NG(Q).
Now P and Q are Sylow p-subgroups of NG(Q), hence by (ii) conjugate in NG(Q), hence
equal since QENG(Q)
∴ {P} is the unique orbit of size 1.
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Corollary 4.6. If np = 1 then the unique Sylow p-subgroup is normal

Proof. Let g ∈ G and P ∈ Sylp(G). Then gPg−1 ≤ G is another Sylow p-subgroup so we
must have gPg−1 = P ∀g ∈ G, i.e. P EG

Example. Let |G| = 100 = 23 · 53
Then n5 ≡ 1 (mod 5) & n5|8, so n5 = 1 ∴ the unique Sylow 5-subgroup is normal
∴ G is not simple

Example. Let |G| = 132 = 22 · 3 · 11
Then n11 ≡ 1 (mod 11) and n11|12
So n11 = 1 or 12. Suppose G is simple.
Then n11 6= 1 (otherwise the 11-Sylow subgroup is normal)
∴ n11 = 12 Now n3 ≡ 1 (mod 3) and n3|44
So n3 = 4 or 22 as G simple
Suppose n3 = 4. Then letting G act on Syl3(G) by conjugation gives a group homomorphism
φ : G→ S4

ker(φ)E =⇒
G simple

1︸︷︷︸
G↪→S4

or G︸︷︷︸
to Sylow (ii)

G can’t inject into S4 as then 132 ≤ 24
∴ n3 = 22 and n11 = 12
Hence, G has 22(3− 1) = 44 elements of order 3 and 12(11− 1) = 120 elements of order 11.
But

44 + 120 > 132 = |G|

∴6 ∃ simple group of order 132.

Lemma 4.7. If P ∈ Sylp(G) and Q ≤ G is a p-subgroup then Q ≤ gPg−1 for some g ∈ G

Proof. Let Q act on the set of left cosets G/P by left multiplication i.e.

q ∗ gP = qgP

By the orbit stabiliser theorem, each orbit has size dividing |Q|, so either 1 or a multiple pf p.
Since |G/P | = m is coprime to p, ∃ orbit size 1. i.e. ∃g ∈ G s.t.

qgP = gP ∀q ∈ Q

=⇒ g−1qg ∈ P ∀q ∈ Q

=⇒ Q ≤ gPg−1
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5 Some matrix groups

Let F be a fireld (e.g. C or Z/pZ)

GLn(F ) = n× n invertible matrices over F

SLn(F ) = ker(GLn(F ) →
det

F∗) EGLN (F )

Let Z EGLn(F ) be the subgroup of scalar matrices.

Definition.
PGLn(F ) =

GLn(F )

Z

PSLn(F ) =
SLn(F )

Z ∩ SLn(F )
∼=
ZSLn(F )

Z
≤ PGLn(F )

Example. Let G = GLn(Z/pZ). A list of n vectors in (Z/pZ)n are the columns of some A ∈ G iff
they are linearly independent

∴ |G| = (pn − 1)
1st col

(pn − p)
2nd col

(pn − p2) . . . (pn − pn−1)
last col

= p1+2+···+(n−1)(pn − 1)(pn−1 − 1) . . . (p− 1)

= p(
n
2)

n∏
i=1

(pi − 1)

So the Sylow p-subgroups have order p(
n
2)

One such is the subgroup of upper triangular matrices with 1’s on the diagonal

U = {


1 ∗ ∗ . . .
0 1

0 0
. . .

0 0 . . . 1

} ≤ G
Indeed there are

(
n
2

)
entries *, each of which can take p values.

Remark. Just as PGL2(C) acts on C ∪ {∞} via Mobius maps, PSL2(Z/pZ) acts on Z/pZ ∪ {∞}
Indeed GL2(Z/pZ) acts as [

a b
c d

]
: z 7→ az + b

cz + d

and since scalar matrices act trivially, this is an action of PGL2(Z/pZ)
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Lemma 5.1. The permutation representation PGL2(Z/pZ)→ Sp+1 is injective (in fact isomorphism
if p = 2 or 3)

Proof. Suppose
az + b

cz + d
= z ∀z ∈ Z/pZ ∪ {∞}

Putting z = 0 shows b = 0
Putting z =∞ shows c = 0
Putting z = 1 shows a = d
Thus [

a b
c d

]
is a scalar matrix (diagonal all same scalar) in PGL2(Z/pZ)

Lemma 5.2. If p is an odd prime, then

|PSL2(Z/pZ)| = p(p− 1)(p+ 1)

2

Proof. By example earlier,

|GL2(Z/pZ)| = p(p− 1)(p2 − 1)

Then the group homomorphism GL2(Z/pZ)
det−−→ (Z/pZ)∗ is surjective as we have[

a
1

]
7→ a

∴ |SL2(Z/pZ)| = |GL2(Z/pZ)|
p− 1

= p(p− 1)(p+ 1)

If
[
λ

λ

]
∈ SL2(Z/pZ) then λ2 ≡ 1 (mod p) =⇒ p|(λ− 1)(λ+ 1) =⇒ λ ≡ ±1 (mod p)

∴ the only scalar matrices in SL2(Z/pZ) are ±I, distinct as p 6= 2

∴ |PSL2(Z/pZ)| = 1

2
|SL2(Z/pZ) =

p(p− 1)(p+ 1)

2
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Example. Let G = PSL2(Z/5Z). Then

|G| = 4 · 5 · 6
2

= 60 = 22 · 3 · 5

Let G act on Z/5Z ∪ {∞} via [
a b
c d

]
: z 7→ az + b

cz + d

By Lemma 5.1, there is an injective group homomorphism

φ : G→ Sym({0, 1, . . . , 4,∞}) ∼= S6

Claim.
Im(φ) ≤ A6

i.e. ψ : G→
φ
S6

sign−−→ {±1} is trivial.

Proof. If m is odd, then

ψ(g) = 1 ⇐⇒ ψ(g)m = 1 ⇐⇒ ψ(gm) = 1

So suffices to consider g ∈ G with order a power of 2. Lemma 4.7 =⇒ every such element
belongs to a Sylow 2-subgroup.
So it suffices to check ψ(H) = 1 for H a Sylow 2-subgroup. (Using here that any two Sylow
2-subgroups are conjugate and ψ maps to an abelian group)
We take

H =

〈
±
[
2 0
0 3

]
,±
[

0 1
−1 0

]〉
≤ G =

SL2(Z/5Z)

{±I}
We compute

φ

[
2 0
0 3

]
= (1 4)(2 3) z 7→ −z

φ

[
0 1
−1 0

]
= (0∞)(1 4) z 7→ −1

2

These are even permutations ∴ ψ(H)
This proves the claim.
The last part of ES1 Q14 shows that if G ≤ A6 and |G| = 60 then G ∼= A5

Note. Facts (not proved in the course):
• PSLn(Z/pZ) is a simple group ∀n ≥ 2, p prime, except (r, p) = (2, 2) or (2, 3)
• The smallest non-abelian simple groups are

A5
∼= PSL2(Z/5Z) order 60

PSL2(Z/7Z) ∼= GL3(Z/2Z) order 168
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6 Finite Abelian Groups

Later in this course, we prove:

Theorem 6.1. Every finite abelian group is isomorphic to a product of cyclic groups.
However, such a decomposition is not unique

Lemma 6.2. If m and n are coprime then Cm × Cn ∼= Cmn

Proof. Let g and h be generators of Cm and Cn.
We have (g, h) ∈ Cm × Cn and (g, h)r = (gr, hr)
In particular

(g, h)r = 1 ⇐⇒ m|r and n|r (1)
⇐⇒ mn|r (2)

∴ (g, h) has order mn = |Cm × Cn| ∴ Cm × Cn ∼= Cmn

Corollary 6.3. Let G be a finite abelian group. Then

G ∼= Cn1
× Cn2

× · · · × Cnk

where each ni is a prime power.

Proof. If n = pa11 . . . parr (p1, . . . , pr distinct primes) then Lemma 6.2 shows

Cn ∼= Cpa11
× Cpa12

× · · · × Cparr

Writing each of the cyclic groups in Theorem 6.1 in this way gives the result

Note. In fact, we will prove the following refinement of Theorem 6.1:

Theorem 6.4. Let G be a finite abelian group. Then

G ∼= Cd1 × Cd2 × · · · × Cdt

for some d1|d2| . . . |dt

Remark. The integers n1, . . . , nk in Corollaryy 6.3 (up to order) nd the integers d1, . . . , dt in Theorem
6.4 (assuming d1 > 1) are uniquely determined by the group G.
The proof (which we omit) works by counting the number of elements of G of each prime power order.
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Examples.
(i) The abelian groups of order 8 are

C8, C2 × C4 and C2 × C2 × C2

(ii) The abelian groups of order 12 are

C2 × C2 × C3 C4 × C3 using cor. 6.3

C2 × C6 C12 using cor. 6.4

Definition. The exponent of a group G is the least integer n ≥ 1 s.t. gn = 1 ∀g ∈ G i.e. the
LCMof all the orders of the elements of G

Example. A4 has exponent 6.

Corollary 6.5. Every finite abelian group contains an element whose order is the exponent of the
group.

Proof. If
G ∼= Cd1 × · · · × Cdt with d1|d2| . . . |dt

then every g ∈ G has order dividing dt, and if h ∈ Cdt is a generator then (1, 1, 1, . . . , 1, h) ∈ G
has order dt. ∴ G has exponent dt

7 Rings - Definition and Examples

Definition. A ring is a triple (R,+, ·) consisting of set R and two binary opertations + : R×R→ R
and · : R×R satisfying
(i) (R,+) is an abelian group, with identity 0 (= 0R)
(ii) Multiplication is associative and has an identity i.e.

x · (y · z) = (x · y) · z ∀x, y, z ∈ R

and
∃1 ∈ R s.t. x · 1 = 1 · x = x ∀x ∈ R

(can write 1 = 1R)
(iii) Ditributive laws

x · (y + z) = x · y + x · z ∀x, y, z ∈ R

(x+ y) · z = x · z + y · z∀x, y, z ∈ R
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Remarks.
(i) As in the case of groups, don’t forget to check closure
(ii) For x ∈ R we write −x for the its inverse under addition and abbreviate x+ (−y) as x− y
(iii)

0 · x = (0 + 0) · x = 0 · x+ 0 · x =⇒ 0 · x = 0 ∀x ∈ R

(iv)
0 = 0 · x = (1− 1) · x = 1 · x+ (−1) · x = x+ (−1) · x =⇒ (−1) · x = −x ∀x ∈ R

(v) Using (iv), it is possible to deduce + is commutative from the other axioms

Definition. R is commutative if

x · y = y · x ∀x, y ∈ R

In this course, we only consider commutative rings

Definition. A subset S ⊆ R is a subring (written S ≤ R) if it is a ring under the same operations
+ and · with the same identity elements 0 and 1

Examples.
(i) We have subrings

Z ≤ Q ≤ R ≤ C

(ii)
Z[i] = {a+ bi : a, b ∈ Z} ≤ C

is the ring of Gaussian integers
(iii)

Q[
√

2] = {a+ b
√

2 : a, b ∈ Q} ≤ R

(iv)

Z
[

1

p

]
= {m

pn
: m ∈ Z, n ≥ 0} ≤ Q

(v)
Z
nZ

= { integers mod n}
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7.1 New rings from old

