Groups, Rings and Modules

Hasan Baig

Lent 2021

Contents

0 Overview

0.1 Groups

Continuing from IA Groups. We pay particular attention to simple groups, p -groups and p -subgroups. The main highlight of this part of the course will be the Sylow theorems.

0.2 Ring

These are sets where we can add, subtract and multiply, for example \mathbb{Z} or $\mathbb{C}[x]$. Important examples include "rings of integers" (e.g. $\mathbb{Z}[i], \mathbb{Z}[\sqrt{2}]$) studied further in Part II Number Fields, and polynomial rings which are central to Part II Algebraic Geometry. A ring where division is always possible is called a field for example $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, or $\mathbb{Z}/p\mathbb{Z}$ for p a prime.

0.3 Modules

A module is the analogue of a vector space where the scalars belong to a ring instead of a field. We will attempt to classify modules over certain nice rings. This will allow us to prove the Jordan Normal Theorem for matrices and to classify finite abelian groups.

1 Groups

1.1 Revision and Basics

Definition. A group is a pair (G, \cdot) consisting of a set G and binary operation $\cdot : G \times G \to G$ satisfying

• Associativity

 $a \cdot (b \cdot c) = (a \cdot b) \cdot c \quad \forall a, b, c \in G$

• Identity

$$
\exists e \in G \text{ s.t. } e \cdot g = g \cdot e = g \quad \forall g \in G
$$

• Inverses

$$
\forall g \in G \; \exists g^{-1} \in G \text{ s.t. } g \cdot g^{-1} = g^{-1} \cdot g = e
$$

Remarks.

(i) In checking · is well defined, need to check closure. I.e.

$$
a, b \in G \implies a \cdot b \in G
$$

(ii) If using additive (or multiplicative) notation then we often write 0 (or 1) for the identity

Definition. A subset $H \subseteq G$ is a subgroup (written $H \leq G$) s.t. it is a group w.r.t. · restricted to $H \times H$

Remark. A non-empty subset H of G is a subgroup if

$$
a, b \in H \implies a \cdot b^{-1} \in H
$$

Examples.

- (i) Additive groups $(\mathbb{Z}, +) \leq (\mathbb{Q}, +) \leq (\mathbb{R}, +)$
- (ii) Cyclic & dihedral groups

 C_n = cyclic group of order n

 D_{2n} = symmetries of a regular *n*-gon

(iii) Symmetric & alternating groups

 $S_n = \text{all permutations of } \{1, 2, \ldots, n\}$

 $A_n \leq S_n$ subgroup of even permutations

(iv) $Q_8 = {\pm 1, \pm i, \pm j, \pm k}$ ij = k, ji = -k, i² = -1 etc. (v) Matrix groups. For F a field

 $GL_n(F) = \text{all } n \times n$ matrices over F with $\det \neq 0$

 $SL_n(F) \leq GL_n(F)$, subgroup of matrices with det = 1

(general and special linear groups)

Definition. The (direct) product of groups G and H is $G \times H$ with operation

 $(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$

Definition. For a subgroup $H \leq G$, the **left cosets** of H in G are sets

$$
gH = \{gh : h \in H\} \text{ for } g \in G
$$

Note. These partition G , and each has the same cardinality as H . We deduce Lagrange's Theorem.

Theorem 1.1. Let G be a finite group, H a subgroup. Then $|G| = |H| \cdot |G : H|$ where $|G : H|$ is the number of left cosets of H in G , and is called the index of H in G .

Note. There is a partial converse.

Claim. $|G| = p^a m p$ prime, p $\text{/}m$ then $\exists H \leq G$ with $|H| = p^a$ (proof later) (1st Sylow Theorem)

Definition. Let $g \in G$. If $\exists n \geq 1$ s.t. $g^n = 1$, then the least such n is called the **order** of g. Otherwise g has infinite order.

Remark. If g has order d then (i) $g^n = 1 \iff d|n$ (ii) $\{1, g, g^2, \ldots, g^{d-1}\} \leq G$ and so if G is finite then by Lagrange $d||G|$

Definition. A subgroup $H \leq G$ is **normal** if $g^{-1}Hg = H \forall g \in G$. We write $H \leq G$.

Prop 1.2. If $H \trianglelefteq G$ then the set G/H of left cosets of H in G is a group (called the quotient group) with operation $g_1H \cdot g_2H = g_1g_2H$

Proof. We must check \cdot is well defined. Suppose $g_1 H = g'_1 H$ and $g_2 H = g'_2 H$. Then $g'_1 = g_1 h_1$ and $g'_2 = g_2 h_2$ for some $h_1, h_2 \in H$ so $g'_1 g'_2 H = g_1 h_1 g_2 h_2 H$. This is equal to $g_1 g_2 H$ iff

$$
\underbrace{(g_1g_2)^{-1}g_1h_1g_2}_{g_2^{-1}h_1g_2} \in H
$$

which is true since $H \trianglelefteq G$.

Associativity is inherited from G, the identity is $H = eH$ and the inverse of gH is $g^{-1}H$

Definition. If G, H are groups, a function ϕ : $G \rightarrow H$ is a group homomorphism if

$$
\phi(g_1g_2) = \phi(g_1)\phi(g_2) \quad \forall g_1, g_2 \in G
$$

It has kernel ker(ϕ) = {g ∈ G : $\phi(g) = 1$ } $\leq G$ and image Im(ϕ) = { $\phi(g) : g \in G$ } $\leq H$. If $a \in \text{ker}(\phi)$ and $g \in G$ then $\phi(g^{-1}ag) = \phi(g)^{-1}\phi(a)\phi(g) = 1$

 $\implies g^{-1}ag \in \text{ker}(\phi)$ therefore $\text{ker}(\phi) \trianglelefteq G$

Definition. An isomorphism of groups is a group homomorphism that is also a bijection. We say G and H are isomorphic (written $G \cong H$) if ∃ isomorphism $\phi : G \to H$ (Exercise: check $\phi^{-1}: H \to G$ is a group homomorphism)

Theorem 1.3 (Isomorphism Theorem). Let $\phi : G \to H$ be a group homomorphism. Then ker(ϕ) \leq G and G/ ker(ϕ) \cong Im(ϕ)

Proof. Let $K = \text{ker}(\phi)$. We already checked that $K \leq G$ Define $\Phi: G/K \to \text{Im}(\phi)$ $gK \mapsto \phi(g)$ Φ is well defined and injective:

$$
g_1 K = g_2 K \iff g_2^{-1} g_1 \in K
$$

$$
\iff \phi(g_2^{-1} g_1) = 1
$$

$$
\iff \phi(g_2)^{-1} \phi(g_1) = 1
$$

$$
\iff \phi(g_1) = \phi(g_2)
$$

Φ is a group homomorphism:

$$
\Phi(g_1 K g_2 K) = \Phi(g_1 g_2 K)
$$

$$
- \phi(g_1 g_2)
$$

$$
= \phi(g_1) \phi(g_2)
$$

$$
\Phi(g_1 K) \Phi(g_2 K)
$$

Φ is surjective: Let $x \in \text{Im}(\phi)$, say $x = \phi(g)$ some $g \in G$. Then $x = \Phi(qK) \in \text{Im}(\Phi)$

Example.
\nLet
$$
\phi : \mathbb{C} \to \mathbb{C}^* = \{x \in \mathbb{C} : x \neq 0\}
$$

\n $z \mapsto e^z$
\nAs $e^{z+w} = e^z e^w$ this is a group homomorphism from $(\mathbb{C}, +)$ to (\mathbb{C}^*, \times)
\n $\ker(\phi) = \{z \in \mathbb{C} : e^z - 1\} = 2\pi i \mathbb{Z}$
\n $\text{Im}(\phi) = \mathbb{C}^*(\text{by existence of log})$
\n $\therefore \mathbb{C}/2\pi i \mathbb{Z} \cong \mathbb{C}^*$

Note. Sometimes the Isomorphism Theorem is called the "First Isomorphism Theorem". It has the following corollaries:

Theorem 1.4 (2nd Isomorphism Theorem). Let $H \leq G$ and $K \leq G$. Then

$$
HK = \{ hk : h \in H, k \in K \} \le G \text{ and } H \cap K \le H
$$

Moreover

 $HK/K \cong H/H \cap K$

Proof. Let $h_1k_1, h_2k_2 \in HK$ (so $h_1, h_2 \in H, k_1, k_2 \in K$)

$$
h_1k_1(h_2k_2)^{-1} = \underbrace{h_1h_2^{-1}}_{\in H} \underbrace{h_2k_1k_2h_2^{-1}}_{\in K}
$$

$$
\therefore HK \leq G
$$

Let $\phi: H \to G/K$

 $h \mapsto hK$ (this is the composite of the inclusion $H \to G$ and the quotient map $G \to G/K$) $\therefore \phi$ is a group homomorphism.

$$
\ker(\phi) = \{ h \in H : hK = K \} = H \cap K \le H
$$

$$
\text{Im}(\phi) = \{ hK : h \in H \} = HK/K
$$

First isomorphism theorem $\implies H/H \cap J \cong HK/K$

Remark. Suppose $K \leq G$. There is a bijection:

{subgroups of G/K } \leftrightarrow {subgroups of G containing K}

$$
X \mapsto \{ g \in G : gK \in X \}
$$

$$
H/K \leftrightarrow H
$$

This restricts to a bijection

{normal subgroups of G/K } \leftrightarrow {normal subgroups of G containing K}

Theorem 1.5 (3rd Isomorphism Theorem). Let $K \leq H \leq G$ be normal subgroups of G. Then

$$
\frac{G/K}{H/K}\cong G/H
$$

Proof. Let $\phi: G/K \to G/H$ $gK \mapsto gH$ If $g_1K = g_2K$ then $g_2^{-1}g_1 \in K \le H \implies g_1H = g_2H$ $\therefore \phi$ is well defind. ϕ is a surjective group homomorphism with kernel H/K Now apply the first isomorphism theorem

Note. If $K \trianglelefteq G$ then studying the groups K and G/K gives some information about G. However this approach is not always available

Definition. A group G is simple if $\{1\}$ and G are its only normal subgroups

Lemma 1.6. An abelian group is simple iff it is isomorphic to C_p for some prime number p

Proof. By Lagrange's Theorem, a subgroup $H \leq C_p$ has order $|C_p| = p$, hence order 1 or $p : H = \{1\}$ or C_p . Thus C_p is simple. Let G be an abelian simple group and $1 \neq g \in G$. Any subgroup of an abelian group is normal. G contains the subgroup $\langle g \rangle = \{ \ldots, g^{-2}, g^{-1}, 1, g, g^2, \ldots \}$ Since G is simple, this must be the whole group i.e. G is cyclic. If G is infinite, then $G \cong (\mathbb{Z}, +)$, and $2\mathbb{Z} \leq \mathbb{Z} \times$ Otherwise $G \cong C_n$ for some *n*. Let g be a generator. If $m|n$, then $g^{n/m}$ generates a subgroup of order m. G simple \implies only factors of n are 1 and $n \implies n$ is prime

Lemma 1.7. If G is a finite group then G has a composition series

$$
\{1\} = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_{m-1} \trianglelefteq G_m = G
$$

with each quotient G_i/G_{i-1} simple

Warning. G_i need not be normal in G .