Examples.
(i) If R and S are rings then their product R× is a ring via

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2)

(r1, s1) · (r2, s2) = (r1 · r2, s1 · s2)

We have
0R×S = (0R, 0S) and 1R×S = (1R, 1S)

Note. R× {0} is not a subring

(ii) If R is a ring, and X is a set then the set of all functions X → R is a ring under pointwise
operations

(f + g)(x) = f(x) + g(x)

(f · g)(x) = f(x) · g(x)

further interesting examples appear as subgrings e.g. continuous functions {R→ R}
(iii) Let R be a ring and S the set of all sequences (a0, a1, a2, . . . ) ai ∈ R with ai = 0 ∀i sufficiently

large.
(a0, a1, a2, . . . ) + (b0, b1, b2, . . . ) = (a0 + b0, a1 + b1, . . . )

(a0, a1, a2, . . . ) · (b0, b1, b2, . . . ) = (c0, c1, c2, . . . )

where

cn =

n∑
i=0

aibn−i

It may be checked that S is a ring

0S = (0, 0, 0, . . . )

1S = (1, 0, 0, . . . )

We identify R with the subring

{(a, 0, 0, . . . ) : a ∈ R} ≤ S

Define X = (0, 1, 0, . . . ). Then

Xm = (0, 0, . . . , 0,
n zeros

1, 0, . . . )

and
(a0, a1, a2, . . . , an, 0, 0, . . . ) = anX

n + an−1X
n−1 + · · ·+ a1X + a0

∴ S
R[X]

is the ring of polynomials with coefficients in R

Remark. Let R = Z/pZ, p prime and f(X) = Xp −X. Then the function x 7→ f(x)
R→R

is identically

zero but the polynomial f is non-zero
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Examples (Further Examples).
(i)

R[X1, . . . , Xn] = polynomials in X1 . . . , Xn with coefficients in R

(could define inductively R[X1, . . . , Xn] = R[X1, . . . , Xn−1][Xn])
(ii) Power series ring

R[[X]] = {a0 + a1X + a2X
2 + . . . |ai ∈ R}

(iii) Laurent polynomials

R[X,X−1] =

{∑
i∈Z

aiX
i|ai ∈ R, and only finitely many ai 6= 0

}

Definition. An element r ∈ R is a unit if it has an inverse under multiplication, i.e. ∃s ∈ R s.t.
r · s = 1

Note. 2 is a unit in Q, but not in Z

The units in a ring R form a group (R×, ·) under multiplication, e.g.

Z× = {±1}

Q× = Q\{0}

Definition. A field is a ring with 0 6= 1, such that every non-zero element is a unit.
(e.g. Q,R,C,Z/pZ p prime)

Remark. If R is a ring with 0 = 1 then

x = 1 · x = 0 · x = 0 ∀x ∈ R

=⇒ R = {0}

is the trivial ring
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Lemma 7.1. Let f, g ∈ R[X]. Suppose the leading coefficient of g is a unit.
Then ∃ q, r ∈ R[X] s.t. f(X) = q(X)g(X) + r(X) where deg(r) < deg(g)

Proof. By induction on n = deg(f). Write

f(X) = anX
n + an−1X

n−1 + · · ·+ a1X + a0 an 6= 0

g(X) = bmX
m + bm−1X

m−1 + · · ·+ b1X + b0 bm ∈ R×

If n < m, then put q = 0, r = fX
Otherwise we have n ≥ m and we put f1(X) = f(X)− anb−1m Xn−mg(X)
Coeff of Xn is an − anb−1m bm = 0

∴ deg(f1) < n

By induction hypothesis,

f1(X) = q1(X)g(X) + r(X) deg(r) < deg(g)

=⇒ f(X) = q(X)
(q1(X)+anb

−1
n Xn−m)

g(X) + r(X)

Remark. If R is a field, then we only need g 6= 0

8 Ideals and Quotients

Definition. Let R and S be rings. A function φ : R→ S is a ring homomorphism if
(i)

φ(r1 + r2) = φ(r1) + φ(r2) ∀r1, r2 ∈ R

(ii)
φ(r1r2) = φ(r1)φ(r2) ∀r1, r2 ∈ R

(iii)
φ(1R) = 1S

Definition. A ring homomorphism that is also a bijection is called an isomorphism

Definition. The kernel of φ is

ker(φ) = {r ∈ R : φ(r) = 0S}
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Lemma 8.1. A ring homomorphism is injective if

ker(φ) = {0R}

Proof.
φ : (R,+)→ (S,+)

is a group homomorphism, so lemma follows from corresponding result for groups

Definition. A subset I ⊆ R is called an ideal (written I ER) if
(i) I is a subgroup of (R,+)
(ii) r ∈ R and x ∈ I =⇒ rx ∈ I

Remark. If I contains 1 (or more generally if I contains a unit) then by (ii), we have I = R. Hence
if R is a field then the only ideals are {0} and R.

Definition. We say I is proper if I 6= R

Lemma 8.2. If φ : R→ S is a ring homomorphism then ker(φ) is an ideal in R

Proof. φ : R→ S is a ring homomorphism, so ker(φ) is a subgroup of (R,+).
If r ∈ R and x ∈ ker(φ) then

φ(rx) = φ(r)φ(x) = φ(r) · 0 = 0 =⇒ rx ∈ ker(φ)

Lemma 8.3. The ideals in Z are nZ for n = 0, 1, 2, . . .

Proof. Certainly nZE Z
Let I E Z be a non-zero ideal, so a subgroup of (Z,+)
Let n be the least positive integer in I.
Then nZ ⊆ I
If m ∈ I then write m = qn+ r with q, r ∈ Z, 0 ≤ r < n
Then

r = m− qn ∈ I

This contradicts the choice of n unless r = 0

∴ I = nZ

Definition. For a ∈ R we write (a) = {ra : r ∈ R}ER
This is called the ideal generated by a
More generally if a1, . . . , an ∈ R, we write

(a1, . . . , an) = {r1a1 + · · ·+ rnan : ri ∈ R}ER
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Definition. Let I ER. We say I is principal if I = (a) for some a ∈ R

Note. Lemma 8.3 shows that every ideal in Z is principal

Theorem 8.4. If I E R then the set R/I of cosets of I in (R,+) forms a ring (called the quotient
ring) with operations

(r1 + I) + (r2 + I) = r1 + r2 + I

(r1 + I) · (r2 + I) = r1r2 + I

and
0R/I = 0R + I

1R/I = 1R + I

Moreover the map r 7→ r + I
R→R/I

is a ring homomorphism (called the quotient map) with kernel I

Proof. We already know that (R/I,+) is a group.
If r1 + I = r′1 + I and r2 + I = r′2 + I then

r′1 = r1 + a1 and r′2 = r2 + a2 a1, a2 ∈ I

Then
r′1r
′
2 = (r1 + a1)(r2 + a2) = r1r2 + r1a2︸︷︷︸

∈I

+ r2a1︸︷︷︸
∈I

+ a1a2︸︷︷︸
∈I

∴ r′1r
′
2 + I = r!r2 + I

The remaining properties to show R/I is a ring follow from those of R
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Examples.
(i) We have nZE Z with quotient ring Z/nZ

This ring has elements
0 + nZ, 1 + nZ, . . . , (n− 1) + nZ.

Addition and multiplication are carried out mod n
(ii) Consider (X) E C[X]

This is the ideal of polynomials whose constant term is 0. If

f(X) = anX
n + · · ·+ a1X + a0 ai ∈ C

Then
f(X) + (X) = a0 + (X)

There is a bijection
C[X]

(X)
↔ C

f(X) + (X) 7→ f(0)

a+ (X)← [ a

These maps are ring homomorphisms

∴
C[X]

(X)
∼= C

(iii)
R[X]

(X2 + 1)
= {f(X) + (X2 + 1) : f(X) ∈ R[X]}

By Lemma 7.1
f(X) = q(X)(X2 + 1) + r(X)

with deg r < 2, i.e.
r(X) + a+ bX a ∈ R

∴
R[X]

X2 + 1
= {a+ bX + (X2 + 1) : a, b ∈ R}

If
a+ bX +X2 + 1 = a′ + b′X +X2 + 1

then
a− a′ + (b− b′) = q(X)(X2 + 1) for some q ∈ R[x]

Comparing degrees we see q(X) = 0 and a = a′, b = b′
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Examples.
(iii) (continued) ∴ There is a bijection

R[X]

(X2 + 1)

φ←→ C

a+ bX + (X2 + 1) 7→ a+ bi

We show φ is a ring homomorphism. It preserves addition and maps 1 + (X2 + 1) to 1

φ(a+ bX + (X2 + 1))(c+ dX + (X2 + 1))

= φ((a+ bX)(c+ dX) + (X2 + 1))

= φ(ac+ (ad+ bc)X + bd(X2 + 1)− bd︸ ︷︷ ︸
=−bd

+(X2 + 1))

= φ(ac+ (ad+ bc)X − bd+ (X2 + 1))

= ac− bd+ (ad+ bc)i

= (a+ bi)(c+ di)

= φ(a+ bX + (X2 + 1))φ(c+ dX + (X2 + 1))

∴
R[X]

(X2 + 1)
∼= C

8.1 First Isomorphism Theorem

Theorem 8.5 (First Isomorphism Theorem). let φ : R→ S be a ring homomorphism.
Then ker(φ) ER and

R/ ker(φ) ∼= Im(φ) ≤ S

Proof. We already saw that ker(φ) ER (Lemma 8.2) and Im(φ) is a subgroup of (S,+)
Now

φ(r1)φ(r2) = φ(r1r2) ∈ Im(φ)

1S = φ(1R) ∈ Im(φ)

∴ Im(φ) is a subgring of S.
Let K = ker(φ)
We define

Φ : R/K → Im(φ)

r +K 7→ φ(r)

this is well defined, a bijection and a group homomorphism under +, by the first isomorphism
theorem for groups.
Also

Φ(1R +K) = φ(1r) = 1s

and

Φ((r1 +K)(r2 +K)) = Φ(r1r2 +K) = φ(r1r2) = φ(r1)φ(r2) = Φ(r1 +K)Φ(r2 +K)

∴ Φ is an isomorphism of rings
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8.2 Second Isomorphism Theorem

Theorem 8.6 (Second Isomorphism Theorem). Let R ≤ S and J E S. Then

R ∩ J ER

R+ J ≤ S

and
R

R ∩ J
∼=
R+ J

J
≤ S

J

Proof. Clearly R+ j is a subgroup of (S,+)
It contains 1 (since 1 ∈ R and 0 ∈ J) and if r1r2 ∈ R, x1x2 ∈ J

(r1 + x1)(r2 + x2) = r1r2︸︷︷︸
∈R

+ r1x2 + r2x2 + x1x2︸ ︷︷ ︸
∈J

∈ R+ J

∴ R+ J ≤ S

Let φ : R→ S/J , r 7→ r + J
This is the composite of the inclusion R ⊆ S and the quotient map S → S/J , therefore a ring
homomorphism

ker(φ) = {r ∈ R|r + J = J} = R ∩ J ER

Im(φ) = {r + J |r ∈ R} =
R+ J

J
≤ S

J

Apple the first isomorphism theorem.

Remark. To motivate the 3rd isomorphism theorem, we note there is a bijection

{ ideals in R/I} ↔ {ideals of R containing I}

K 7→ {r ∈ R|r + I ∈ K}

J/I ← [ J
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8.3 Third Isomorphism Theorem

Theorem 8.7 (Third Isomorphism Theorem). Let I ER, J ER with I ⊆ J
Then

J/I ER/I

and
R/I

J/I
∼= R/J

Proof. Consider φ : R/I → R/J
r + I 7→ r + J

This is a ring homomorphism (well-defined since I ⊆ J)

ker(φ) = {r + I : r ∈ J} = J/I ER/I

Im(φ) = R/J

Apply the first isomorphism theorem.

Example. There is a surjective ring homomorphism

R[X]→ C

f(X) =
∑

anX
n 7→ f(i) =

∑
ani

n

Using Lemma 7.1, we find
ker(φ) = (X2 + 1)

First isomorphism thm =⇒ R[X]

(X2 + 1)
∼= C

Example. For any ring R, there is a unique ring homomorphism ι : Z→ R
It is given by:

0 7→ 0R

1 7→ 1R

n 7→ 1R + · · ·+ 1R

−n 7→ −(1R + · · ·+ 1R)

Since ker(ι) E Z, we have ker(ι) = nZ for some n ∈ {0, 1, 2, . . . }
By the first isomophism theorem

Z/nZ ∼= Im(ι) ≤ R

Definition. We call n the characteristic of R
For example Z,Q,R and C has characteristic 0
Whereas Z/pZ and Z/pZ [X] both have characteristic p

Remark. If char(R) = n > 0, then n is the order of 1 in (R,+)
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9 Integral Domains, Maximal Ideals and Prime Ideals

Definition. An integral domain is a ring R with 0 6= 1 such that for a, b ∈ R

ab = 0 =⇒ a = 0 or b = 0

A zerodivisor in a ring R is a non-zero element a such that ab = 0 for some 0 6= b ∈ R.
So an integral domain is a ring without zero divisors.

Examples.
(i) All fields are integral domains (if ab = 0 with b 6= 0 then multiplying by b−1 shows that a = 0)
(ii) Any subring of an integral domain is an integral domain, e.g. Z[i] ≤ C
(iii) Z× Z is not an integral domain since (1, 0) · (0, 1) = (0, 0)

Lemma 9.1. R an integral domain =⇒ R[X] an integral domain.
Moreover if f, g ∈ R[X] non-zero then

deg(fg) = deg(f) + deg(g)

Proof. Write
f(X) = amX

m + · · ·+ a1X + a0 am 6= 0

g(X) = bnX
n + · · ·+ b1X + b0 bn 6= 0

Then
f(X)g(X) = ambn︸ ︷︷ ︸

6=0

Xm+n + . . .

non-zero as R is an integral domain
∴ fg 6= 0 and deg(fg) = m+ n = deg(f) + deg(g)

Lemma 9.2. Let R be an integral domain, and 0 6= f ∈ R[X]
Let

Roots(f) = {a ∈ R : f(a) = 0}

Then #Root(f) ≤ deg(f)

Proof. See example sheet

Theorem 9.3. Any finite subgroup of the multiplicative group of a field is cyclic

Proof. Let F be a field and A ≤ F ∗ a finite subgroup.
A is a finite abelian group. If it is not cyclic then by Theorem 6.4 (= structure theorem for
finite abelian groups) it contains a subgroup isomorphic to Cm × Cm for some m ≥ 2. But
then the polynomial

f(X) = Xm − 1 ∈ F [X] has degree m and ≥ m2 roots

Contradicting lemma 9.2
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Examples.
(Z/pZ)

∗ is cyclic

µm = {z ∈ C : zm = 1} ≤ Ck is cyclic

Prop 9.4. Any finite integral domain is a field

Proof. Let R be a finite integral domain.
Let 0 6= a ∈ R. Consider the map φ : R→ R

x 7→ ax

If φ(x) = φ(y) then
a(x− y) = 0 =⇒ x− y = 0 =⇒ x = y

(as R an integral domain and a 6= 0)
∴ φ is injective
R finite =⇒ φ is surjective
=⇒ ∃b ∈ R s.t. ab = 1, i.e. a is a unit
∴ R is a field
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Theorem 9.5. Let R be an integral domain. There is a field F such that
(i) R ≤ F , and
(ii) Every element of F may be written in the form ab−1 where a, b ∈ R with b 6= 0

F is called the field of fractions of R

Proof. Consider the set
S = {(a, b) : a, b ∈ R, b 6= 0}

and the equivalence relation ∼ on S given by

(a, b) ∼ (c, d) ⇐⇒ ad− bc = 0

This is clearly reflexive and symmetric. For transitivity:
if (a, b) ∼ (c, d) ∼ (e, f)
then

(ad)f = (bc)f = b(cf) = b(de) =⇒ d(af − be) = 0

Since R is an integral domain and d 6= 0, this gives af − be = 0 i.e.

(a, b) ∼ (e, f)

Let F = S/ ∼ and write a/b for [(a, b)].
Define

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d

=
ac

bd

It may be checked that these operations are well-defined, and make F into a ring with

0F =
0R
1R

and 1F =
1R
1R

If ab 6= 0F then a 6= 0R and a
b ·

b
a = ab

ab = 1R
1R

= 1F
So F is a field.
(i) We identify R with {r

1
: r ∈ R

}
(ii)

a

b
=
(a

1

)( b
1

)−1

Examples.
(i) Z is an integral domain with field of fractions Q
(ii) Z[i] has field of fractions

F = {ab−1 : ab ∈ Z[i], b 6= 0} ≤ C

In fact
F = {x+ iy : x, y ∈ Q}

(iii) C[X] has field of fractions

C(X) = field of rational functions in X
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Lemma 9.6. A non-zero ring R is a field ⇐⇒ its only ideals are {0} and R

Proof. “ =⇒ ” If 0 6= I ER then I contains a unit and hence I = R
“ ⇐= ” If 0 6= x ∈ R then the principal ideal (x) is non-zero. Hence,

(x) = R

So ∃y ∈ R s.t. xy = 1 i.e. x is a unit

Definition.
(i) Let S be a collection of subsets of a set X.

A ∈ S is maximimal if @B ∈ S s.t. A ( B
(ii) An ideal I ER is maximal if it is maximal among all proper ideals of R

(i.e. I 6= R and @J ER with I ( J ( R)

Prop 9.7. Let I ER be an ideal

I is maximal ⇐⇒ R/I is a field

Proof. R/I is a field ⇐⇒ I/I and R/I are the only ideals in R/I
⇐⇒ I and R are the only ideals in R containing I
⇐⇒ I ER is maximal

Definition. An ideal I ER is prime if I 6= R and whenever a, b ∈ R with ab ∈ I, we have a ∈ I or
b ∈ I

Example. The ideal nZE Z is a prime ideal iff n = 0 or n = p is a prime number.
Indeed if ab ∈ pZ then p|ab, so p|a or p|b so a ∈ pZ or b ∈ pZ.
Conversely, if n = uv is composite (so u, v > 1) then uv ∈ nZ, yet u 6∈ nZ, v 6∈ nZ

Prop 9.8. Let I ER be an ideal

I is prime ⇐⇒ R/I is an integral domain

Proof. I is prime
⇐⇒ whenever a, b ∈ R with ab ∈ I, we have a ∈ I or b ∈ I
⇐⇒ whenever a + I, b + I ∈ R/I with (a + I)(b + I) = 0 + I we have a + I = 0 + I or
b+ I = 0 + I
⇐⇒ R/I is an integral domain

Remark. Proposition 9.7 and 9.9 show that

I maximal =⇒ I prime
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Remark. If char(R) = n then Z/nZ ≤ R
So if R is an integral domain then Z/nZ is an integral domain

=⇒ nZE Z is a prime ideal

=⇒ n = 0 or n = p is a prime

In particular any field either has characteristic 0 (and so contains Q as a subfield) or else has char-
acteristic p (and so contains Fp = Z/pZ as a subfield)

10 Factorisation in Integral Domains

Note. In this section R is always an integral domain

Definition.
(i) a ∈ R is a unit if ∃b ∈ R with ab = 1, equivalently (a) = R
(ii) a ∈ R divides b ∈ R (written a|b) if ∃c ∈ R s.t. b = ac, equivalently,

(b) ⊆ (a)

(iii) a, b ∈ R are associates if a = bc for some unit c ∈ R, equivalently

(a) = (b)

(iv) r ∈ R is irreducible if it is not zero not a unit and

r = ab =⇒ a or b is a unit

(v) r ∈ R is prime if it is not zero, not a unit and

r|ab =⇒ r|a or r|b

Remark. These properties depend on the ambient ring R
e.g. 2 is prime and irreducible in Z but not in Q
2X is irreducible in Q[X], but not in Z[X]

Lemma 10.1. (r) is a prime ideal in R ⇐⇒ r = 0 or r is a prime

Proof. “ =⇒ ” Suppose (r) is prime and r 6= 0.
As prime ideals are proper, (r) 6= R, so r is not a unit
If r|ab then ab ∈ (r) so a ∈ (r) or b ∈ (r)
so r|a or r|b
∴ r is prime
“ ⇐= ” {0}ER is a prime ideal since R is an integral domain.
Let r ∈ R be prime. If ab ∈ (r) then r|ab so r|a or r|b, so a ∈ (r) or b ∈ (r)
∴ (r) is a prime ideal
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Lemma 10.2. If r ∈ R is prime, then it is irreducible

Proof. Since r is prime, it is not zero and not a unit
Suppose r = ab. Then r|ab, so r|a or r|b
Let’s suppose r|a, say a = rc some c ∈ R.
Then

r = ab = rcb =⇒ r(1− bc) = 0

as r 6= 0 and R is an integral domain

1− bc = 0

so b is a unit
Likewise if r|b then a is a unit

Warning. The converse does NOT hold in general

Example. Let
R = Z[

√
−5] = {a+ b

√
−5 : a, b ∈ Z} ≤ C

It is a subring of a field, so an integral domain.
Define a function N : R→ Z≥0 “the norm”

z = a+ b
√
−5 7→ |z|2 = a2 + 5b2

and note that
N(z1z2) = N(z1)N(z2)

Claim. The units in R are ±1.

Proof. If r ∈ R is a unit i.e. rs = 1 for some s ∈ R then

N(r)N(s) = N(rs) = N(1) = 1 =⇒ N(r) = 1

But the only integer solutions to a2 + 5b2 = 1 are (a, b) = (±1, 0)

Claim. 2 ∈ R is irreducible

Proof. Suppose 2 = rs some r, s ∈ R. taking norms we get

N(r)N(s) = 4

Since a2 + 5b2 = 2 has no solutions with a, b ∈ Z, there are no elements of norm 2.
∴ N(r) = 1 and N(s) = 4 or vice versa. But N(r) = 1 =⇒ r is a unit
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Note. Similarly, 3, 1 +
√
−5, 1−

√
−5 are irreducible, as there are no elements of norm 3.

We have (1 +
√
−5)(1−

√
−5) = 2 · 3

yet 2 - 1 +
√
−5 and 2 - 1−

√
−5

Seen by taking norm or by noting that 1±
√
−5

2 6∈ R
2 lessons:
(i) irreducible 6=⇒ prime
(ii) 2 · 3 = (1 +

√
−5)(1−

√
−5) gives two factorisations into irreducibles

Remark. Since the only units in R are ±1, it is clear that the irreducibles in (ii) are not associates.