Proof. By induction on |G|. Case $|G| = 1$ \checkmark If $|G| > 1$, then let G_{m-1} be a normal subgroup of largest possible order $\neq |G|$. Previous remark $\implies G/G_{m-1}$ is simple. Apply induction hypothesis to G_{m-1}

2 Group Actions

Definition. For X a set, let $Sym(X)$ be the group of all bijections $X \to X$ under composition (identity id = id_X)

Definition. A group G is a **permutation group** (of degree n) if $G \le Sym(X)$ (with $|X| = n$)

Examples. $S_n = \text{Sym}(\{1, 2, ..., n\})$ is a permutation group of degree n, as is $A_n \leq S_n$. D_{2n} (symmetries of a regular *n*-gon) is a subgroup of Sym({vertices of *n*-gon})

Definition. An action of a group G on a set X is a function $* : G \times X \to X$ satisfying (i)

 $e * x = x \ \forall x \in X$

(ii)

$$
(g_1g_2) * x = g_1 * (g_x * x) \ \forall g_1, g_2 \in G \ \forall x \in X
$$

Prop 2.1. An action of a group G on a set X is equivalent to specifying a group homomorphism $\phi: G \to \text{Sym}(X)$

Proof. For each $g \in G$ there is a function $\phi_g: X \to X$ We have $\phi_{g_1g_2}(x) = (g_1g_2) * x = g_1 * (g_2 * x) = \phi_{g_1}(\phi_{g_2}(x))$ $\therefore \phi_{g_1g_2} = \phi_{g_1} \cdot \phi_{g_2}$ (†) In particular $\phi \cdot \phi_{q-1} = \phi_{q-1} \cdot \phi_q = \phi_e = \text{id} \therefore \phi_q \in \text{Sym}(X)$ We define $\phi: G \to \text{Sym}(X)$ $g \mapsto \phi_g$ (this is a group homomorphism by (†)) Conversely, let $\phi : G \to \text{Sym}(X)$ be a group homomorphism Define $G \times X \to X$
 $(g,x) \mapsto \phi(g)(x)$ Then (i) $e * x = \phi(e)(x) = id(x) = x$ (ii) $(g_1g_2) * x = \phi(g_1g_2)(x) = \phi(g_1)(\phi(g_2)(x)) = g_1 * (g_2 * x)$

Definition. We say ϕ : $G \rightarrow Sym(X)$ is a **permutation representation** of G

Definition. Let G act on a set X (i) The **orbit** of $x \in X$ is $orb_G(x) = \{g * x : g \in G\} \subseteq X$ (ii) The stabiliser of $x \in X$ is $G_x = \{g \in G | g * x = x\} \leq G$

Theorem 2.2. We recall from IA: Orbit-Stabiliser Theorem: there is a bijection orb $_G(x) \leftrightarrow G/G_x$ (set of left cosets of G_x in G) In particular, if G is finite then

 $|G| = |\text{orb}_G(x)| \cdot |G_x|$

Remarks.

- (i) ker $\phi = \bigcap G_x$ is called the kernel of the group action
- $x \in X$
(ii) The orbits partition X. If there is just one orbit, then we say that the action is transitive
- (iii) $G_{g*x} = gG_x g^{-1}$, so if $x, y \in X$ belong to the same orbit, then their stabilisers are conjugate.

Examples.

(i) Let G act on itself by left multiplication, i.e. $g * x = gx$ The kernel of the action is $\{g \in G | gx = x \,\forall x \in G\} = \{1\} : G \hookrightarrow \text{Sym}(G)$ This proves theorem below

Theorem 2.3 (Cayley's Theorem). Any finite group G is isomorphic to a subgroup of S_n for some n. (Indeed we may take $n = |G|$)

Examples (Continued).

(ii) Let $H \leq G$. Then G acts on G/H by left multiplicationi.e. $g * xH = gxH$. This is a transitive group action (since $x_2x^{-1} * x_1H = x_2H$) with

$$
G_{xH} = \{g \in G : gxH = xH\} = \{g \in G : x^{-1}gx \in H\} = xHx^{-1}
$$

$$
\ker(\phi) = \bigcap_{c \in G} xHx^{-1}
$$

This is the largest normal subgroup of G that is contained in H.

(iii) Let G act on itself by conjugation, i.e. $g * x = gxg^{-1}$. The orbits and stabilisers have special names:

$$
\mathrm{orb}_G(x) = \{gxg^{-1} : g \in G\} = \mathrm{ccl}_G(x)
$$

is the conjugacy class of x in G .

$$
G_x = \{ g \in G : gx = xg \}
$$

is the centraliser of x in G .

$$
\ker(\phi) = \{ g \in G : gx = xg \,\,\forall x \in G \} = Z(G)
$$

is the centre of G.

Note. G also acts by conjugation on any normal subgroup

(iv) Let X be the set of all subgroups of G . Then G acts on X by conjugation, i.e. $g * H = gHg^{-1}$ The stabiliser of H is $\{g \in G : gHg^{-1} = H\} = N_G(H)$ - the normaliser of H in G. This is the largest subgroup of G to contain H as a normal subgroup. In particular $H \trianglelefteq G \iff N_G(H) = G$

Theorem 2.4. Let G be a non-abelian simple group, and $H \leq G$ a subgroup of index $n > 1$. Then $n \geq 5$ and G is isomorphic to a subgroup of A_n

Proof. Let G act on $X = G/H$ by left multiplication, and let $\phi : G \to \text{Sym}(X) = S_n$ be the associated permutation representation. As G is simple ker(ϕ) = 1 or G. If ker(ϕ) = G then Im(ϕ) = 1, contradicting that G acts transitively on X (since $n > 1$)

$$
\therefore \ker(\phi) = 1 \& G \cong \text{Im}(\phi) \le S_n
$$

Since $G \leq S_n$ and $A_n \leq S_n$, the second isomorphism theorem gives

$$
G \cap A_n \leq G
$$
 and $\frac{G}{G \cap A_n} \cong \frac{GA_n}{A_n} \leq S_n/A_n \cong C_2$

G simple $\implies G \cap A_n = 1$ or G If $G \cap A_n = 1, G \hookrightarrow C_2 \times$ to G non-abelian so $G \cap A_n = G$ Hence $G \leq A_n$. Finally if $n \leq 4$ then A_n has no non-abelian simple subgroups. (By listing them) Example. Let G be the group of rotations of an icosahedron (20 faces, 12 vertices, 30 edges) Order $\vert \#$ elements of G

Total 60

Then check for G acting on the set of vertices

$$
|G| = |orbit| \cdot |stabiliser| = 12 \cdot 5 = 60
$$

The elements of order 2 are all conjugate. As are those of order 3. The elements of order 5 split into 2 conjugacy classes of size 12 (rotation by $\pm \frac{2\pi}{5}$ & $\pm \frac{4\pi}{5}$)

If $H \trianglelefteq G$ then $|H| = 1 + 15a + 30b + 12c$ for $a, b ∈ \{0, 1\}$, $c ∈ \{0, 1, 2\}$, and $|H|$ divides 60 ∴ $|H| = 1$ or 60. This shows G is simple.

We claim that the sets $H \setminus \{1\}$ for $H \leq G$ subgroup of order 4 ($|H| = 4$) partition the 15 elements of order 2 into 5 sets of 3.

(i)

$$
|H| = 4 \implies H \cong C_2 \times C_2 \text{ or } C_4
$$

Cannot be C_4 as G has no elements order 4. $C_2 \times C_2$ has 3 elements order 2. (ii) If $g \in G$ has order 2 then

$$
g \in C_G(g) \& |C_G(g)| = \frac{|G|}{|\text{ccl}_G(g)|} = \frac{60}{15} = 4
$$

(iii) Suppose $1 \neq g \in H \cap K$ where H and K are distinct subgroups of order 4.

Then $|C_G(g)| \geq |H \cup K| > 4$ (since H and K are abelian) \mathcal{K} This proves the claim.

Let G act on $X = \{\text{Subgroups of } G \text{ of order } 4\}$ by conjugation. We obtain a group homomorphism $G \xrightarrow{\phi} \text{Sym}(X) = S_5$

G simple \implies ker $\phi = 1$ or G

If kernel is G then G has normal subgroup order $4 \times$ So $G \cong \text{Im}(\phi) \leq S_5$ Exactly as in proof of Thm 2.3, either $G \cong C_2$ or $G \leq A_5$ But $|G| = |A_5| = 60$ ∴ $G \cong A_5$

3 Alternating Groups

As seen in IA, permutations in S_n are conjugate iff they have the same cycle type.

Let $g \in A_n$. Then $C_{A_n}(g) = C_{S_n}(g) \cap A_n$. If ∃ odd permutation commuting with g then

$$
|C_{A_n}(g)| = \frac{1}{2}|C_{S_n}(g)| \& \left| \mathrm{ccl}_{A_n}(g) \right| = \left| \mathrm{ccl}_{S_n}(g) \right|
$$

Otherwise

$$
|C_{A_n}(g)| = |C_{S_n}(g)| \& \left| \mathrm{ccl}_{A_n}(g) \right| = \frac{1}{2} |\mathrm{ccl}_{S_n}(g)|
$$

e.g. Taking $n = 5$, $(1\,2)(3\,4)$ commutes with the odd permutation $(1\,2)$ (1 2 3) commutes with the odd permutation (4 5) But if $h \in C_{S_5}(g)$ where $g = (1\,2\,3\,4\,5)$ then

$$
(1\ 2\ 3\ 4\ 5) = h(1\ 2\ 3\ 4\ 5)h^{-1} = (h(1)\ h(2)\ h(3)\ h(4)\ h(5))
$$

$$
\implies h \in \langle g \rangle \le A_5 : |\text{ccl}_{A_5}(g)| = \frac{1}{2} |\text{ccl}_{S_5}(g)| = 12
$$

∴ A_5 has conjugacy classes of sizes 1, 15, 20, 12, 12. Exactly as in earlier example, this shows A_5 simple.

Lemma 3.1. A_n is generated by 3-cycles

Proof. Each $\sigma \in A_n$ is a product of an even number of transpositions. So it suffices to write the product of any two transpositions as a product of 3-cycles. For a, b, c, d distinct

$$
(a\,b)(b\,c)=(a\,b\,c)
$$

$$
(a\,b)(c\,d) = (a\,c\,b)(a\,c\,d)
$$

Lemma 3.2. If $n \geq 5$ then all 3-cycles in A_n are conjugate.