Definition. An integral domain R is called a principal ideal domain (PID) if every ideal of R is
principle, i.e. is of the form (a) for some a ∈ R
e.g. Z is a PID by Lemma 8.3
We will show that Z[i] and F[X] for F a field are PIDs

Lemma 10.3. Let 0 6= r ∈ R. If (r) is a maximal ideal then r is irreducible and the converse holds
if R is a PID.

Proof. we have r 6= 0 (by assumption) and r is not a unit (since maximal ideals are proper).
Suppose r = ab with a, b ∈ R.
Then

(r) ⊆ (a) ⊆ R

(r) maximal =⇒ either (r) = (a) or (a) = R

(r) = (a) =⇒ b is a unit

(a) = R =⇒ a is a unit

∴ r is irreducible.
Conversely, suppose r is irreducible and (r) ⊆ J ⊆ R

R is PID =⇒ J = (a) for some a ∈ R
=⇒ r = ab for some b ∈ R

Since r is irreducible either:
a is a unit =⇒ J = R

or
b is a unit =⇒ (r) = J

∴ (r) is maximal
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Prop 10.4. Let R be a PID. Then every irreducible element of R is prime.

Proof (Version 1). Let p ∈ R be irreducible and p|ab and - a.
R is a PID =⇒ (a, p) = (d) for some d ∈ R
In particular p = cd for some c ∈ R
Since p is irreducible either c or d is a unit.
If c is a unit then

(a, b) = (p), so p|a

If d is a unit then (a, p) = R
so ∃r, s ∈ Rs.t.ra+ sp = 1

Then b = rab+ spb and since p|ab we get p|b
∴ p is prime

Proof (Version 2). p irreducible =⇒ (p) is maximal (lemma 10.3)
=⇒ R/(p) is a field
=⇒ R/(p) is an integral domain
=⇒ (p) is prime
=⇒ p is prime

Definition. An integral domain R is a Euclidean domain (ED) if there is a function

φ : R\{0} → Z≥0 (a Euclidean function)

such that
(i) if a|b then φ(a) ≤ φ(b)
(ii) if a, b ∈ R with b 6= 0 then ∃q, r ∈ R with a = qb+ r and either r = 0 or φ(r) < φ(b)

Prop 10.5. If R is a Euclidean domain then it is a principal ideal domain
(i.e. ED =⇒ PID)

Proof. Let R have Euclidean function

φ : R\{0} → Z≥0

Let I ER be a non-zero ideal choose b ∈ I\{0} with φ(b) minimal
We have (b) ⊆ I.
For a ∈ I we write

a = qb+ r

with q, r ∈ R and either r = 0 or φ(r) ≤ φ(b)
Since r = a− qb ∈ I, this contradicts the choice of b, unless r = 0
But then a = qb ∈ (b).
Hence

I = (b)

Remark. We only used (ii) here. The reason for including (i) in the definition of ED is that it allows
us to describe the units as

R× = {u ∈ R\{0}|φ(u) = φ(1)
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Examples.
(i) Z is a Euclidean domain with φ(n) = |n|
(ii) If F is a field, then F [X] is a Euclidean domain with

φ(f) = deg(f)

(see Lemma 7.1 and 9.1)
(iii) R = Z[i] ≤ C is a Euclidean domain with

φ(a+ ib) = N(a+ ib) = |a+ ib|2 = a2 + b2

Since N(z1z2) = N(z1)N(z2) property under (i) is clear
For property (ii), let z1, z2 ∈ Z[i] with z2 6= 0
Consider z1/z2 ∈ C. This has distance les than 1 from the nearest element of Z[i]

1 2

i

2i

So we can write
z1
z2

= q + ε

where q ∈ Z[i], ε ∈ C, |ε| < 1
=⇒ z1 = qz2 + εzr︸︷︷︸

r

r = z1 − qz2 ∈ Z[i]

and
φ(r) = |εz2|2 < |z2|2 = φ(z2)

It follows from prop 10.5 that F [X] for F a field nd Z[i] are PID’s.

Example. Let A be a n× n matrix over a field F . Let

I = {f ∈ F [X] : f(A) = 0}

If f, g ∈ I then (f + g)(A) = f(A) + g(A) = 0, so f + g ∈ I
If f ∈ F [X], g ∈ I then (fg)(A) = f(A)g(A) = 0
So I is an ideal in F [X]
F [X] is a PID =⇒ I = (f) for some f ∈ F [X], which we may suppose monic by multiplying by a
unit.
Note that for g ∈ F [X]

g(A) = 0 ⇐⇒ g ∈ I ⇐⇒ g ∈ (G) ⇐⇒ f |g

We say f is the minimal polynomial of A
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Example. Let F2 = Z/2Z be the field with 2 elements
Let f(X) = X3 +X + 1 ∈ F2[X]
If f(X) = g(X)h(X) with g, h ∈ F2[X] and deg(g),deg(h) > 0 then one of these factors is linear, and
so f has a root. But f(0 6= 0 and f(1) 6= 0
∴ g is irreducible.
Since F2[X] is a PID, it follows from Lemma 10.3 that (f) E F2[X] is maximal, hence

F2[X]

(f)
= {aX2 + bX + c+ (f)|a, b, c ∈ F2}

is a field of order 8

Example. The ring Z[X] is not a PID
Indeed consider (2, X) E Z[X]
Then

I = {2f1(X) +Xf2(X) : f1, f2 ∈ Z[X]}
= {f ∈ Z[X] : f(0) is even}

Suppose I = (f) for some f ∈ Z[X]
Then 2 = fg for some g ∈ Z[X]

∴ deg(f) = deg(g) = 0

∴ f = ±1 or ± 2

∴ I = Z[X] or 2Z[X]

I = Z[X] is impossible as 1 6∈ I, 2Z[X] impossible as X ∈ E

Definition. An integral domain is a unique factorisation domain (UFD) if
(i) every non-zero, non unit is a product of irreducibles
(ii) if p1 . . . pm = q1 . . . qn where p1 and qi are irreducibles then m = n and e may reorder s.t.pi is

an associate of qi ∀1 ≤ i ≤ n
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Prop 10.6. Let R be an integral domain satisfying (i) in the definition of UFD. Then R is a UFD
⇐⇒ every irreducible in R is prime

Proof. “ =⇒ ” suppose p ∈ R is irreducible, and p|ab, say

ab = pc

for some c ∈ R
Writing a, b, c as products of irreducibles, it follows from (ii) that p|a or p|b.

∴ p is prime

“ ⇐= ” suppose p1 . . . pm = q1 . . . qn with each p1 and qi irreducible.
Since p1 is prime and p1|q1 . . . qn we have p1|qi for some i. After some reordering, we may
assume p1|q1 i.e.

q1 = up1

for some u ∈ R. But q1 is irreducible and p1 is not a unit, so u is a unit

∴ p1 and q1 are associates

Cancelling p1 gives p2 . . . pm = (uq2) . . . qn
The result then follows by induction

Lemma 10.7. Let R be a PID and
I1 ⊆ I2 ⊆ I3 ⊆ . . .

a nested sequence of ideals. Then ∃N ∈ N s.t. In = In+1 ∀n ≥ N .
(Rings satisfying this “ascending chain condition” are called Noetherian - more on this later)

Proof. Let

I =

∞⋃
1

Ii

This is an ideal in R.
As R is a PID, we have

I = (a) for some a ∈ R

Then

a ∈
∞⋃
i=1

Ii

so a ∈ IN for some N
Then for any n ≥ N we have

(a) ⊆ IN ⊆ In ⊆ I = (a)

and so In = I
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Theorem 10.8. If R is a principal ideal domain then it is a unique factorisation domain (i.e. PID
=⇒ UFD)

Proof. We must check (i) and (ii) in the definition of UFD
(i) Let 0 6= x ∈ R, not a unit. Suppose it is not a product of irreducibles. Then x is not

irreducible, so can write
x = x1y1

where x1, y1 are not units.
One or other of x1 and y1 is not a product of irreducibles. Let’s say it’s x1.
we have (x) ⊆ (x1) and this inclusion is strict since y1 is not a unit.
Now write

x1 = x2y2

where x2, y2 are not units. Repeating in this way we obtain

(x) ⊂ (x1) ⊂ (x2) ⊂ . . .

(contradicts lemma 10.7)
(ii) By proposition 10.6, it suffices to show that irreducibles are prime, which we proved in

proposition 10.4.

Examples.
ED =⇒ PID =⇒ UFD =⇒ integral domain

Z/4Z X X X X
Z[
√
−5] X X X X

Z[X] X X X X

Z[ 1+
√
−19
2 ] X X X X

See next section and part II number fields for 3rd and 4th

Definition. Let R be an integral domain
(i) d ∈ R is a greatest divisor of a1, . . . , an ∈ R written

d = gcd(a1, . . . , an)

if d|ai ∀i and if d′|ai∀i =⇒ d′ | d
(ii) m ∈ R is a least common multiple written

m = lcm(a1, . . . , an)

if ai|m ∀i and ai|m′ ∀i =⇒ m|m′
Both gcd’s and lcm’s (when they exist) are unique up to multiplying by a unit
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Prop 10.9. In a UFD, both lcm’s and gcd’s exists

Proof. Write
ai = ui

∏
j

p
nij
j ∀1 ≤ i ≤ n

where ui is a unit, the pj are irreducibles which are not associates of each other and nij ∈ Z≥0
we claim that

d =
∏
j

p
mj
j

where
mj = min

1≤i≤n
nij

is the gcd of a1, . . . , an.
Certianly d|ai ∀i. If d′|ai ∀i then writing

d′ = u
∏
j

p
tj
j

we find tk ≤ nij ∀i and so tj ≤ mj . therefore d′|d.
The argument for lcm’s is similar.
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11 Factorisation in Polynomial Rings

Theorem 11.1. If R is a UFD, then R[X] is a UFD.

Proof. Comes a bit later.

Remark. Repeatedly applying this result shows that if R is a UFD then R[X1, . . . , Xn] is a UFD.
In particular, the theorem shows that Z[X] and C[X1, . . . , Xn] are UFD’s.

Note. In this section R is a UFD with field of fractions F . We have R[X] ≤ F [X].
Moreover, F [X] is a ED, hence a PID & UFD.

Definition. The content of

f = anX
n + · · ·+ a1X + a0 ∈ R[X]

is
c(f) = gcd(a0, . . . , an)

We say f is primitive if c(f) is a unit, i.e. all ai are coprime
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Lemma 11.2.
(i) Any prime in R is also prime in R[X]
(ii) If f, g ∈ R[X] are primitive, then fg are primitive
(iii) If f, g ∈ R[X] then c(fg) = c(f)c(g)

Proof.
(i) Let p ∈ R be a prime, so R/(p) is an integral domain.

For a ∈ R, we write ã ∈ R/(p) for its image under the quotient map.
We define a ring homomorphism θ : R[X]→ R/(p)[X]

anX
n + · · ·+ a1X + a0 7→ ãnX

n + · · ·+ ã1X + ã0

If f, g ∈ R[X] with p|fg then θ(fg) = 0

=⇒ θ(f)θ(g) = 0

and as R/(p)[X] is an integral domain, by Lemma 9.1.

θ(f) = 0 or θ(g) = 0

=⇒ p|f or p|g ∴ p is prime in R[X]

(ii) If fg is not primitive then ∃p ∈ R irreducible with p|fg.
Since R is a UFD, p is prime. By (i) we have p|f or p|g, contradicting f & g primitive

(iii) We write f = c(f)f0 and g = c(g)g0 where f0g0 ∈ R[X] primitive.
Then

fg = c(f)c(g)f0g0

and we have f0g0 primitive by (ii)

∴ c(fg) = c(f)c(g)

(up to multiplication by units)

Remark. If f ∈ F [X] then we can write

f =
a

b
f0 where a, b ∈ R, b 6= 0 and f0 ∈ R[X] primitive

Indeed, by clearing denominators we may find 0 6= b ∈ R s.t. bf ∈ R[X].
Then bf = c(bf)︸ ︷︷ ︸

a

f0 for some f0 ∈ R[X] primitive.
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Lemma 11.3. Let f, g ∈ R[X] with g primitive.
If g|f in F [X] then g|f in R[X].

Proof. Write f = gh with h ∈ F [X].
By the remark,

h =
a

b
h0 a, b ∈ R, b 6= 0, h0 ∈ R[X] primitive

Then
f = g

a

b
h0 =⇒ bf = agh0

and gh0 primitive by Lemma 11.2
Taking contents shows b|a, hence h ∈ R[X], hence g|f in R[X]

Lemma 11.4 (Gauss’ Lemma). Let R be a UFD with field of fractions F .
Let f ∈ R[X] be primitive. Then

f irred in R[X] =⇒ f irred in F [X]

Proof. Since f ∈ R is irreducible and primitive we have deg(f) > 0, and so f is not a unit in
F [X].
Suppose for a contradiction that f is not irreducible in F [X], say f = gh where g, h ∈ F [X]
with deg(g), deg(h) > 0.
Replacing g & h by λg and λ−1h for some λ ∈ F ∗, we may assume g ∈ R[X] is primitive.
Then Lemma 11.3 shows h ∈ R[X].
Now f = gh where g, h ∈ R[X], with deg(g), deg(h) > 0.
This contradicts that f is irred in R[X]

Lemma 11.5. Let g ∈ R[X] be primitive. Then

g prime in F [X] =⇒ g is prime in R[X]

Proof. Suppose f1, f2 ∈ R[X] and g | f1f2 in R[X]

g is prime in F [X] =⇒ g|f1 or g|f2 in F [X]

=⇒ g|f1 or g|f2 in R[X]

∴ g is prime in R[X]
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Proof (of Theorem 11.1). Let f ∈ R[X]
Write f = c(f)f0 where f0 ∈ R[X] is primitive.
R a UFD =⇒ c(f) is a product of irreducibles in R (which are also irreducibles in R[X])
If f0 i not irreducible, say f0 = gh then the factors g and h have smaller degree (using that f0 is
primitive) and are again primitive.
By induction on the degree, f0 is a product of irreducibles in R[X]
It remains to show (see Prop 10.6) that if f ∈ R[X] is irreducible then it is prime.
Again write f = c(f)f0 where f0 ∈ R[X] primitive.

f irred =⇒ f is either constant or primitive

Case f constant:

f irred in R[X] =⇒ f irred in R
=⇒ f prime in R as R is a UFD
=⇒ f prime in R[X] (Lemma 11.2(i))

Case f primitive:

f irred in R[X] =⇒ f irred in F [X] (Gauss’ Lemma)
=⇒ f prime in F [X] (F [X] a UFD)

=⇒ f prime in R[X] (Lemma 11.5)

Remark. In view of Lemma 10.2, the last three “ =⇒ ” are “ ⇐⇒ ”

Example. (i) Theorem 11.1 =⇒ Z[X] is a UFD
(ii) Let R[X1, . . . , Xn] = polynomial ring in X1, . . . , Xn with coefficients in R. (Define inductively

R[X1, . . . , Xn] = R[X1, . . . , Xn−1][Xn])
Applying Theorem 11.1 inductively =⇒ R[X1, . . . , Xn] is a UFD if R is a UFD
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11.1 Eisenstein’s Criterion

Claim. Let R be a UFD and f(X) = anX
n + · · · + a1X + a0 ∈ R[X] primitive. Suppose ∃p ∈ R

irreducible (prime) such that
• p - an
• p | ai ∀0 ≤ i ≤ n− 1
• p2 - a0

Then f irreducible in R[X]

Proof. Suppose f = gh, g, h ∈ R[X] not units. f primitive =⇒ deg(g),deg(h) > 0.
Let g = rkX

k + · · · + r1X + r0 and h = slX
l + · · · + s1X + s0 with k + l = n then p - an =

rksl =⇒ p - rk and p - sl.
p | a0 = r0s0 =⇒ p | r0 or p | s0, wlog p | r0.
Then ∃j ≤ k s.t. p | r0, p | r1, . . . , p | rj−1, p - rj

aj︸︷︷︸
div. by p

= r0sj + r1sj−1 + · · ·+ rj−1s1︸ ︷︷ ︸
div. by p

+rjs0

Thus p | rjs0 =⇒ p | s0 =⇒ p2 | r0s0 = a0

Example. (i) X3 + 2X + 5 ∈ Z[X] If f not irreducible in Z[X] then

f(X) = (X + a)(X2 + bX + x) some a, b, c ∈ Z

Thus ac = 5. But ±1, ±5 are not roots of f .
By Gauss’ Lemma, f irreducible in Q[X]. Thus Q[X]/(f) is a field (Lemma 10.4)

(ii) Let p ∈ Z prime. eisenstein’s criterion =⇒ Xn − p irreducible in Z[X], hence irreducible in
Q[X] by Gauss’ Lemma

(iii) Let f(X) = Xp−1 +Xp−2 + · · ·+X + 1 ∈ Z[X] where p ∈ Z is prime.
Eisenstein does not apply directly to f . But note that f(X) = Xp− 1. Substituting Y = X− 1
gives

f(Y + 1) =
(Y + 1)p − 1

Y + 1− 1
= Y p−1 +

(
p

1

)
Y p−2 + · · ·+

(
p

p− 2

)
Y +

(
p

p− 1

)
∈ Z[Y ]

Now p |
(
p
i

)
∀1 ≤ i ≤ p − 1 and p2 -

(
p
p−1
)

= p. Thus f(Y + 1) irreducible in Z[Y ] so f(X)

irreducible in Z[X] (if f(X) = g(X)h(X) then f(Y + 1) = g(Y + 1)h(y + 1))

51



12 Algebraic Integers

Recall Z[i] = {a+ bi : a, b ∈ C} ≤ C - ring of Gaussian integers.
Norm N : Z[i] → Z≥0, a + bi 7→ a2 + b2 iwth N(z1z2) = N(z1)N(z2) is a Euclidean function Thus
Z[i] is a ED, hence a PID and UFG and so primes = irreducibles in Z[i]
The units in Z[i] are ±1,±i (only elements of Norm 1)

Example. (i) 2 = (1i)(1− i) and 5 = (2 + i)(2− i) are not primes in Z[i]
(ii) N(3) = 0 so if 3 = ab in Z[i], N(a)N(b) = 9. But Z[i] has no elements of norm r. thus either a

or b is a unit =⇒ 3 is prime in Z[i]. Similarly 7 is prime in Z[i]

Prop 12.1. Let p ∈ Z be a prime number. The following are equivalent:
(i) p is not prime in Z[i]
(ii) p = a2 + b2 for some a, b ∈ Z
(iii) p = 2 or p = 1 mod 4

Proof. (i) =⇒ (ii): Let p = xy, x, y ∈ Z[i] not units. Then p2 = N(p) =
N(x)N(y), N(x), N(y) > 1. Thus N(x) = N(y) = p. Writing x = a + bi gives
p = N(x) = a2 + b2

(ii) =⇒ (iii): the squares mod 4 are 0 and 1. Thus if p = a2 + b2, then p 6≡ 3 mod 4
(iii) =⇒ (i): Already saw 2 is not prime in Z[i]. By theorem 9.3, (Z/pZ)× is cyclic of order
p − 1. so if p = 1 mod 4, then (Z/pZ)× is cyclic of order p − 1. So if p = 1 mod 4, then
(Z/pZ)× contains an element of order 4, i.e. ∃x ∈ Z with x4 ≡ 1 mod p, but x2 6≡ 1 mod p.
Then x2 ≡ −1 mod p. Now p | x2 + 1 = (x + i)(x − i) but p - x + i and p - x − i, thus p not
prime in Z[i]

Theorem 12.2. The primes in Z[i] are (up to associates)
(i) a+ bi, where a, b ∈ Z and a2 + b2 = p is a prime number with p ≡ 2 or p ≡ 1 mod 4.
(ii) Prime numbers p ∈ Z with p ≡ 3 mod 4

Proof. First we check these are primes:
(i) N(a + bi) = p. If a + bi = uv, then either N(u) = 1 or N(v) = 1. Thus a + bi is

irreducible, hence prime
(ii) Prop 12.1

Now let z ∈ Z[i] be a prime (irreducible). Then z̄ ∈ Z[i] is also irreducible and N(z) = zz̄ is
a factorization into irreducibles.
Let p ∈ Z be a prime number dividing N(z). If p ≡ 3 mod 4, then p is prime in Z[i]. Thus
p | z or z, so p is an associate of z or z

=⇒ p is an associate of z

Otherwise, p ≡ 2 or p ≡ 1 mod 4 and

p = a2 + b2 = (a+ bi)(a− bi) some a, b ∈ Z

Then (a+bi)(a−bi) | zz. Thus z is an associate of a+bi or a−bi by uniqueness of factorization
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Remark. In theorem 12.2 (i), if p = a2 + b2, a + bi and a − bi are not associates unless p = 2. [
(1 + i) = (1− i)i ]

Corollary 12.3. An integer n ≥ 1 is the sum of 2 squares iff every prime factor p of n with p ≡ 3
mod 4 divides n to an even power

Proof. n = a2 + b2 ⇐⇒ n = N(x) some x ∈ Z[i] ⇐⇒ n is a product of norms of primes in
Z[i].
Theorem 12.2 implies that the norms of primes in Z[i] are the primes p ∈ Z with p 6≡ 3 mod
4, and squares of primes p ∈ Z with p ≡ 3 mod 4

Example. 65 = 5 · 13
Factoring into primes in Z[i] gives 5 = (2 + i)(2− i), 13 = (2 + 3i)(2− 3i).
Thus 65 = (2 + 3i)(2 + i)(2 + 3i)(2 + i) i.e.

65 = N((2 + 3i)(2 + i)) = N(1 + 8i) =⇒ 65 = 12 + 82

But also
65 = N((2 + i)(2− 3i)) = N(7− 4i) =⇒ 65 = 72 + 42

Definition. (i) α ∈ C is an algebraic number if ∃ non-zero f ∈ Q[X] with f(α) = 0
(ii) α ∈ C is an algebraic integer if ∃ monic f ∈ Z[X] with f(α) = 0

Notation. Let R be a subring of S, and α ∈ S.
We write R[α] for the smallest subring of S containing R and α, i.e.