Proof. We claim that every 3-cycle is conjugate to $(1\,2\,3)$ Indeed if (abc) is a 3-cycle then $(abc) = \sigma(1\,2\,3)\sigma^{-1}$ for some $\sigma \in S_n$. If $\sigma \notin A_n$ then replace σ by σ(45)

Theorem 3.3. The alternating group A_n is simple $\forall n \geq 5$

Proof. Let $1 \neq N \leq A_n$. It suffices to show that N contains a 3-cycle. Since then by Lemmas 3.1 and 3.2, we have $N = A_n$. We take $1 \neq \sigma \in N$ and write it as a product of disjoint cycles. • Case 1: σ contains a cycle of length $r \geq 4$ w.l.o.g. $\sigma = (1\,2\,3\,\ldots\,r)\tau$ Let $\delta = (1\,2\,3)$ σ^{-1} ϵN $δ^{-1}σδ$ ϵN $=(r \dots 21)(1\,3\,2)(1\,2\,\dots r)(1\,2\,3) = (2\,3\,r)$ ∴ N contains a 3-cycle. • Case 2: σ contains two 3-cycles. w.l.o.g. $\sigma = (1\,2\,3)(4\,5\,6)\tau$ Let $\delta = (1\,2\,4)$ $\sigma^{-1}\delta^{-1}\sigma\delta = (1\,3\,2)(4\,6\,5)(1\,4\,2)(1\,2\,3)(4\,5\,6)(1\,2\,4) = (1\,2\,4\,3\,6)$ ∴ we care done by case 1. • Case 3: σ contains two 2-cycles w.l.o.g. $\sigma = (1\,2)(3\,4)\tau$ Let $\delta = (1\,2\,3)$ $\sigma^{-1}\delta^{-1}\sigma\delta$ $\overline{\epsilon N}$ = (241) $\overline{(1\,2)(3\,4)(1\,3\,2)(1\,2)(3\,4)}(1\,2\,3) = (1\,4)(2\,3) = \pi$ say Let $\varepsilon = (235)$ Then $\pi^{-1} \varepsilon^{-1} \pi \varepsilon = (1 4)(2 3)(2 5 3)(1 4)(2 3)(2 3 5) = (2 3 5)$ Therefore N contains a 3-cycle • Conclusion of proof: It remains to consider σ with cycle type $(\cdot \cdot) \implies \sigma \notin A_n$

$$
(\cdot \cdot \cdot) \implies \sigma \text{ is a 3-cycle}
$$

$$
(\cdot \cdot)(\cdot \cdot \cdot) \implies \sigma \notin A_n \mathbb{X}
$$

Definition. An automorphism of a group G is an isomorphism $G \cong G$. The automorphisms form a subgroup

 $Aut(G) \le Sym(G)$

4 *p*-groups and *p*-subgroups

Definition. Let p be a prime. A finite group G is a p-group if $|G| = p^n$

Theorem 4.1. If G is a p-group then $Z(G) \neq 1$

Proof. For $g \in G$, we have

$$
|\mathrm{ccl}_G(g)| \cdot |C_G(g)| = |G| = p^n
$$

So each conjugacy class has size a power of p. Since G is a union of conjugacy classes

> $|G| \equiv \text{\#(conjugacy classes of size 1)(mod } p)$ $\implies 0 \equiv |Z(G)| \pmod{p}$

Can check $g \in Z(G) \iff \operatorname{ccl}_G(g) = \{g\}$ In particular $|Z(G)| > 1$

Corollary 4.2. The only simple *p*-group is C_p

Proof. Let G be a simple p-group. Since $Z(G) \leq G$, we have $Z(G) = 1$ or G Nontrivial by 4.1 so G is abelian and apply lemma 1.3

Corollary 4.3. Let G be a p-group of order p^n . Then G has a subgroup of order p^r for all $0 \le p \le n$

Proof. By Lemma 1.4, G has a composition series

$$
1 \leq G_0 \leq G_1 \cdots \leq G_{m-1} \leq G_m \leq G
$$

with each quotient G_1/G_{i-1} simple. Also, G a p group so G_i/G_{i-1} a p-group

$$
\implies G_i/G_{i-1} \cong C_p : |G_i| = p^i \,\,\forall 0 \le i \le m \,\,\& \mu = n
$$

Lemma 4.4. For G a group, if $G/Z(G)$ is cyclic then G is abelian

Proof. Let $qZ(G)$ be a generator for $G/Z(G)$. Then each coset is of the form $g^r Z(G)$ for some $r \in \mathbb{Z}$.

$$
\therefore G = \{g^r z : r \in \mathbb{Z}, z \in Z(G)\}
$$

$$
(g^{r_1}z_1)(g^{r_2}z_2) = g^{r_1+r_2}z_1z_2
$$
 since z_1 is central
= $g^{r_1+r_2}z_2z_1$ since z_1 is central
= $(g^{r_2}z_2)(g^{r_1}z_1)$ since z_2 is central

∴ G is abelian

4.1 Sylow Theorems

Claim. Let G be a finite group of order $p^a m$ where p is a prime with $p \nmid m$. Then

- (i) The set $\mathrm{Syl}_p(G) = \{P \leq G : |P| = p^a\}$ of Sylow p-subgroups is non-empty
- (ii) All elements of $\mathrm{Syl}_p(G)$ are conjugate
- (iii) The number $n_p = |\mathrm{Syl}_p(G)|$ of Sylow p-subgroups satisfies $n_p \equiv 1 \pmod{p}$ & $n_p ||G|$ (and so in fact $n_p|m$

Proof.

(i) Let Ω be the set of all subsets of G of size p^a .

$$
|\Omega|=\binom{p^a m}{p^a}=\frac{p^a m}{p^a}\frac{p^a m-1}{p^a-1}\ldots\frac{p^m-p^a+1}{1}
$$

For $0 \leq k < p^a$ the numbers $p^a m - k$ and $p^a - k$ are divisible by the same power of p

∴ $|\Omega|$ is coprime to p (†)

Let G act on Ω by left multiplication, i.e. for $g \in G$ and $X \in \Omega$, we put

$$
g \ast X = \{ gx : x \in X \} \in \Omega
$$

For any $X \in \Omega$ we have

$$
|G_X| \cdot |\mathrm{orb}_G(X)| = |G| = p^a m
$$

By (†), we can pick X s.t. $|orb_G(X)|$ is coprime to p.

$$
\therefore p^a||G_X| \tag{1}
$$

On the other hand, if $g \in G$ and $x \in X$ then $g \in (gx^{-1}) * X$

$$
\therefore G = \bigcup_{g \in G} g * X
$$

$$
\implies |G| \le |\text{orb}_G(X)| \cdot |X| \implies |G_X| = \frac{|G|}{|\text{orb}_G(X)|} \le |X| = p^a \tag{2}
$$

(1) and (2) $\implies |G_X| = p^a$, i.e. $G_X \leq G$ is a Sylow p-subgroup

- (ii) We prove a bit more: see lemma 4.7
- (iii) Let G act on $\mathrm{Syl}_p(G)$ by conjugation.
	- Sylow (ii) \implies this action is transitive.

So by the orbit-stabiliser theorem $n_p = |\mathrm{Syl}_p(G)|$ divides $|G|$

Now let $P \in \mathrm{Syl}_p(G)$. Then P acts on $\mathrm{Syl}_p(G)$ by conjugation. Then the orbits have size dividing $|P|$, so either 1 or a multiple of p.

To show $n_p \equiv 1 \pmod{p}$, it suffices to show that $\{P\}$ is the unique orbit size 1.

If $\{Q\}$ is an orbit size 1, then P normalises Q i.e. $P \leq N_G(Q)$.

Now P and Q are Sylow p-subgroups of $N_G(Q)$, hence by (ii) conjugate in $N_G(Q)$, hence equal since $Q \trianglelefteq N_G(Q)$

∴ $\{P\}$ is the unique orbit of size 1.

Corollary 4.6. If $n_p = 1$ then the unique Sylow *p*-subgroup is normal

Proof. Let $g \in G$ and $P \in \mathrm{Syl}_p(G)$. Then $gPg^{-1} \leq G$ is another Sylow p-subgroup so we must have $gPg^{-1} = P \,\forall g \in G$, i.e. $P \trianglelefteq G$

Example. Let $|G| = 100 = 2^3 \cdot 5^3$ Then $n_5 \equiv 1 \pmod{5}$ & $n_5|8$, so $n_5 = 1$ ∴ the unique Sylow 5-subgroup is normal ∴ G is not simple

Example. Let $|G| = 132 = 2^2 \cdot 3 \cdot 11$ Then $n_{11} \equiv 1 \pmod{11}$ and $n_{11}|12$ So $n_{11} = 1$ or 12. Suppose G is simple. Then $n_{11} \neq 1$ (otherwise the 11-Sylow subgroup is normal) ∴ $n_{11} = 12$ Now $n_3 \equiv 1 \pmod{3}$ and $n_3|44$ So $n_3 = 4$ or 22 as G simple Suppose $n_3 = 4$. Then letting G act on $Syl_3(G)$ by conjugation gives a group homomorphism $\phi: G \to S_4$ $\ker(\phi) \leq \implies$

$$
\text{er}(\phi) \leq \bigoplus_{G \text{ simple}} \bigcup_{G \hookrightarrow S_4} \text{ or } \bigoplus_{\text{%to Sylow (ii)}}
$$

G can't inject into S_4 as then $132 \leq 24$ ∴ $n_3 = 22$ and $n_{11} = 12$ Hence, G has $22(3-1) = 44$ elements of order 3 and $12(11-1) = 120$ elements of order 11. But $44 + 120 > 132 = |G|$

∴ \exists simple group of order 132.

Lemma 4.7. If $P \in \mathrm{Syl}_p(G)$ and $Q \leq G$ is a p-subgroup then $Q \leq gPg^{-1}$ for some $g \in G$

Proof. Let Q act on the set of left cosets G/P by left multiplication i.e.

 $q * qP = qqP$

By the orbit stabiliser theorem, each orbit has size dividing $|Q|$, so either 1 or a multiple pf p. Since $|G/P| = m$ is coprime to p, \exists orbit size 1. i.e. $\exists g \in G$ s.t.

> $qqP = qP \; \forall q \in Q$ $\implies g^{-1}qg \in P \,\,\forall q \in Q$ $\Rightarrow Q \leq qPq^{-1}$

5 Some matrix groups

Let F be a fireld (e.g. \mathbb{C} or $\mathbb{Z}/p\mathbb{Z}$)

$$
GL_n(F) = n \times n
$$
 invertible matrices over F

$$
SL_n(F) = \ker(GL_n(F) \to F*) \trianglelefteq GL_N(F)
$$

Let $Z \trianglelefteq GL_n(F)$ be the subgroup of scalar matrices.

Definition.

$$
PGL_n(F) = \frac{GL_n(F)}{Z}
$$

$$
PSL_n(F) = \frac{SL_n(F)}{Z \cap SL_n(F)} \cong \frac{ZSL_n(F)}{Z} \leq PGL_n(F)
$$

Example. Let $G = GL_n(\mathbb{Z}/p\mathbb{Z})$. A list of n vectors in $(\mathbb{Z}/p\mathbb{Z})^n$ are the columns of some $A \in G$ iff they are linearly independent

$$
\therefore |G| = (p^n - 1)(p^n - p)(p^n - p^2) \dots (p^n - p^{n-1})
$$

\n_{1st col 2nd col}
\n
$$
= p^{1+2+\dots+(n-1)}(p^n - 1)(p^{n-1} - 1)\dots(p-1)
$$

\n
$$
= p^{\binom{n}{2}} \prod_{i=1}^n (p^i - 1)
$$

So the Sylow *p*-subgroups have order $p^{\binom{n}{2}}$ One such is the subgroup of upper triangular matrices with 1's on the diagonal

$$
U = \left\{ \begin{bmatrix} 1 & * & * & \cdots \\ 0 & 1 & & \\ 0 & 0 & \ddots & \\ 0 & 0 & \cdots & 1 \end{bmatrix} \right\} \leq G
$$

Indeed there are $\binom{n}{2}$ entries *, each of which can take p values.