R[α] = Im(g(X) 7→ g(α)
R[X]→S

)

Let α be an algebraic number, and let φ : Q[X]→ C, g(X) 7→ g(α). Q[X] is a PID =⇒ ker(φ) = (f)
for some f ∈ Q[X]. Then f 6= 0 since α an algebraic number. Upon multiplying f by a unit, we may
assume that f is monic

Definition. f above is the minimal polynomial of α. By isomorphism theorem

Q[X]/(f) ∼= Q[α] ≤ C

Thus Q[α] is an integral domain =⇒ f irreducible in Q[X] =⇒ Q[α] is a field

53



Prop 12.4. Let α be an algebraic integer and f ∈ Q[X] its minimal polynomial. then f ∈ Z[X] and
(f) = ker(θ) E Z[X] where θ : Z[X]→ C is the map g(X) 7→ g(α)

Proof. Let λ ∈ Q× s.t. λf ∈ Z[X] is primitive. then λf(α) = 0, so λf ∈ ker(θ). Let
g ∈ ker(θ) E Z[X]. Then g ∈ ker(φ) and hence λf | g in Q[X]. Lemma 11.4 =⇒ λf | g in
Z[X]. Thus ker(θ) = (λf).
Now α is an algebraic integer, hence ∃g ∈ ker(θ) monic. Then λf | g in Z[X] =⇒ λ = ±1.
Hence f ∈ Z[X], and (f) = ker(θ).

Let α ∈ C an algebraic integer. applying isomorphism theorem θ gives

Z[X]/(f) ∼= Z[α]

Example. i,
√

2, −1+
√
3

2 , n
√
p have minimal polynomials

X2 + 1, X2 − 2, X2 +X + 1, Xn − p

Thus
Z[X]

(X2 + 1)
∼= Z[i],

Z[X]

(X2 − 2)
∼= Z[

√
2] etc.

Corollary 12.5. If α is an algebraic integer and α ∈ Q, then α ∈ Z

Proof. Let α be an algebraic integer. Then prop 12.4 =⇒ min poly has coefficients in Z.
α ∈ Q =⇒ min poly is X − α and so α ∈ Z
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13 Noetherian Rings

We showed that any PID R satisfies the “ascending chain condition” (ACC): If I1 ⊆ I2 ⊆ . . . are
ideals in R, then ∃N ∈ N s.t. In = In+1 ∀n ≥ N .
More generally:

Lemma 13.1. Let R be a ring. R satisfies ACC ⇐⇒ All ideals in R are finitely generated

Proof. “ ⇐= ”: let I1 ⊆ I2 ⊆ . . . be a chain of ideals and I =
⋃
n≥1 In, which is again an

ideal.
By assumption, I = (a1, . . . , am) for some a1, . . . , an ∈ R. These elements belong to a neted
union so ∃N ∈ N s.t. a1, . . . , am ∈ IN . Then for n ≥ N

(a1, . . . , am) ⊆ IN ⊆ In ⊆ I = (a1, . . . , am)

so In = IN = I.
“ =⇒ ”: Assume JER not finitely generated. choose a1 ∈ J . Then J 6= (a1), so we can choose
a2 ∈ J\(a1).
Then J 6= (a1, a2), so we can choose (a3) ∈ J\(a1, a2). Continuing this process, we obtain a
chain of ideals

(a1) ( (a1, a2) ( (a1, a2, a3) ( . . .

with dtrict inclusions to ACC

Definition. A ring satisfying ACC is called Noetherian

13.1 Hilbert’s Basis Theorem

Theorem 13.2 (Hilbert’s Basis Theorem). If R is a Noetherian ring, then R[X] is Noetherian

Proof. Assume J E R[X] is not finitely generated. Choose f1 ∈ J of minimal degree. Then
(f1) 6= J . Choose f2 ∈ J\(f1) of minimal degree. Then (f1, f2) 6= J and so on.
Obtain a sequence f1, f2, f3, · · · ∈ R[X] with deg fi ≤ deg fi+1.
Set ai := leading coefficient of fi. We obtain

(a1) ⊆ (a1, a2) ⊆ (a1, a2, a3) ⊆ . . .

a chain of ideals in R. Since R is Noetherian, ∃m ∈ N s.t. am+1 ∈ (a1, . . . , am).
Let am+1 =

∑m
i=1 λiai, and set

g =

m∑
i=1

λiX
deg fm+1−deg fifi

Then deg fm+1 = deg g and they have the same leading coefficient am+1.
Then fm+1−g ∈ J and deg(fm+1−g) < deg fm+1 =⇒ fm+1−g ∈ (f1, . . . , fm) by minimality
of deg fm+1 =⇒ fm+1 ∈ (f1, . . . , fm) .
Thus J finitely generated =⇒ R[X] Noetherian by Lemma 13.1
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Corollary 13.3. • Z[X1, . . . , Xn] Noetherian
• F [X1, . . . , Xn] Noetherian for F a field

Example. Let R = C[X1, . . . , Xn]. Let V ⊆ Cn be a subset of the form

{(a1, . . . , an) ∈ Cn : f(a1, . . . , an) = 0, ∀f ∈ F}

where F ⊆ R is a possibly infinite set of polynomials.
Let I = {

∑m
i=1 λifi : m ∈ N, λi ∈ R, fi ∈ F}. Then I ER. R Noetherian =⇒

I = (g1, . . . , gr), gi ∈ I

Thus
V = {(a1, . . . , an) ∈ Cn : gi(a1, . . . , an) = 0, i = 1, . . . , r}

Lemma 13.4. Let R be a Noetherian ring and I ER. Then R/I is Noetherian

Proof. Let J ′1 ⊆ J ′2 ⊆ . . . a chain of ideals in R/I. By ideal correspondence we have J ′i = Ji/I
fir sine J1 ⊆ J2 ⊆ . . . a chain of ideals in R (containing I)
R Noetherian =⇒ ∃N ∈ N s.t. Jn = Jn+1 ∀n ≥ N =⇒ ∃N ∈ N s.t. J ′n = J ′n+1 ∀n ≥ N .
Thus R/I is Noetherian

Examples. (i) Z[i] = Z[X]/(X2 + 1) is Noetherian
(ii) R[X] is Noetherian =⇒ R[X]/(X) ∼= R is Noetherian

Examples (of non-Noetherian rings). (i) R = Z[X1, X2, . . . ] =
⋃
n≥1 Z[X1, . . . , Xn] i.e. polyno-

mials in countably many variables

(X1) ( (X1, X2) ( (X1, X2, X3) ( . . .

an infinite ascending chain
(ii) R = {f ∈ Q[X] : f(0) ∈ Z} ≤ Q[X]

(X) ( (
1

2
X) ( (

1

4
X) ( (

1

8
X) ( . . .

Since 2 ∈ R is not a unit
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14 Modules - Definitions and Examples

Definition. Let R be a ring. A module over R is a triple (M,+, ·) consisting of a set M and two
operations

+ : M ×M →M · : R×M →M

such that
(i) (M,+) is an abelian group, say with identity 0(= 0M )
(ii) The operation · satisfies

(r1 + r2) ·m = r1 ·m+ r2 ·m, ∀r1r2 ∈ R,m ∈M
r · (m1 +m2) = r ·m1 + r ·m2, ∀r ∈ R,m2,m1 ∈M
r1 · (r2 ·m) = (r1r2) ·m, ∀r1, r2 ∈ R,m ∈M

1R ·m = m, ∀m ∈M

Remark. Don’t forget closure when checking +, · well-defined

Example. (i) Let R = F be a field. Then an F -module is precisely the same as a vector space
over F

(ii) R = Z, a Z-module is precisely the same as an abelian group, where

· : Z×A→ A

(n, a) 7→



n times︷ ︸︸ ︷
a+ · · ·+ a if n > 0

0 if n = 0

−
n times︷ ︸︸ ︷

a+ · · ·+ a if n < 0

(iii) F a field, V a vector space over F and α : V → V a linear map. We can make V into an
F [X]-module via

· : F [X]× V → V

(f, v) 7→ (f(α))(v)

Note. Different choices of α make V into different F [X]-modules so sometimes write V = Vα to
make this clear
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Example. General constructions
(i) For any ring R, Rn is an R-module via

r · (r1, . . . , rn) = (rr1, . . . , rrn)

in particular, taking n = 1, R is an R-module
(ii) If IER then I is an R-module (restrict the usual multiplication on R) and R/I is an R-module

via
r · (s+ I) = rs+ I

(iii) φ : R→ S a ring homomorphism. Then an S-module M may be regarded as an R module via
R ×M → M , (r,m) 7→ φ(r)m. In particular, if R ≤ S then any S-module may be viewed as
an R-module

Definition. M an R-module. N ⊆ M is an R-submodule (written N ≤ M) if it is a subgroup of
(M,+) and r · n ∈ N ∀r ∈ R, n ∈ N

Example. (i) A subset of R is an R-submodule precisely when it is an ideal
(ii) When R = F is a field, module ≡ vector space, submodule ≡ vector subspace

Definition. If N ≤M an R-submodule, the quotient M/N is the quotient of groups under + with

r · (m+N) = r ·m+N

This is well-defined, and makes M/N an R-module

Definition. Let M,N be R-modules. A function f : M → N is an R-module homomorphism if
it is a homomorphism of abelian groups and

f(r ·m) = r · f(m) ∀r ∈ R,m ∈M

Example. If R = F is a field, an F -module homomorphism is just a linear map

Theorem 14.1 (First isomorphism theorem). Let f : M → N be an R-module homomorphism.
Then

ker(f) := {m ∈M : f(m) = 0} ≤M
Im (f) := {f(m) ∈ N : m ∈M} ≤ N

and
M/ ker(f) ∼= Im (f)

Proof. Similar to before
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Theorem 14.2 (Second isomorphism theorem). Let A,B ≤M be R-submodules. Then

A+B := {a+ b : a ∈ A, b ∈ B} ≤M

A ∩B ≤M

and
A

A ∩B
∼=
A+B

B

Proof. Apply first isomorphism theorem to the composite A→M →M/B, m 7→ m+B

For third isomorphism theorem, note ∃ bijection {submodules of M/N} ↔ {submodules of M con-
taining N}

Theorem 14.3 (Third isomorphism theorem). If N ≤ L ≤M are R-submodules, then

M/N

L/N
∼=
M

L

Remark. In particular, these apply to vector spaces (compare with results from Linear Algebra)

Notation. Let M be an R-module. If m ∈M , write

Rm = {rm ∈M : r ∈ R}

the submodule generated by m.
If A,B ≤M then A+B = {a+ b : a ∈ A, b ∈ B} ≤M

Definition. M is finitely generated if ∃m1, . . . ,mn ∈M such that M = Rm1 +Rm2 + · · ·+Rmn

Lemma 14.4. M finitely generated ⇐⇒ ∃ a surjective R-module homomorphism f : Rn →M for
some n ∈ N

Proof. “ =⇒ ”: If M = Rm1 + · · · + Rmn, define f : Rn → M, (r1, . . . , rn) 7→
∑
rimi a

surjective R-module homomorphism.
“ ⇐= ”:Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn. Given f : Rn → M surjective, set mi : f(ei).
Then any m ∈M is of the form

f(r1, . . . , rm) = f(
∑

riei) =
∑

rif(ei) =
∑

rimi

Thus M = Rm1 + · · ·+Rmn
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Corollary 14.5. Let N ≤ M be an R-submodule. If M is finitely generated, then M/N is finitely
generated