Remark. Just as $PGL_2(\mathbb{C})$ acts on $\mathbb{C} \cup \{\infty\}$ via Mobius maps, $PSL_2(\mathbb{Z}/p\mathbb{Z})$ acts on $\mathbb{Z}/p\mathbb{Z} \cup \{\infty\}$ Indeed $GL_2(\mathbb{Z}/p\mathbb{Z})$ acts as

$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix} : z \mapsto \frac{az+b}{cz+d}
$$

and since scalar matrices act trivially, this is an action of $PGL_2(\mathbb{Z}/p\mathbb{Z})$

Lemma 5.1. The permutation representation $PGL_2(\mathbb{Z}/p\mathbb{Z}) \to S_{p+1}$ is injective (in fact isomorphism if $p = 2$ or 3)

Proof. Suppose

 T

$$
\frac{az+b}{cz+d} = z \,\forall z \in \mathbb{Z}/p\mathbb{Z} \cup \{\infty\}
$$
\nPutting $z = 0$ shows $b = 0$
\nPutting $z = \infty$ shows $c = 0$
\nPutting $z = 1$ shows $a = d$
\nThus\n
$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
 is a scalar matrix (diagonal all same scalar) in $PGL_2(\mathbb{Z}/p\mathbb{Z})$

Lemma 5.2. If p is an odd prime, then

$$
|PSL_2(\mathbb{Z}/p\mathbb{Z})| = \frac{p(p-1)(p+1)}{2}
$$

Proof. By example earlier,

$$
|GL_2(\mathbb{Z}/p\mathbb{Z})|=p(p-1)(p^2-1)
$$

Then the group homomorphism $GL_2(\mathbb{Z}/p\mathbb{Z}) \xrightarrow{\det} (\mathbb{Z}/p\mathbb{Z})^*$ is surjective as we have

$$
\begin{bmatrix} a \\ & 1 \end{bmatrix} \mapsto a
$$

$$
\therefore |SL_2(\mathbb{Z}/p\mathbb{Z})| = \frac{|GL_2(\mathbb{Z}/p\mathbb{Z})|}{p-1} = p(p-1)(p+1)
$$

If $\bigl[\begin{smallmatrix} \lambda \end{smallmatrix} \bigr]$ λ $\Big] \in SL_2(\mathbb{Z}/p\mathbb{Z})$ then $\lambda^2 \equiv 1 \pmod{p} \implies p | (\lambda - 1)(\lambda + 1) \implies \lambda \equiv \pm 1 \pmod{p}$ ∴ the only scalar matrices in $SL_2(\mathbb{Z}/p\mathbb{Z})$ are $\pm I$, distinct as $p \neq 2$

$$
\therefore |PSL_2(\mathbb{Z}/p\mathbb{Z})| = \frac{1}{2}|SL_2(\mathbb{Z}/p\mathbb{Z}) = \frac{p(p-1)(p+1)}{2}
$$

Example. Let $G = PSL_2(\mathbb{Z}/5\mathbb{Z})$. Then

$$
|G| = \frac{4 \cdot 5 \cdot 6}{2} = 60 = 2^2 \cdot 3 \cdot 5
$$

Let G act on $\mathbb{Z}/5\mathbb{Z} \cup {\infty}$ via

$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix} : z \mapsto \frac{az+b}{cz+d}
$$

By Lemma 5.1, there is an injective group homomorphism

$$
\phi: G \to \text{Sym}(\{0, 1, \ldots, 4, \infty\}) \cong S_6
$$

Claim.

$$
\operatorname{Im}(\phi) \le A_6
$$

i.e. $\psi: G \longrightarrow_{\phi} S_6 \xrightarrow{\text{sign}} {\{\pm 1\}}$ is trivial.

Proof. If m is odd, then

$$
\psi(g) = 1 \iff \psi(g)^m = 1 \iff \psi(g^m) = 1
$$

So suffices to consider $g \in G$ with order a power of 2. Lemma 4.7 \implies every such element belongs to a Sylow 2-subgroup.

So it suffices to check $\psi(H) = 1$ for H a Sylow 2-subgroup. (Using here that any two Sylow 2-subgroups are conjugate and ψ maps to an abelian group) We take

$$
H = \left\langle \pm \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \pm \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\rangle \le G = \frac{SL_2(\mathbb{Z}/5\mathbb{Z})}{\{\pm I\}}
$$

We compute

$$
\phi \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = (1\ 4)(2\ 3) \ z \mapsto -z
$$

$$
\phi \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = (0\ \infty)(1\ 4) \ z \mapsto -\frac{1}{2}
$$

These are even permutations $\therefore \psi(H)$ This proves the claim.

The last part of ES1 Q14 shows that if $G \leq A_6$ and $|G| = 60$ then $G \cong A_5$

Note. Facts (not proved in the course):

- $PSL_n(\mathbb{Z}/p\mathbb{Z})$ is a simple group $\forall n \geq 2$, p prime, except $(r, p) = (2, 2)$ or $(2, 3)$
- The smallest non-abelian simple groups are

$$
A_5 \cong PSL_2(\mathbb{Z}/5\mathbb{Z}) \text{ order } 60
$$

$$
PSL_2(\mathbb{Z}/7\mathbb{Z}) \cong GL_3(\mathbb{Z}/2\mathbb{Z}) \text{ order } 168
$$

6 Finite Abelian Groups

Later in this course, we prove:

Theorem 6.1. Every finite abelian group is isomorphic to a product of cyclic groups. However, such a decomposition is not unique

Lemma 6.2. If m and n are coprime then $C_m \times C_n \cong C_{mn}$

Proof. Let g and h be generators of C_m and C_n . We have $(g, h) \in C_m \times C_n$ and $(g, h)^r = (g^r, h^r)$ In particular

> $(g, h)^r = 1 \iff m|r \text{ and } n|r$ (1) \Leftrightarrow mn|r (2)

 \therefore (g, h) has order $mn = |C_m \times C_n|$ \therefore $C_m \times C_n \cong C_{mn}$

Corollary 6.3. Let G be a finite abelian group. Then

$$
G \cong C_{n_1} \times C_{n_2} \times \cdots \times C_{n_k}
$$

where each n_i is a prime power.

Proof. If $n = p_1^{a_1} \dots p_r^{a_r} (p_1, \dots, p_r)$ distinct primes) then Lemma 6.2 shows

$$
C_n \cong C_{p_1^{a_1}} \times C_{p_2^{a_1}} \times \cdots \times C_{p_r^{a_r}}
$$

Writing each of the cyclic groups in Theorem 6.1 in this way gives the result

Note. In fact, we will prove the following refinement of Theorem 6.1:

Theorem 6.4. Let G be a finite abelian group. Then

$$
G \cong C_{d_1} \times C_{d_2} \times \cdots \times C_{d_t}
$$

for some $d_1|d_2| \ldots |d_t$

Remark. The integers n_1, \ldots, n_k in Corollaryy 6.3 (up to order) nd the integers d_1, \ldots, d_t in Theorem 6.4 (assuming $d_1 > 1$) are uniquely determined by the group G.

The proof (which we omit) works by counting the number of elements of G of each prime power order.

Examples.

(i) The abelian groups of order 8 are

$$
C_8, C_2 \times C_4
$$
 and $C_2 \times C_2 \times C_2$

(ii) The abelian groups of order 12 are

$$
C_2 \times C_2 \times C_3
$$
 $C_4 \times C_3$ using cor. 6.3

 $C_2 \times C_6$ C_12 using cor. 6.4

Definition. The exponent of a group G is the least integer $n \geq 1$ s.t. $g^n = 1 \ \forall g \in G$ i.e. the LCMof all the orders of the elements of G

Example. A_4 has exponent 6.

Corollary 6.5. Every finite abelian group contains an element whose order is the exponent of the group.

Proof. If

 $G \cong C_{d_1} \times \cdots \times C_{d_t}$ with $d_1|d_2| \ldots |d_t$

then every $g \in G$ has order dividing d_t , and if $h \in C_{d_t}$ is a generator then $(1, 1, 1, \ldots, 1, h) \in G$ has order d_t . ∴ G has exponent d_t

7 Rings - Definition and Examples

Definition. A ring is a triple $(R, +, \cdot)$ consisting of set R and two binary opertations $+ : R \times R \to R$ and $\cdot : R \times R$ satisfying

- (i) $(R, +)$ is an abelian group, with identity $0 (= 0_R)$
- (ii) Multiplication is associative and has an identity i.e.

$$
x \cdot (y \cdot z) = (x \cdot y) \cdot z \,\forall x, y, z \in R
$$

and

$$
\exists 1 \in R \text{ s.t. } x \cdot 1 = 1 \cdot x = x \ \forall x \in R
$$

(can write $1 = 1_R$) (iii) Ditributive laws

$$
x \cdot (y + z) = x \cdot y + x \cdot z \ \forall x, y, z \in R
$$

$$
(x + y) \cdot z = x \cdot z + y \cdot z \forall x, y, z \in R
$$

Remarks.

- (i) As in the case of groups, don't forget to check closure
- (ii) For $x \in R$ we write $-x$ for the its inverse under addition and abbreviate $x + (-y)$ as $x y$ (iii)

$$
0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x \implies 0 \cdot x = 0 \forall x \in R
$$

 (iv)

0 = 0 · $x = (1 - 1) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x \implies (-1) \cdot x = -x \forall x \in R$

(v) Using (iv), it is possible to deduce $+$ is commutative from the other axioms

Definition. R is commutative if

 $x \cdot y = y \cdot x \ \forall x, y \in R$

In this course, we only consider commutative rings

Definition. A subset $S \subseteq R$ is a subring (written $S \leq R$) if it is a ring under the same operations + and · with the same identity elements 0 and 1

7.1 New rings from old

Examples.

(i) If R and S are rings then their product $R \times$ is a ring via

$$
(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)
$$

$$
(r_1, s_1) \cdot (r_2, s_2) = (r_1 \cdot r_2, s_1 \cdot s_2)
$$

We have

$$
0_{R \times S} = (0_R, 0_S)
$$
 and $1_{R \times S} = (1_R, 1_S)$

Note. $R \times \{0\}$ is not a subring

(ii) If R is a ring, and X is a set then the set of all functions $X \to R$ is a ring under pointwise operations

$$
(f+g)(x) = f(x) + g(x)
$$

$$
(f \cdot g)(x) = f(x) \cdot g(x)
$$

further interesting examples appear as subgrings e.g. continuous functions $\{\mathbb{R} \to \mathbb{R}\}$

(iii) Let R be a ring and S the set of all sequences (a_0, a_1, a_2, \ldots) $a_i \in \mathbb{R}$ with $a_i = 0$ $\forall i$ sufficiently large.

$$
(a_0, a_1, a_2, \dots) + (b_0, b_1, b_2, \dots) = (a_0 + b_0, a_1 + b_1, \dots)
$$

$$
(a_0, a_1, a_2, \dots) \cdot (b_0, b_1, b_2, \dots) = (c_0, c_1, c_2, \dots)
$$

where

$$
c_n = \sum_{i=0}^n a_i b_{n-i}
$$

It may be checked that S is a ring

$$
0_S = (0, 0, 0, ...)
$$

$$
1_S = (1, 0, 0, ...)
$$

We identify R with the subring

$$
\{(a, 0, 0, \dots) : a \in R\} \le S
$$

Define $X = (0, 1, 0, ...)$. Then

$$
X^m = (0, 0, \dots, 0, 1, 0, \dots)
$$
ⁿ zeros

and

$$
(a_0, a_1, a_2, \dots, a_n, 0, 0, \dots) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0
$$

∴ S _{R[X]} is the ring of polynomials with coefficients in R

Remark. Let $R = \mathbb{Z}/p\mathbb{Z}$, p prime and $f(X) = X^p - X$. Then the function $x \mapsto f(x)$ is identically $R\rightarrow R$ zero but the polynomial f is non-zero

Examples (Further Examples).

(i)

 $R[X_1, \ldots, X_n] =$ polynomials in $X_1 \ldots, X_n$ with coefficients in R

(could define inductively $R[X_1, \ldots, X_n] = R[X_1, \ldots, X_{n-1}][X_n]$)

(ii) Power series ring

$$
R[[X]] = \{a_0 + a_1X + a_2X^2 + \dots | a_i \in R\}
$$

(iii) Laurent polynomials

$$
R[X, X^{-1}] = \left\{ \sum_{i \in \mathbb{Z}} a_i X^i | a_i \in R, \text{ and only finitely many } a_i \neq 0 \right\}
$$

Definition. An element $r \in R$ is a unit if it has an inverse under multiplication, i.e. $\exists s \in R$ s.t. $r \cdot s = 1$

Note. 2 is a unit in \mathbb{Q} , but not in \mathbb{Z}

The units in a ring R form a group (R^{\times}, \cdot) under multiplication, e.g.

 $\mathbb{Z}^{\times} = \{\pm 1\}$

 $\mathbb{Q}^{\times} = \mathbb{Q} \backslash \{0\}$

Definition. A field is a ring with $0 \neq 1$, such that every non-zero element is a unit. (e.g. $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}$ p prime)

Remark. If R is a ring with $0 = 1$ then

 $x = 1 \cdot x = 0 \cdot x = 0 \ \forall x \in R$ $\implies R = \{0\}$

is the trivial ring

Lemma 7.1. Let $f, g \in R[X]$. Suppose the leading coefficient of g is a unit. Then $\exists q, r \in R[X]$ s.t. $f(X) = q(X)g(X) + r(X)$ where $\deg(r) < \deg(g)$

Proof. By induction on $n = \deg(f)$. Write

 $f(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0 \ a_n \neq 0$

$$
g(X) = b_m X^m + b_{m-1} X^{m-1} + \dots + b_1 X + b_0 b_m \in R^{\times}
$$

If $n < m$, then put $q = 0$, $r = f\checkmark$ Otherwise we have $n \ge m$ and we put $f_1(X) = f(X) - a_n b_m^{-1} X^{n-m} g(X)$ Coeff of X_n is $a_n - a_n b_m^{-1} b_m = 0$

$$
\therefore \deg(f_1) < n
$$

By induction hypothesis,

$$
f_1(X) = q_1(X)g(X) + r(X) \deg(r) < \deg(g)
$$

\n
$$
\implies f(X) = \underset{(q_1(X) + a_n b_n^{-1} X^{n-m})}{q(X)} g(X) + r(X)
$$

Remark. If R is a field, then we only need $g \neq 0$

8 Ideals and Quotients

Definition. A ring homomorphism that is also a bijection is called an isomorphism

Definition. The **kernel** of ϕ is

$$
\ker(\phi) = \{r \in R : \phi(r) = 0_S\}
$$

Lemma 8.1. A ring homomorphism is injective if

 $\ker(\phi) = \{0_R\}$

Proof.

$$
\phi: (R, +) \to (S, +)
$$

is a group homomorphism, so lemma follows from corresponding result for groups

Definition. A subset $I \subseteq R$ is called an **ideal** (written $I \subseteq R$) if (i) I is a subgroup of $(R, +)$ (ii) $r \in R$ and $x \in I \implies rx \in I$

Remark. If I contains 1 (or more generally if I contains a unit) then by (ii), we have $I = R$. Hence if R is a field then the only ideals are $\{0\}$ and R.

Definition. We say I is **proper** if $I \neq R$

Lemma 8.2. If $\phi: R \to S$ is a ring homomorphism then ker(ϕ) is an ideal in R

Proof. $\phi: R \to S$ is a ring homomorphism, so ker(ϕ) is a subgroup of $(R, +)$. If $r \in R$ and $x \in \text{ker}(\phi)$ then

 $\phi(rx) = \phi(r)\phi(x) = \phi(r) \cdot 0 = 0 \implies rx \in \text{ker}(\phi)$

Lemma 8.3. The ideals in \mathbb{Z} are $n\mathbb{Z}$ for $n = 0, 1, 2, \ldots$

Proof. Certainly $n\mathbb{Z} \leq \mathbb{Z}$ Let $I \subseteq \mathbb{Z}$ be a non-zero ideal, so a subgroup of $(\mathbb{Z}, +)$ Let n be the least positive integer in I . Then $n\mathbb{Z} \subseteq I$ If $m \in I$ then write $m = qn + r$ with $q, r \in \mathbb{Z}, 0 \le r < n$ Then $r = m - qn \in I$

This contradicts the choice of n unless $r = 0$

 $\cdot I = n\mathbb{Z}$

Definition. For $a \in R$ we write $(a) = \{ra : r \in R\} \trianglelefteq R$ This is called the **ideal generated by** a More generally if $a_1, \ldots, a_n \in R$, we write

 $(a_1, \ldots, a_n) = \{r_1a_1 + \cdots + r_na_n : r_i \in \mathbb{R}\} \trianglelefteq R$

Definition. Let $I \subseteq R$. We say I is **principal** if $I = (a)$ for some $a \in R$

Note. Lemma 8.3 shows that every ideal in $\mathbb Z$ is principal

Theorem 8.4. If $I \subseteq R$ then the set R/I of cosets of I in $(R, +)$ forms a ring (called the quotient ring) with operations

$$
(r_1 + I) + (r_2 + I) = r_1 + r_2 + I
$$

$$
(r_1 + I) \cdot (r_2 + I) = r_1 r_2 + I
$$

and

 $0_{R/I} = 0_R + I$ $1_{R/I} = 1_R + I$

Moreover the map $r \mapsto r + I$ is a ring homomorphism (called the quotient map) with kernel I

Proof. We already know that $(R/I, +)$ is a group. If $r_1 + I = r'_1 + I$ and $r_2 + I = r'_2 + I$ then

 $r'_1 = r_1 + a_1$ and $r'_2 = r_2 + a_2$ $a_1, a_2 \in I$

Then

$$
r'_1r'_2 = (r_1 + a_1)(r_2 + a_2) = r_1r_2 + \underbrace{r_1a_2}_{\in I} + \underbrace{r_2a_1}_{\in I} + \underbrace{a_1a_2}_{\in I}
$$

$$
\therefore r_1' r_2' + I = r_1 r_2 + I
$$

The remaining properties to show R/I is a ring follow from those of R

Examples.

(i) We have $n\mathbb{Z} \trianglelefteq \mathbb{Z}$ with quotient ring $\mathbb{Z}/n\mathbb{Z}$ This ring has elements

$$
0 + n\mathbb{Z}, 1 + n\mathbb{Z}, \ldots, (n-1) + n\mathbb{Z}.
$$

Addition and multiplication are carried out mod \boldsymbol{n}

(ii) Consider $(X) \trianglelefteq \mathbb{C}[X]$ This is the ideal of polynomials whose constant term is 0. If

$$
f(X) = a_n X^n + \dots + a_1 X + a_0 \ a_i \in \mathbb{C}
$$

Then

$$
f(X) + (X) = a_0 + (X)
$$

There is a bijection

$$
\frac{\mathbb{C}[X]}{(X)} \leftrightarrow \mathbb{C}
$$

$$
f(X) + (X) \mapsto f(0)
$$

$$
a + (X) \leftrightarrow a
$$

These maps are ring homomorphisms

$$
\therefore \frac{\mathbb{C}[X]}{(X)} \cong \mathbb{C}
$$

(iii)

$$
\frac{\mathbb{R}[X]}{(X^2+1)} = \{f(X) + (X^2+1) : f(X) \in \mathbb{R}[X]\}
$$

By Lemma 7.1

$$
f(X) = q(X)(X^2 + 1) + r(X)
$$

with deg $r < 2$, i.e.

$$
r(X) + a + bX \ a \in \mathbb{R}
$$

$$
\therefore \frac{\mathbb{R}[X]}{X^2 + 1} = \{a + bX + (X^2 + 1) : a, b \in \mathbb{R}\}
$$

If

$$
a + bX + X^2 + 1 = a' + b'X + X^2 + 1
$$

then

$$
a - a' + (b - b') = q(X)(X^2 + 1)
$$
 for some $q \in \mathbb{R}[x]$

Comparing degrees we see $q(X) = 0$ and $a = a'$, $b = b'$

Examples.

(iii) (continued) ∴ There is a bijection

$$
\frac{\mathbb{R}[X]}{(X^2+1)} \xleftarrow{\phi} \mathbb{C}
$$

$$
a + bX + (X^2 + 1) \mapsto a + bi
$$

We show ϕ is a ring homomorphism. It preserves addition and maps $1 + (X^2 + 1)$ to 1

 $\phi(a + bX + (X^2 + 1))(c + dX + (X^2 + 1))$

$$
= \phi((a+bX)(c+dX) + (X^2 + 1))
$$

\n
$$
= \phi(ac + (ad+bc)X + \underbrace{bd(X^2 + 1) - bd}_{=-bd} + (X^2 + 1))
$$

\n
$$
= \phi(ac + (ad+bc)X - bd + (X^2 + 1))
$$

\n
$$
= ac - bd + (ad+bc)i
$$

\n
$$
= (a+bi)(c+di)
$$

\n
$$
= \phi(a+ bX + (X^2 + 1))\phi(c + dX + (X^2 + 1))
$$

\n
$$
\therefore \frac{\mathbb{R}[X]}{(X^2 + 1)} \cong \mathbb{C}
$$

8.1 First Isomorphism Theorem

Theorem 8.5 (First Isomorphism Theorem). let $\phi: R \to S$ be a ring homomorphism. Then ker $(\phi) \leq R$ and

 $R/\text{ker}(\phi) \cong \text{Im}(\phi) \leq S$

Proof. We already saw that ker(ϕ) \leq R (Lemma 8.2) and Im(ϕ) is a subgroup of (S, +) Now

$$
\phi(r_1)\phi(r_2) = \phi(r_1r_2) \in \text{Im}(\phi)
$$

$$
1_S = \phi(1_R) \in \text{Im}(\phi)
$$

∴ Im(ϕ) is a subgring of S. Let $K = \ker(\phi)$ We define

$$
\Phi: R/K \to \text{Im}(\phi)
$$

$$
r + K \mapsto \phi(r)
$$

this is well defined, a bijection and a group homomorphism under $+$, by the first isomorphism theorem for groups.

Also

$$
\Phi(1_R + K) = \phi(1_r) = 1_s
$$

and

$$
\Phi((r_1 + K)(r_2 + K)) = \Phi(r_1 r_2 + K) = \phi(r_1 r_2) = \phi(r_1)\phi(r_2) = \Phi(r_1 + K)\Phi(r_2 + K)
$$

∴ Φ is an isomorphism of rings

8.2 Second Isomorphism Theorem

Theorem 8.6 (Second Isomorphism Theorem). Let $R \leq S$ and $J \leq S$. Then $R \cap J \trianglelefteq R$ $R + J \leq S$ and R $\frac{R}{R \cap J} \cong \frac{R+J}{J}$ $\frac{+J}{J} \leq \frac{S}{J}$ J **Proof.** Clearly $R + j$ is a subgroup of $(S, +)$ It contains 1 (since $1 \in R$ and $0 \in J$) and if $r_1r_2 \in R$, $x_1x_2 \in J$ $(r_1 + x_1)(r_2 + x_2) = r_1r_2$ ϵ_R $+r_1x_2 + r_2x_2 + x_1x_2$ ϵJ \in $R + J$ $\therefore R + J \leq S$ Let $\phi: R \to S/J, r \mapsto r + J$ This is the composite of the inclusion $R \subseteq S$ and the quotient map $S \to S/J$, therefore a ring homomorphism

$$
\ker(\phi) = \{r \in R | r + J = J\} = R \cap J \le R
$$

$$
\text{Im}(\phi) = \{r + J | r \in R\} = \frac{R + J}{J} \le \frac{S}{J}
$$

Apple the first isomorphism theorem.

Remark. To motivate the 3rd isomorphism theorem, we note there is a bijection { ideals in R/I \leftrightarrow {ideals of R containing I} $K \mapsto \{r \in R | r + I \in K\}$ $J/I \leftarrow J$

8.3 Third Isomorphism Theorem

Theorem 8.7 (Third Isomorphism Theorem). Let $I \subseteq R$, $J \subseteq R$ with $I \subseteq J$ Then

 $J/I \trianglelefteq R/I$

and

$$
\frac{R/I}{J/I}\cong R/J
$$

Proof. Consider $\phi: R/I \to R/J$

$$
r + I \mapsto r + J
$$

This is a ring homomorphism (well-defined since $I \subseteq J$)

$$
\ker(\phi) = \{r + I : r \in J\} = J/I \leq R/I
$$

$$
\operatorname{Im}(\phi) = R/J
$$

Apply the first isomorphism theorem.