Proof. Let f : Rn →M be a surjective R-module homomorphism. Then Rn →M →M/N ,
m 7→ m+N is a surjective R-module homomorphism

Example. A submodule of a finitely generated module need not be finitelygenerated.
Let R be a non-Noetherian ring and IER a non-finitely generated ideal. Then R is a finitely generated
R-module, and I is a submodule which is not finitely generated

Remark. A submodule of finitely generated module over a Noetherian ring is finitely generated

Definition. Let M be an R-module
(i) An element m ∈M is torsion if ∃0 6= r ∈ R with r ·m = 0
(ii) M is a torsion module if every m ∈M is torsion
(iii) M is torsion-free if 0 6= m ∈M is not tortion

Example. The torsion elements in a Z-module (abelian group) are the elements of finite order. Any
F -module (vector space) is torsion-free
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15 Direct Sums and Free Modules

Definition. Let M1, . . .Mn be R-modules. The direct sum M1⊕· · ·⊕Mn is the set M1×· · ·×Mn

with operations
(m1, . . . ,mn) + (m′1, . . . ,m

′
n) = (m1 +m′1, . . . ,mn +m′n)

r · (m1, . . . ,mn) = (rm1, . . . , rmn)

M1 ⊕ · · · ⊕Mn is R-module

Example. Rn = R⊕ · · · ⊕R

Lemma 15.1. If M =
⊕n

i=1Mi and Ni ≤Mi ∀i, then setting N =
⊕n

n=1Ni ≤M , we have

M/N ∼=
n⊕
i=1

Mi/Ni

Proof. Apply 1st iso. theorem to the surjective R-module homomorphism

M →
n⊕
i=1

Mi/Ni

(m1, . . . ,mn) 7→ (m1 +N1, . . . ,mn +Nn)

with kernel N =
⊕n

i=1Ni

Definition. Let m1, . . . ,mn ∈ M . The set {m1, . . . ,mn} is independent if
∑n
i=1 rimi = 0 =⇒

r1 = r2 = · · · = rn = 0

Definition. A subset S ⊆M generates M freely if
(i) S generates M , i.e. ∀m ∈M, m =

∑
risi, ri ∈ R, si ∈ S

(ii) Any function ψ : S → N where N is an R-module, extends to an R-module homomorphism
Θ : M → N .
(such an extension is unique by (i)).

An R-module which is freely generated by some subset S ⊆ M is called free and S is called a free
basis
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Prop 15.2. For a subset S = {m1, . . . ,mn} ⊆M , the following are equivalent:
(i) S generates M freely
(ii) S generates M and S is independent
(iii) Every element can be written uniquely as r1m1 + · · ·+ rnmn for some r1, . . . , rn ∈ R
(iv) The R-module homomorphism Rn →M , (r1, . . . , rn) 7→

∑
rimi is an isomorphism

Proof. (i) =⇒ (ii). Let S generate M freely. If S is not independent, then ∃r1 . . . , rn ∈ R
with

∑
rimi = 0 and some rj 6= 0.

Define ψ : S → R,

mi 7→

{
1 if i = j

0 otherwise

This extends to R-module homomorphism Θ : M → R. We then have

0 = Θ(0) = Θ(
∑

rimi) =
∑

riΘ(mi) = rj

Thus S is indepnedent.
(ii) =⇒ (iii) =⇒ (i) and (iii) ⇐⇒ (iv) are exercises

Example. A non-trivial finite abelian group is not a free Z module

Example. The set {2, 3} generates Z as a Z-module, but they are not independent since

(3) · 2 + (−2) · 3 = 0

Furthermore, no subset of {2, 3} is a free basis since {2}, {3} do not generate

Prop 15.3 (Invariance of dimension). R a non-zero ring. If Rm ∼= Rn as R-modules, then m = n

Proof. First, we introduce a general construction. Let I E R and M an R-module. Define
IM = {

∑
aimi : ai ∈ I, mi ∈M} ≤M . The quotient M/IM is an R/I-module via

(R+ I) · (m+ IM) = rm+ IM

(well-defined: if b ∈ I, b · (m+ IM) = bm+ IM = 0 + IM)
Suppose Rm ∼= Rn. Choose I E R a maximal ideal (Use Zorn’s Lemma + ES2 Q4). By the
above, get an isomorphism of R/I-modules(

R

I

)m
∼=

Rm

IRm
∼=

Rn

IRn
∼=
(
R

I

)n
But IER is maximal =⇒ R/I a field. so m = n by invariance of dimension for vector spaces
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16 The Structure Theorem and applications

Note. Until further notice: R a Euclidean domain. φ : R\{0} → Z≥0 a Euclidean function. Let A
be an m× n matrix with entries in R

Definition. The elementary row operations are
• (ER1) Add λ times jth row to ith row (λ ∈ R, i 6= j)
• (ER2) Swap ith and jth rows
• (ER3) Multiply ith row by u ∈ RX

Each of these can be realised by left multiplication by an m×m invertible matrix
• (ER1) 

1
. . . λ

. . .
1


• (ER2) 

1
. . .

0 1
. . .
1 0

. . .
1


• (ER3) 

1
. . .

u
. . .

1


In particular, these operations are reversible

Note. Similarly, we can define elementary column operations (EC1 to EC3), realised by right mul-
tiplication by n× n invertible matrix

Definition. Two m × n matrices A and B are equivalent if ∃ sequence of elementary row and
column operations taking A to B. If they are equivalent, then ∃P,Q s.t. B = QAP
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Theorem 16.1 (Smith Normal Form). An m × n matrix A = (aij) over a Euclidean domain R is
equivalent to a diagonal matrix 

d1
. . .

dt
0

. . .


The di are called invariant factors - will show they are unique up to associates

Proof. If A = 0, done. Otherwise upon swapping rows and columns, may assume a11 6= 0.
We will reduce φ(a11) as much as possible via the following algorithm
(i) If a11 - a1j for some j ≥ 2, then write aij = qa11+r q, r ∈ R, φ(r) < φ(a11). Subtracting

q times column 1 from column j and swapping these coluns makes top left entry r
(ii) If a11 - ai1 for some i ≥ 2, then repeat above process with row operations

Steps (i) and (ii) decrease φ(a11), so can repeat finitely many times until a11|a1j ∀j ≥ 2,
a11 | ai1 ∀i ≥ 2.
Subtracting multiples of the first row/ column from the others gives

A =


a11 0 . . . 0
0
... A1

0


where A1 is an (m− 1)× (n− 1) matrix.
(iii) If a11 - aij for some i, j ≥ 2, then add ith row to first row and perform column operations

as before to decrease φ(a11). Then restart algorithm.
After finitely many steps obtain:

A =


a11 0 . . . 0
0
... A1

0


with a11 = d1 say s.t. d1 | aij ∀i, j.
Applying same method to A1 gives the result

For uniqueness of invariant factors, introduce minors of A

Definition. A k × k minor of A is the determinant of a k × k submatrix (i.e. a matrix formed by
deleting n− k rows and n− k columns)

Definition. The kth fitting ideal Fitk(A) ER is the ideal generated by the k × k minors of A
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Lemma 16.2. If A and B are equivalent matrices, then Fitk(A) = Fitk(B) ∀k

Proof. We show that (ER1 - ER3) don’t change Fitk(A) (same proof works for EC1 - EC3)
(ER1) add λ times jth row to ith row, so A becomes A′

A′ =


ai1 + λaj1 . . . ain + λajn

aj1 . . . ajn


Let C be a k × k submatrix of A and C ′ the corresponding submatrix of A′:

• If we did not choose ith row, then C = C ′

=⇒ detC = detC ′

• If we choose both of the rows i and j, then C and C ′ differ by a row operation

=⇒ detC = detC ′

• If we chose ith row but not the jth row, then by expanding along the ith row

det(C ′) = det(C) + λ det(D)

where D is another k × k submatrix of A (in D we choose jth row instead of ith row).
Thus det(C ′) ∈ Fitk(A) Hence Fitk(A′) ⊆ Fitk(A).
Since (ER1) is reversible, we get “⊇” and hence equality.
(ER2) and (ER3) are similar but easier.

Now if A has SNF 

d1
. . .

dt
0

. . .


d1 | d2 | · · · | dt. Then Fitk(A) = (d1d2 . . . dk) E R. Thus the products d1 . . . dk (up to associates)
depend only on A.
Cancelling out, shows that each di (up to assiciate) depends only on A.

Example. Consider the matrix A =

[
2 −1
1 2

]
over Z.

[
2 −1
1 2

]
c1←c1+c2−−−−−−→

[
1 −1
3 2

]
c2←c1+c2−−−−−−→

[
1 0
3 5

]
R2←R2−3R1−−−−−−−−→

[
1 0
0 5

]
But also (d1) = (2,−1, 1, 2) = (1) =⇒ d1 = ±1

(d1d2) = (detA) = (5) =⇒ d1 = ±5
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Moral. We will use SNF to prove the structure theorem. First, some preparation

Lemma 16.3. R a Euclidean Domain. Any submodule of Rm is generated by at most m elements

Proof. Let N ≤ Rm. Consider the ideal

I = {r ∈ R : ∃r2, . . . , rm ∈ R s.t. (r, r2, . . . , rm) ∈ N}ER

Since ED =⇒ PID, we have I = (a), some a ∈ R. Choose some n = (a, a2, . . . , am) ∈ N . For
(r1, . . . , rm) ∈ N , we have r1 = ra for some r, so (r1, r2, . . . , rm)− rn = (0, r2 − ra2, . . . , rm −
ram) which lies in N ′ := N ∩ {0} ×Rm−1 ≤ Rm−1 hence N = Rn+N ′.
By induction, N ′ is generated by n2, . . . , nm hence {n, n2, . . . , nm} generates N

Theorem 16.4. Let R be a ED and N ≤ Rm. There is a free basis x1, . . . , xm for Rm s.t. N is
generated by d1x1, . . . , dtxt for some r ≤ m and d1, d2, . . . , dt ∈ R with d1 | d2 | dt.

Proof. By Lemma 16.3, we have N = Ry1 + · · · + Ryn for some n ≤ m. Each yi belongs to
Rm so we can form an m× n matrix

A =

y1 y2 . . . yn


By theorem 16.1, A is equivalent to

A′ =



d1
. . .

dt
0

. . .


with d1 | d2 | · · · | dt.
A′ obtained from A by elementary row and column operations. Each row operation changes
our choice of free basis for Rm. Each column operation changes our set of generators for N .
Thus after changing free basis of Rm to x1, . . . , xm, say, the submodule N is generated by
d1x1, . . . dtxt as claimed
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16.1 Structure Theorem

Theorem 16.5 (Structure Theorem). Let R be a ED and M a finitely generated R-module. Then

M ∼=
R

(d1)
⊕ R

(d2)
⊕ · · · ⊕ R

(dt)
⊕R⊕ · · · ⊕R︸ ︷︷ ︸

k copies

for some 0 6= di ∈ R with d1 | d2 | · · · | dt and k ≥ 0. The di are called invariant factors

Proof. Since M is finitely generated, ∃ a surjective R-module homomorphism φ : Rm → M
for some m (Lemma 14.1). By first isomorphism theorem M ∼= Rm/ ker(φ). By theorem 16.4,
∃ free basis x1, . . . , xm for Rm s.t. ker(φ)is generated by d1x1, d2x2, . . . , dtxt with d1 | d2 |
· · · | dt. Then

M ∼=
R⊕R⊕ · · · ⊕R⊕R⊕ · · · ⊕R

d1R2 ⊕ d2R⊕ · · · ⊕RtR⊕ 0⊕ · · · ⊕ 0

∼=
R

(d1)
⊕ R

(d2)
⊕ · · · ⊕ R

(dt)
⊕R⊕ · · · ⊕R︸ ︷︷ ︸

m−t copies

by Lemma 15.1

Remark. After deleting those di which are units, the module M uniquely determined (up to asso-
ciated) - proof omitted

Corollary 16.6. Let R be a ED. Then any finitely generated torsion-free module is free

Proof. M torsion-free =⇒ no submodules of the form R/(d) with d 6= 0. Thus M ∼= Rm for
some m

Example. R = Z. Consider the abelian group G generated by a and b subject to the relations

2a+ b = 0 − a+ 2b = 0

Then G ∼= Z2/N , where N is generated by
[
2 1

]
,
[
−1 2

]
.