Example. There is a surjective ring homomorphism

$$
f(X) = \sum a_n X^n \mapsto f(i) = \sum a_n i^n
$$

 $m[xz]$

Using Lemma 7.1, we find

$$
\ker(\phi) = (X^2 + 1)
$$

First isomorphism thm $\implies \frac{\mathbb{R}[X]}{(X^2 + 1)} \cong \mathbb{C}$

Example. For any ring R, there is a unique ring homomorphism $\iota : \mathbb{Z} \to R$ It is given by:

 $0 \mapsto 0_R$ $1 \mapsto 1_R$ $n \mapsto 1_R + \cdots + 1_R$ $-n \mapsto -(1_R + \cdots + 1_R)$ Since ker(*ι*) $\leq \mathbb{Z}$, we have ker(*ι*) = $n\mathbb{Z}$ for some $n \in \{0, 1, 2, \dots\}$ By the first isomophism theorem

 $\mathbb{Z}/n\mathbb{Z} \cong \text{Im}(\iota) \leq R$

Definition. We call n the **characteristic** of R For example $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} has characteristic 0 Whereas $\mathbb{Z}/p\mathbb{Z}$ and $\mathbb{Z}/p\mathbb{Z}$ [X] both have characteristic p

Remark. If $char(R) = n > 0$, then *n* is the order of 1 in $(R, +)$

9 Integral Domains, Maximal Ideals and Prime Ideals

Definition. An integral domain is a ring R with $0 \neq 1$ such that for $a, b \in R$

$$
ab=0\implies a=0\text{ or }b=0
$$

A zerodivisor in a ring R is a non-zero element a such that $ab = 0$ for some $0 \neq b \in R$. So an integral domain is a ring without zero divisors.

Examples.

- (i) All fields are integral domains (if $ab = 0$ with $b \neq 0$ then multiplying by b^{-1} shows that $a = 0$)
- (ii) Any subring of an integral domain is an integral domain, e.g. $\mathbb{Z}[i] \leq \mathbb{C}$
- (iii) $\mathbb{Z} \times \mathbb{Z}$ is not an integral domain since $(1,0) \cdot (0,1) = (0,0)$

Lemma 9.1. R an integral domain $\implies R[X]$ an integral domain. Moreover if $f, g \in R[X]$ non-zero then

$$
\deg(fg) = \deg(f) + \deg(g)
$$

Proof. Write

$$
f(X) = a_m X^m + \dots + a_1 X + a_0 \ a_m \neq 0
$$

$$
g(X) = b_n X^n + \dots + b_1 X + b_0 \ b_n \neq 0
$$

Then

$$
f(X)g(X) = \underbrace{a_m b_n}_{\neq 0} X^{m+n} + \dots
$$

non-zero as R is an integral domain ∴ $fg \neq 0$ and deg(fg) = $m + n = \deg(f) + \deg(g)$

Lemma 9.2. Let R be an integral domain, and $0 \neq f \in R[X]$ Let

$$
Roots(f) = \{a \in R : f(a) = 0\}
$$

Then $\#\text{Root}(f) \leq \deg(f)$

Proof. See example sheet

Theorem 9.3. Any finite subgroup of the multiplicative group of a field is cyclic

Proof. Let F be a field and $A \leq F^*$ a finite subgroup.

A is a finite abelian group. If it is not cyclic then by Theorem 6.4 ($=$ structure theorem for finite abelian groups) it contains a subgroup isomorphic to $C_m \times C_m$ for some $m \geq 2$. But then the polynomial

 $f(X) = X^m - 1 \in F[X]$ has degree m and $\geq m^2$ roots

Contradicting lemma 9.2

Examples.

$$
(\mathbb{Z}/p\mathbb{Z})^*
$$
 is cyclic

$$
\mu_m = \{ z \in \mathbb{C} : z^m = 1 \} \leq \mathbb{C}^k
$$
 is cyclic

Prop 9.4. Any finite integral domain is a field

Proof. Let R be a finite integral domain. Let $0 \neq a \in R$. Consider the map $\phi : R \to R$

 $x \mapsto ax$

If $\phi(x) = \phi(y)$ then

 $a(x - y) = 0 \implies x - y = 0 \implies x = y$

(as \overline{R} an integral domain and $a \neq 0$) ∴ ϕ is injective R finite $\implies \phi$ is surjective $\implies \exists b \in R \text{ s.t. } ab = 1$, i.e. a is a unit ∴ R is a field

Theorem 9.5. Let R be an integral domain. There is a field F such that (i) $R \leq F$, and (ii) Every element of F may be written in the form ab^{-1} where $a, b \in R$ with $b \neq 0$ F is called the field of fractions of R Proof. Consider the set $S = \{(a, b) : a, b \in R, b \neq 0\}$

and the equivalence relation \sim on S given by

$$
(a, b) \sim (c, d) \iff ad - bc = 0
$$

This is clearly reflexive and symmetric. For transitivity: if $(a, b) \sim (c, d) \sim (e, f)$ then

$$
(ad)f = (bc)f = b(cf) = b(de) \implies d(af - be) = 0
$$

Since R is an integral domain and $d \neq 0$, this gives $af - be = 0$ i.e.

 $(a, b) \sim (e, f)$

Let $F = S / \sim$ and write a/b for $[(a, b)].$ Define

$$
\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}
$$
 and
$$
\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}
$$

It may be checked that these operations are well-defined, and make F into a ring with

a $\frac{a}{b} = \left(\frac{a}{1}\right)$ 1 $\bigwedge \frac{b}{2}$ 1 \setminus ⁻¹

$$
0_F = \frac{0_R}{1_R}
$$
 and
$$
1_F = \frac{1_R}{1_R}
$$

If $\frac{a}{b} \neq 0_F$ then $a \neq 0_R$ and $\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ab} = \frac{1_R}{1_R} = 1_F$ So F is a field. (i) We identify R with \int_{-}^{r} $\left\{\frac{r}{1}: r \in R\right\}$

(ii)

Examples.

(i) $\mathbb Z$ is an integral domain with field of fractions $\mathbb Q$

(ii) $\mathbb{Z}[i]$ has field of fractions

$$
F = \{ab^{-1} : ab \in \mathbb{Z}[i], \ b \neq 0\} \leq \mathbb{C}
$$

In fact

$$
F = \{x + iy : x, y \in \mathbb{Q}\}
$$

(iii) $\mathbb{C}[X]$ has field of fractions

$$
\mathbb{C}(X) = \text{field of rational functions in } X
$$
Lemma 9.6. A non-zero ring R is a field \iff its only ideals are $\{0\}$ and R

Proof. " \implies " If $0 \neq I \leq R$ then I contains a unit and hence $I = R$ " \Leftarrow " If $0 \neq x \in R$ then the principal ideal (x) is non-zero. Hence,

 $(x) = R$

So $\exists y \in R$ s.t. $xy = 1$ i.e. x is a unit

Definition.

- (i) Let S be a collection of subsets of a set X . $A \in S$ is maximimal if $\nexists B \in S$ s.t. $A \subseteq B$
- (ii) An ideal $I \subseteq R$ is **maximal** if it is maximal among all proper ideals of R (i.e. $I \neq R$ and $\sharp J \lhd R$ with $I \subset J \subset R$)

Prop 9.7. Let $I \subseteq R$ be an ideal

I is maximal $\iff R/I$ is a field

Proof. R/I is a field $\iff I/I$ and R/I are the only ideals in R/I \iff I and R are the only ideals in R containing I $\iff I \leq R$ is maximal

Definition. An ideal $I \subseteq R$ is prime if $I \neq R$ and whenever $a, b \in R$ with $ab \in I$, we have $a \in I$ or $b \in I$

Example. The ideal $n\mathbb{Z} \leq \mathbb{Z}$ is a prime ideal iff $n = 0$ or $n = p$ is a prime number. Indeed if $ab \in p\mathbb{Z}$ then $p|ab$, so $p|a$ or $p|b$ so $a \in p\mathbb{Z}$ or $b \in p\mathbb{Z}$. Conversely, if $n = uv$ is composite (so $u, v > 1$) then $uv \in n\mathbb{Z}$, yet $u \notin n\mathbb{Z}$, $v \notin n\mathbb{Z}$

Prop 9.8. Let $I \triangleleft R$ be an ideal

I is prime $\iff R/I$ is an integral domain

Proof. I is prime \iff whenever $a, b \in R$ with $ab \in I$, we have $a \in I$ or $b \in I$ ⇒ whenever $a + I$, $b + I \in R/I$ with $(a + I)(b + I) = 0 + I$ we have $a + I = 0 + I$ or $b + I = 0 + I$ $\iff R/I$ is an integral domain

Remark. Proposition 9.7 and 9.9 show that

I maximal \implies I prime

Remark. If $char(R) = n$ then $\mathbb{Z}/n\mathbb{Z} \leq R$ So if R is an integral domain then $\mathbb{Z}/n\mathbb{Z}$ is an integral domain

 $\implies n\mathbb{Z} \trianglelefteq \mathbb{Z}$ is a prime ideal

 $\implies n = 0$ or $n = p$ is a prime

In particular any field either has characteristic 0 (and so contains Q as a subfield) or else has characteristic p (and so contains $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ as a subfield)

10 Factorisation in Integral Domains

Note. In this section R is always an integral domain

Definition.

(i) $a \in R$ is a unit if $\exists b \in R$ with $ab = 1$, equivalently $(a) = R$

(ii) $a \in R$ divides $b \in R$ (written a|b) if $\exists c \in R$ s.t. $b = ac$, equivalently,

 $(b) \subseteq (a)$

(iii) $a, b \in R$ are associates if $a = bc$ for some unit $c \in R$, equivalently

 $(a) = (b)$

(iv) $r \in R$ is **irreducible** if it is not zero not a unit and

 $r = ab \implies a$ or b is a unit

(v) $r \in R$ is **prime** if it is not zero, not a unit and

 $r|ab \implies r|a \text{ or } r|b$

Remark. These properties depend on the ambient ring R e.g. 2 is prime and irreducible in $\mathbb Z$ but not in $\mathbb Q$ 2X is irreducible in $\mathbb{Q}[X]$, but not in $\mathbb{Z}[X]$

Lemma 10.1. (*r*) is a prime ideal in $R \iff r = 0$ or *r* is a prime

Proof. " \implies " Suppose (*r*) is prime and $r \neq 0$. As prime ideals are proper, $(r) \neq R$, so r is not a unit If $r|ab$ then $ab \in (r)$ so $a \in (r)$ or $b \in (r)$ so $r|a$ or $r|b$ ∴ r is prime " \Leftarrow " $\{0\} \trianglelefteq R$ is a prime ideal since R is an integral domain. Let $r \in R$ be prime. If $ab \in (r)$ then $r|ab$ so $r|a$ or $r|b$, so $a \in (r)$ or $b \in (r)$ ∴ (r) is a prime ideal

Lemma 10.2. If $r \in R$ is prime, then it is irreducible

Proof. Since r is prime, it is not zero and not a unit Suppose $r = ab$. Then $r|ab$, so $r|a$ or $r|b$ Let's suppose $r|a$, say $a = rc$ some $c \in R$. Then

$$
r = ab = rcb \implies r(1 - bc) = 0
$$

as $r \neq 0$ and R is an integral domain

 $1 - bc = 0$

so b is a unit Likewise if $r|b$ then a is a unit

Warning. The converse does NOT hold in general

Example. Let

$$
R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\} \leq \mathbb{C}
$$

It is a subring of a field, so an integral domain. Define a function $N: R \to \mathbb{Z}_{\geq 0}$ "the norm"

$$
z = a + b\sqrt{-5} \mapsto |z|^2 = a^2 + 5b^2
$$

and note that

$$
N(z_1 z_2) = N(z_1) N(z_2)
$$

Claim. The units in R are ± 1 .

Proof. If $r \in R$ is a unit i.e. $rs = 1$ for some $s \in R$ then

$$
N(r)N(s) = N(rs) = N(1) = 1 \implies N(r) = 1
$$

But the only integer solutions to $a^2 + 5b^2 = 1$ are $(a, b) = (\pm 1, 0)$

Claim. $2 \in R$ is irreducible

Proof. Suppose $2 = rs$ some $r, s \in R$. taking norms we get

$$
N(r)N(s) = 4
$$

Since $a^2 + 5b^2 = 2$ has no solutions with $a, b \in \mathbb{Z}$, there are no elements of norm 2. \therefore $N(r) = 1$ and $N(s) = 4$ or vice versa. But $N(r) = 1 \implies r$ is a unit

Note. Similarly, $3, 1 + \sqrt{-5}, 1 - \sqrt{-5}$ are irreducible, as there are no elements of norm 3. Note. Similarly, 3, 1 + $\sqrt{-5}$, 1 − $\sqrt{-5}$
We have $(1 + \sqrt{-5})(1 - \sqrt{-5}) = 2 \cdot 3$
yet $2 \nmid 1 + \sqrt{-5}$ and $2 \nmid 1 - \sqrt{-5}$ Seen by taking norm or by noting that $\frac{1 \pm \sqrt{-5}}{2} \notin R$ 2 lessons: (i) irreducible \Rightarrow prime (i) irreducible \Rightarrow prime
(ii) $2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ gives two factorisations into irreducibles

Remark. Since the only units in R are ± 1 , it is clear that the irreducibles in (ii) are not associates.

Definition. An integral domain R is called a **principal ideal domain (PID)** if every ideal of R is principle, i.e. is of the form (a) for some $a \in R$ e.g. Z is a PID by Lemma 8.3 We will show that $\mathbb{Z}[i]$ and $\mathbb{F}[X]$ for \mathbb{F} a field are PIDs

Lemma 10.3. Let $0 \neq r \in R$. If (r) is a maximal ideal then r is irreducible and the converse holds if R is a PID.

Proof. we have $r \neq 0$ (by assumption) and r is not a unit (since maximal ideals are proper). Suppose $r = ab$ with $a, b \in R$. Then

 $(r) \subseteq (a) \subseteq R$

(r) maximal \implies either $(r) = (a)$ or $(a) = R$

 $(r) = (a) \implies b$ is a unit

 $(a) = R \implies a$ is a unit

∴ r is irreducible.

Conversely, suppose r is irreducible and $(r) \subseteq J \subseteq R$

R is PID \implies $J = (a)$ for some $a \in R$ \implies r = ab for some $b \in R$

Since r is irreducible either:

a is a unit $\implies J = R$

or

b is a unit \implies $(r) = J$

∴ (r) is maximal

Prop 10.4. Let R be a PID. Then every irreducible element of R is prime.

Proof (Version 1). Let $p \in R$ be irreducible and $p|ab$ and $\nmid a$. R is a PID \implies $(a, p) = (d)$ for some $d \in R$ In particular $p = cd$ for some $c \in R$ Since p is irreducible either c or d is a unit. If c is a unit then

 $(a, b) = (p)$, so $p|a \times$

If d is a unit then $(a, p) = R$

so
$$
\exists r, s \in \text{Rs.t.} ra + sp = 1
$$

Then $b = rab + spb$ and since $p|ab$ we get $p|b$ ∴ *p* is prime

Proof (Version 2). p irreducible \implies (p) is maximal (lemma 10.3) $\implies R/(p)$ is a field $\implies R/(p)$ is an integral domain \implies (p) is prime $\implies p$ is prime

Definition. An integral domain R is a **Euclidean domain (ED)** if there is a function

 $\phi: R\backslash\{0\} \to \mathbb{Z}_{\geq 0}$ (a Euclidean function)

such that

(i) if $a|b$ then $\phi(a) \leq \phi(b)$

(ii) if $a, b \in R$ with $b \neq 0$ then $\exists q, r \in R$ with $a = qb + r$ and either $r = 0$ or $\phi(r) < \phi(b)$

Prop 10.5. If R is a Euclidean domain then it is a principal ideal domain $(i.e. ED \implies PID)$

Proof. Let R have Euclidean function

 $\phi: R\backslash\{0\} \to \mathbb{Z}_{\geq 0}$

Let $I \subseteq R$ be a non-zero ideal choose $b \in I \setminus \{0\}$ with $\phi(b)$ minimal We have $(b) \subset I$. For $a \in I$ we write $a = qb + r$ with $q, r \in R$ and either $r = 0$ or $\phi(r) \leq \phi(b)$

Since $r = a - qb \in I$, this contradicts the choice of b, unless $r = 0$ But then $a = qb \in (b)$. Hence $I = (b)$

Remark. We only used (ii) here. The reason for including (i) in the definition of ED is that it allows us to describe the units as

 $R^{\times} = \{u \in R \setminus \{0\} | \phi(u) = \phi(1) \}$

Examples.

(i) Z is a Euclidean domain with $\phi(n) = |n|$

(ii) If F is a field, then $F[X]$ is a Euclidean domain with

$$
\phi(f) = \deg(f)
$$

(see Lemma 7.1 and 9.1)

(iii) $R = \mathbb{Z}[i] \leq \mathbb{C}$ is a Euclidean domain with

$$
\phi(a+ib) = N(a+ib) = |a+ib|^2 = a^2 + b^2
$$

Since $N(z_1z_2) = N(z_1)N(z_2)$ property under (i) is clear For property (ii), let $z_1, z_2 \in \mathbb{Z}[i]$ with $z_2 \neq 0$ Consider $z_1/z_2 \in \mathbb{C}$. This has distance les than 1 from the nearest element of $\mathbb{Z}[i]$

So we can write

$$
\frac{z_1}{z_2} = q + \varepsilon
$$

where $q \in \mathbb{Z}[i], \ \varepsilon \in \mathbb{C}, \ |\varepsilon| < 1$

$$
\implies z_1 = qz_2 + \underbrace{\varepsilon z_r}_{r}
$$

$$
r = z_1 - qz_2 \in \mathbb{Z}[i]
$$

and

$$
\phi(r) = |\varepsilon z_2|^2 < |z_2|^2 = \phi(z_2)
$$

It follows from prop 10.5 that $F[X]$ for F a field nd $\mathbb{Z}[i]$ are PID's.

Example. Let A be a $n \times n$ matrix over a field F. Let $I = \{f \in F[X] : f(A) = 0\}$ If $f, g \in I$ then $(f + g)(A) = f(A) + g(A) = 0$, so $f + g \in I$ If *f* ∈ *F*[*X*], *g* ∈ *I* then $(fg)(A) = f(A)g(A) = 0$ So I is an ideal in $F[X]$ $F[X]$ is a PID $\implies I = (f)$ for some $f \in F[X]$, which we may suppose monic by multiplying by a unit. Note that for $g \in F[X]$ $g(A) = 0 \iff g \in I \iff g \in (G) \iff f|g$ We say f is the minimal polynomial of A

Example. Let $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$ be the field with 2 elements Let $f(X) = X^3 + X + 1 \in \mathbb{F}_2[X]$ If $f(X) = g(X)h(X)$ with $g, h \in \mathbb{F}_2[X]$ and $deg(g), deg(h) > 0$ then one of these factors is linear, and so f has a root. But $f(0 \neq 0 \text{ and } f(1) \neq 0$ ∴ g is irreducible. Since $\mathbb{F}_2[X]$ is a PID, it follows from Lemma 10.3 that $(f) \leq \mathbb{F}_2[X]$ is maximal, hence

$$
\frac{\mathbb{F}_2[X]}{(f)} = \{aX^2 + bX + c + (f)|a, b, c \in \mathbb{F}_2\}
$$

is a field of order 8

Example. The ring $\mathbb{Z}[X]$ is not a PID Indeed consider $(2, X) \trianglelefteq \mathbb{Z}[X]$ Then $I = \{2f_1(X) + Xf_2(X) : f_1, f_2 \in \mathbb{Z}[X]\}$ $=\{f \in \mathbb{Z}[X] : f(0)$ is even Suppose $I = (f)$ for some $f \in \mathbb{Z}[X]$ Then $2 = fg$ for some $g \in \mathbb{Z}[X]$ \therefore deg $(f) =$ deg $(g) = 0$ $\therefore f = \pm 1$ or ± 2 $\therefore I = \mathbb{Z}[X]$ or $2\mathbb{Z}[X]$ $I = \mathbb{Z}[X]$ is impossible as $1 \notin I$, $2\mathbb{Z}[X]$ impossible as $X \in E$

Definition. An integral domain is a unique factorisation domain (UFD) if

- (i) every non-zero, non unit is a product of irreducibles
- (ii) if $p_1 \nldots p_m = q_1 \ldots q_n$ where p_1 and q_i are irreducibles then $m = n$ and e may reorder s.t. p_i is an associate of $q_i \; \forall 1 \leq i \leq n$

Prop 10.6. Let R be an integral domain satisfying (i) in the definition of UFD. Then R is a UFD \iff every irreducible in R is prime

Proof. " \implies " suppose $p \in R$ is irreducible, and p|ab, say

 $ab = pc$

for some $c \in R$ Writing a, b, c as products of irreducibles, it follows from (ii) that $p|a$ or $p|b$.

∴ *p* is prime

" \Leftarrow " suppose $p_1 \dots p_m = q_1 \dots q_n$ with each p_1 and q_i irreducible. Since p_1 is prime and $p_1|q_1 \ldots q_n$ we have $p_1|q_i$ for some *i*. After some reordering, we may assume $p_1|q_1$ i.e.

 $q_1 = up_1$

for some $u \in R$. But q_1 is irreducible and p_1 is not a unit, so u is a unit

∴ p_1 and q_1 are associates

Cancelling p_1 gives $p_2 \ldots p_m = (uq_2) \ldots q_n$ The result then follows by induction

Lemma 10.7. Let R be a PID and

 $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$

a nested sequence of ideals. Then $\exists N \in \mathbb{N}$ s.t. $I_n = I_{n+1}$ $\forall n \geq N$. (Rings satisfying this "ascending chain condition" are called Noetherian - more on this later)

Proof. Let

$$
I = \bigcup_{1}^{\infty} I_i
$$

This is an ideal in R. As R is a PID, we have

$$
I = (a) \text{ for some } a \in R
$$

Then

$$
a\in \bigcup_{i=1}^\infty I_i
$$

so $a\in I_N$ for some N Then for any $n \geq N$ we have

$$
(a) \subseteq I_N \subseteq I_n \subseteq I = (a)
$$

and so $I_n = I$

Theorem 10.8. If R is a principal ideal domain then it is a unique factorisation domain (i.e. PID \implies UFD)

Proof. We must check (i) and (ii) in the definition of UFD

(i) Let $0 \neq x \in R$, not a unit. Suppose it is not a product of irreducibles. Then x is not irreducible, so can write

 $x = x_1y_1$

where x_1, y_1 are not units.

One or other of x_1 and y_1 is not a product of irreducibles. Let's say it's x_1 . we have $(x) \subseteq (x_1)$ and this inclusion is strict since y_1 is not a unit. Now write

 $x_1 = x_2y_2$

where x_2, y_2 are not units. Repeating in this way we obtain

$$
(x) \subset (x_1) \subset (x_2) \subset \ldots \; \mathbb{X}
$$

(contradicts lemma 10.7)

(ii) By proposition 10.6, it suffices to show that irreducibles are prime, which we proved in proposition 10.4.