A =

[
2 −1
1 2

]
has SNF

[
1 0
0 5

]
. Thus can change basis for Z2 s.t. N is generated by (1, 0) and (0, 5).

Thus
G ∼=

Z⊕ Z
Z⊕ 5Z

∼=
Z
5Z

More generally

Theorem 16.7 (Structure Theorem for Finitely Generated Abelian Groups). Any finitely generated
abelian groups G is isomorphic to Z/d1Z⊕Z/d2Z⊕· · ·⊕Z/dtZ⊕Zr where d1 | d2 | · · · | dt and r ≥ 0

Proof. Take R = Z in structure theorem
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Remark. The special case G finite (r = 0) was quoted as Theorem 6.4

In section 6, we saw that any finite abelian group can be written as a product of Cpi ’s where p is a
prime number. To generalise this we need

Lemma 16.8. Let R be a PID and a, b ∈ R with gcd(a, b) = 1. Then

R

(ab)
∼=

R

(a)
⊕ R

(b)
as R-modules

(case R = Z was Lemma 6.2)

Proof. R a PID =⇒ (a, b) = (d) for some d ∈ R. But gcd(a, b) = 1 =⇒ d a unit. So
∃r, s ∈ R s.t. ra+ sb = 1.
Define an R-module homomorphism

ψ : R→ R

(a)
⊕ R

(b)

x 7→ (x+ (a), x+ (b))

Then ψ(sb) = (1+(a), 0+(b)), ψ(ra) = (0+(a), 1+(b)), thus ψ(sbx+ray) = (x+(a), y+(b))
for any x, y ∈ R hence ψ is surjective.
Clearly (ab) ⊂ ker(ψ). Converselt if x ∈ ker(ψ), x ∈ (a) ∩ (b) and x = x(ra + sb) = r(ax) +
s(xb) ∈ (ab). Then ker(ψ) = (Ab). First isomorphism theorem =⇒

R

(ab)
∼=

R

(a)
⊕ R

(b)

as modules

Theorem 16.9 (Primary decomposition theorem). Let R be a ED and M a finitely generated R-
module. Then

M ∼=
R

(pn1
1 )
⊕ · · · ⊕ R

(pnkk )
⊕Rm

as R-modules where p1, . . . , pk are primes (not necessarily distinct) and m ≥ 0

Proof. By the structure theorem

M ∼=
R

(d1)
⊕ R

(d2)
⊕ · · · ⊕ R

(dt)
⊕Rm

So it suffices to consider M ∼= R
(di)

. di = upα1
1 . . . pαrr where u is a unit and p1, . . . , pr are

distinct (non-associate) primes.
Lemma 16.6 =⇒

M ∼=
R

(pα1
1 )
⊕ · · · ⊕ R

pαrr
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Notation. Let V be a vector space over a field F . Let α : V → V be a linear map and let Vα denote
the F [X]-module V where F [X]× V → V is given, (f(X), v) 7→ f(α)(v)

Lemma 16.10. If V finite dimensional, then Vα is a finitely generated F [X]-module

Proof. If v1, . . . , vn generate V as a F -vector space, then they generate Vα as an F [X]-module
since F ≤ F [X]

Example. (i) Suppose Vα ∼= F [X]/(Xn) as F [X]-module. Then 1, X,X2, . . . , Xn−1 is a basis for
F [X]/(Xn) as an F -vector space, and w.r.t. this basis α has matrix

0 0

1 0
...

0 1
. . .

...
...

...
. . . . . .

...
0 0 1 0


(*)

since α acts as “multiplication by X”
(ii) Suppose Vα ∼= F [X]

((X−λ)n) as F [X]-modules. Then w.r.t. basis 1, X−λ, (X−λ)2, . . . , (X−λ)n−1,
α− λ Id has matrix (∗), thus α has matrix

λ 0

1 λ
...

0 1
. . .

...
...

...
. . . . . .

...
0 0 1 λ


(iii) Suppose Vα ∼= F [X]

(f) where

f(X) = Xn + an−1X
n−1 + · · ·+ a0

Then w.r.t. basis 1, X, . . . ,Xn−1, α has matrix

0 −a0

1 0
...

0 1
. . .

...
...

...
. . . . . . −an−2

0 0 1 −an−1


This is called the companion matrix C(f) of the monic polynomial f
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Theorem 16.11 (Rational canonical form). Let α : V → V be an endomorphism of a finite dimen-
sional vector space, where F is any field. The F [X]-module Vα decomposes as

Vα ∼=
F [X]

(f1)
⊕ · · · ⊕ F [X]

(ft)

where fi ∈ F [X] monic and f1 | f2 | · · · | ft. Moreover, w.r.t. a suitable basis or V (as an F -vector
space) α has matrix C(f1)

. . .
C(ft)

 (**)

Proof. By Lemma 16.7, Vα is finitely generated as an F [X]-module. Since F [X] is a ED, the
structure theorem implies

Vα ∼=
F [X]

(f1)
⊕ · · · ⊕ F [X]

(ft)
⊕ F [X]m

where f1 | f2 | · · · | ft.
Since V is finite dimensional, m = 0. Upon multiplying each fi by a unit, we may assume fi
are monic

Remarks.
(i) If a is represented by an n× n matrix A then the theorem says that A is similar to (∗∗)
(ii) The min. poly. of α is ft. The char. poly. of α is

∏t
i=1 fi ( =⇒ Cayley-Hamilton theorem)

Example. If dimV = 2,
∑

deg fi = 2

Vα ∼=
F [X]

(X − λ)
⊕ F [X]

(X − λ)
or

F [X]

(f)

where f is char. poly of α

Corollary 16.12. Let A,B ∈ GL2(F ) non-scalar matrices. Then A and B are similar ⇐⇒ they
have the same char. poly.

Example. “ =⇒ ”: Linear Algebra
“ ⇐= ”: By the last example, A and B are both similar C(f), where f is the char. poly. of A
and B

Definition. The annihilator of an R-module M is

AnnR(M) = {r ∈ R : rm = 0 ∀m ∈M}ER
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Examples. (i) I ER, then AnnR(R/I) = I
(ii) If A is a finite abelian group, then AnnZ(A) = (e), where e is the exponent of A
(iii) If Vα as above, AnnF [X](Vα) = (min.poly. of α)

Lemma 16.13. The primes in C[X] are the polynomials X − λ, for λ ∈ C

Proof. By the fundamental theorem of algebra, any non-constant polynoial in C[X] has a
root in C, so a factor X − λ. Hence the irreducibles have degree 1

Theorem 16.14 (Jordan Normal Form). Let α : V → V be an endomorphism of a finite dimensional
C-vector space. Let Vα be V as regarded as a C[X]-module with X acting as α. There is an
isomorphism of C[X]-modules

Vα ∼=
C[X]

((X − λ1)n1)
⊕ · · · ⊕ C[X]

((X − λt)nt)

where λ1, . . . , λt ∈ C (not nec. distinct) . In particular, ∃ basis for V s.t. α has matrixJn1
(λ1)

. . .
Jnt(λt))


where

Jn(λ) =


λ

1
. . .
. . . . . .

1 λ


n× n matrix.

Proof. C[X] is a ED, and Vα is finitely generated as a C[X]-module by Lemma 16.7. we
apply the primary decomposition theorem noting that the primes in C[X] are as in Lemma
16.10. V finite dimensional =⇒ we get no copies of C[X].
Jn(λ) represents multiplication by X on C[X]

((X−λ)n) w.r.t 1, (X − λ), (X − λ)2, . . . , (X − λ)n−1.

Remarks.
(i) If α is represented by matrix A, then theorem says A is similar to a matrix in JNF
(ii) The Jordan blocks are uniquely determined up to reordering. Can be proved by considering the

dimensions of the generalised eigenspaces ker((α− λ id)m) m = 1, 2, 3, . . . (omit details)
(iii) The min. poly. of α is

∏
λ(X − λ)cλ where cλ is the size of the largest λ-block

(iv) The char. poly. of α is
∏
λ(X − λ)aλ where aλ is the sum of the sizes of the λ-blocks

(v) The number of λ-blocks is the dimension of the λ-eigenspace
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17 Modules over PID’s

The Structure Theorem holds for PID’s. We illustrate some ideas which go into the proof

Theorem 17.1. Let R be a PID. Then any finitely generated torsion-free R-module is free (For R
a ED, this was Corollary 16.5)

Proof. Let M = Rx1 + · · ·+Rxn with n as small as possible. If x1, . . . , xn aer independent
then M is free and we are done. Otherwise, ∃r1, . . . , rn ∈ R s.r.

∑n
i=1 rixi = 0.

Wlog. r1 6= 0. Lemma 17.2 (ii) shows that after replacing x1 and x2 with suitable x′1 and x′2,
we may assume that r1 6= 0 and r2 = 0. Repeating this process (changing x1 and x3, then x1
and x4 and so on), we may assume

r1 6= 0, r2 = r3 = · · · = rn = 0

Thus M = Rx2 + · · ·+Rxn choice of n

Lemma 17.2. Let R be a PID and M an R-module. Let r1, r2 ∈ R not both zero and let d =
gcd(r1, r2)
(i) ∃A ∈ SL2(R) s.t.

A

[
r1
r2

]
=

[
d
0

]
(ii) If x1, x2 ∈M , then ∃x′1, x′2 ∈M s.t. Rx1 +Rx2 = Rx′1 +Rx′2 and

r1x1 + r2x2 = dx′1 + 0 · x′2

Proof. R a PID =⇒ (r1, r2) = (d) =⇒ ∃α, β ∈ R s.t. αr1 + βr2 = d. Write r1 = s1d and
r2 = s2d, some s1, s2 ∈ R. Then αs1 + βs2 = 1
(i) [

α β
−s2 s1

] [
r1
r2

]
=

[
d
0

]
note det = αs1 + βs2 = 1

(ii) Let
x′1 = s1x2 + s2x2

x′2 = −βx1 + αx2

Then Rx′1 + Rx′2 ⊆ Rx1 + Rx2. To prove the reverse inclusion, we solve for x1 and x2
in terms of x′1 and x′2. This is possible since

det

[
s1 s2
−β α

]
= αs1 + βs2 = 1

Finally, r1x1 + r2x2 = d(s1x1 + s2x2) = dx′1 + 0 · x′2
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