Definition. Let R be an integral domain (i) $d \in R$ is a greatest divisor of $a_1, \ldots, a_n \in R$ written

 $d = \gcd(a_1, \ldots, a_n)$

if $d|a_i \forall i$ and if $d'|a_i \forall i \implies d'|d$ (ii) $m \in R$ is a least common multiple written

$$
m=\operatorname{lcm}(a_1,\ldots,a_n)
$$

if $a_i|m \forall i$ and $a_i|m' \forall i \implies m|m'$ Both gcd's and lcm's (when they exist) are unique up to multiplying by a unit Prop 10.9. In a UFD, both lcm's and gcd's exists

Proof. Write

$$
a_i = u_i \prod_j p_j^{n_{ij}} \ \forall 1 \leq i \leq n
$$

where u_i is a unit, the p_j are irreducibles which are not associates of each other and $n_{ij} \in \mathbb{Z}_{\geq 0}$ we claim that

$$
d=\prod_j p_j^{m_j}
$$

where

$$
m_j = \min_{1 \le i \le n} n_{ij}
$$

is the gcd of a_1, \ldots, a_n . Certianly $d|a_i \,\forall i$. If $d'|a_i \,\forall i$ then writing

$$
d' = u \prod_j p_j^{t_j}
$$

we find $t_k \leq n_{ij}$ $\forall i$ and so $t_j \leq m_j$, therefore $d'|d$. The argument for lcm's is similar.

11 Factorisation in Polynomial Rings

Theorem 11.1. If R is a UFD, then $R[X]$ is a UFD.

Proof. Comes a bit later.

Remark. Repeatedly applying this result shows that if R is a UFD then $R[X_1, \ldots, X_n]$ is a UFD. In particular, the theorem shows that $\mathbb{Z}[X]$ and $\mathbb{C}[X_1, \ldots, X_n]$ are UFD's.

Note. In this section R is a UFD with field of fractions F. We have $R[X] \leq F[X]$. Moreover, $F[X]$ is a ED, hence a PID & UFD.

Definition. The content of

$$
f = a_n X^n + \dots + a_1 X + a_0 \in R[X]
$$

is

$$
c(f) = \gcd(a_0, \ldots, a_n)
$$

We say f is **primitive** if $c(f)$ is a unit, i.e. all a_i are coprime

Lemma 11.2.

(i) Any prime in R is also prime in $R[X]$

(ii) If $f, g \in R[X]$ are primitive, then fg are primitive

(iii) If $f, g \in R[X]$ then $c(fg) = c(f)c(g)$

Proof.

(i) Let $p \in R$ be a prime, so $R/(p)$ is an integral domain. For $a \in R$, we write $\tilde{a} \in R/(p)$ for its image under the quotient map. We define a ring homomorphism $\theta : R[X] \to R/(p)[X]$

$$
a_n X^n + \dots + a_1 X + a_0 \mapsto \tilde{a_n} X^n + \dots + \tilde{a_1} X + \tilde{a_0}
$$

If $f, g \in R[X]$ with $p|fg$ then $\theta(fg) = 0$

 $\implies \theta(f)\theta(g) = 0$

and as $R/(p)[X]$ is an integral domain, by Lemma 9.1.

$$
\theta(f) = 0
$$
 or $\theta(g) = 0$

 $\implies p|f$ or $p|q$ ∴ p is prime in $R[X]$

- (ii) If fg is not primitive then $\exists p \in R$ irreducible with $p|fg$. Since R is a UFD, p is prime. By (i) we have $p|f$ or $p|g$, contradicting f & g primitive
- (iii) We write $f = c(f)f_0$ and $g = c(g)g_0$ where $f_0g_0 \in R[X]$ primitive. Then

$$
fg = c(f)c(g)f_0g_0
$$

and we have f_0g_0 primitive by (ii)

$$
\therefore c(fg) = c(f)c(g)
$$

(up to multiplication by units)

Remark. If $f \in F[X]$ then we can write

$$
f = \frac{a}{b} f_0
$$
 where $a, b \in R$, $b \neq 0$ and $f_0 \in R[X]$ primitive

Indeed, by clearing denominators we may find $0 \neq b \in R$ s.t. $bf \in R[X]$. Then $bf = c(bf) f_0$ for some $f_0 \in R[X]$ primitive. \overline{a} a

Lemma 11.3. Let $f, g \in R[X]$ with g primitive. If $g|f$ in $F[X]$ then $g|f$ in $R[X]$.

Proof. Write $f = gh$ with $h \in F[X]$. By the remark,

$$
h = \frac{a}{b}h_0 \ a, b \in R, \ b \neq 0, \ h_0 \in R[X] \text{ primitive}
$$

Then

$$
f = g\frac{a}{b}h_0 \implies bf = agh_0
$$

and gh_0 primitive by Lemma 11.2

Taking contents shows $b|a$, hence $h \in R[X]$, hence $g|f$ in $R[X]$

Lemma 11.4 (Gauss' Lemma). Let R be a UFD with field of fractions F . Let $f \in R[X]$ be primitive. Then

f irred in $R[X] \implies f$ irred in $F[X]$

Proof. Since $f \in R$ is irreducible and primitive we have $\deg(f) > 0$, and so f is not a unit in $F[X]$. Suppose for a contradiction that f is not irreducible in $F[X]$, say $f = gh$ where $g, h \in F[X]$ with $deg(g)$, $deg(h) > 0$. Replacing g & h by λg and $\lambda^{-1}h$ for some $\lambda \in F^*$, we may assume $g \in R[X]$ is primitive. Then Lemma 11.3 shows $h \in R[X]$. Now $f = gh$ where $g, h \in R[X]$, with $deg(g)$, $deg(h) > 0$.

This contradicts that f is irred in $R[X]$

Lemma 11.5. Let $g \in R[X]$ be primitive. Then

g prime in $F[X] \implies g$ is prime in $R[X]$

Proof. Suppose $f_1, f_2 \in R[X]$ and $g \mid f_1 f_2$ in $R[X]$

$$
g
$$
 is prime in $F[X] \implies g|f_1$ or $g|f_2$ in $F[X]$
 $\implies g|f_1$ or $g|f_2$ in $R[X]$

∴ g is prime in $R[X]$

Proof (of Theorem 11.1). Let $f \in R[X]$ Write $f = c(f)f_0$ where $f_0 \in R[X]$ is primitive. R a UFD $\implies c(f)$ is a product of irreducibles in R (which are also irreducibles in R[X]) If f_0 i not irreducible, say $f_0 = gh$ then the factors g and h have smaller degree (using that f_0 is primitive) and are again primitive. By induction on the degree, f_0 is a product of irreducibles in $R[X]$ It remains to show (see Prop 10.6) that if $f \in R[X]$ is irreducible then it is prime. Again write $f = c(f)f_0$ where $f_0 \in R[X]$ primitive. f irred \implies f is either constant or primitive

Case f constant:

f irred in $R[X] \implies f$ irred in R \implies f prime in R as R is a UFD \implies f prime in R[X] (Lemma 11.2(i))

Case f primitive:

f irred in $R[X] \implies f$ irred in $F[X]$ (Gauss' Lemma) $\implies f$ prime in $F[X]$ ($F[X]$ a UFD) \implies f prime in R[X] (Lemma 11.5)

Remark. In view of Lemma 10.2, the last three " \implies " are " \iff "

Example. (i) Theorem 11.1 $\implies \mathbb{Z}[X]$ is a UFD (ii) Let $R[X_1, \ldots, X_n] =$ polynomial ring in X_1, \ldots, X_n with coefficients in R. (Define inductively $R[X_1, \ldots, X_n] = R[X_1, \ldots, X_{n-1}][X_n]$ Applying Theorem 11.1 inductively $\implies R[X_1,\ldots,X_n]$ is a UFD if R is a UFD

11.1 Eisenstein's Criterion

Claim. Let R be a UFD and $f(X) = a_n X^n + \cdots + a_1 X + a_0 \in R[X]$ primitive. Suppose $\exists p \in R$ irreducible (prime) such that \bullet p $\nmid a_n$

• $p \mid a_i \; \forall 0 \leq i \leq n-1$ $\bullet \ \ p^2 \nmid a_0$ Then f irreducible in $R[X]$

> **Proof.** Suppose $f = gh$, $g, h \in R[X]$ not units. f primitive $\implies \deg(g), \deg(h) > 0$. Let $g = r_k X^k + \cdots + r_1 X + r_0$ and $h = s_l X^l + \cdots + s_1 X + s_0$ with $k + l = n$ then $p \nmid a_n =$ $r_k s_l \implies p \nmid r_k \text{ and } p \nmid s_l.$ $p | a_0 = r_0 s_0 \implies p | r_0 \text{ or } p | s_0 \text{, wlog } p | r_0.$ Then $\exists j \leq k$ s.t. $p | r_0, p | r_1, \ldots, p | r_{j-1}, p \nmid r_j$ a_j $\lim_{y \to \infty}$ by p $= r_0s_j + r_1s_{j-1} + \cdots + r_{j-1}s_1$ $\frac{d}{dx}$ by p $+r_j s_0$

Thus $p | r_j s_0 \implies p | s_0 \implies p^2 | r_0 s_0 = a_0$

Example. (i) $X^3 + 2X + 5 \in \mathbb{Z}[X]$ If f not irreducible in $\mathbb{Z}[X]$ then

$$
f(X) = (X + a)(X2 + bX + x) \text{ some } a, b, c \in \mathbb{Z}
$$

Thus $ac = 5$. But ± 1 , ± 5 are not roots of f $\&$.

By Gauss' Lemma, f irreducible in $\mathbb{Q}[X]$. Thus $\mathbb{Q}[X]/(f)$ is a field (Lemma 10.4)

(ii) Let $p \in \mathbb{Z}$ prime. eisenstein's criterion $\implies X^n - p$ irreducible in $\mathbb{Z}[X]$, hence irreducible in $\mathbb{Q}[X]$ by Gauss' Lemma

(iii) Let $f(X) = X^{p-1} + X^{p-2} + \cdots + X + 1 \in \mathbb{Z}[X]$ where $p \in \mathbb{Z}$ is prime. Eisenstein does not apply directly to f. But note that $f(X) = X^p - 1$. Substituting $Y = X - 1$ gives

$$
f(Y+1) = \frac{(Y+1)^p-1}{Y+1-1} = Y^{p-1} + \binom{p}{1} Y^{p-2} + \dots + \binom{p}{p-2} Y + \binom{p}{p-1} \in \mathbb{Z}[Y]
$$

Now $p \mid {p \choose i} \forall 1 \le i \le p-1$ and $p^2 \nmid {p \choose p-1} = p$. Thus $f(Y+1)$ irreducible in $\mathbb{Z}[Y]$ so $f(X)$ irreducible in $\mathbb{Z}[X]$ (if $f(X) = g(X)h(X)$ then $f(Y + 1) = g(Y + 1)h(y + 1)$)

12 Algebraic Integers

Recall $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{C}\}\leq \mathbb{C}$ - ring of Gaussian integers. Norm $N: \mathbb{Z}[i] \to \mathbb{Z}_{\geq 0}$, $a + bi \mapsto a^2 + b^2$ iwth $N(z_1 z_2) = N(z_1)N(z_2)$ is a Euclidean function Thus $\mathbb{Z}[i]$ is a ED, hence a PID and UFG and so primes = irreducibles in $\mathbb{Z}[i]$ The units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$ (only elements of Norm 1)

Example. (i) $2 = (1_i)(1 - i)$ and $5 = (2 + i)(2 - i)$ are not primes in $\mathbb{Z}[i]$ (ii) $N(3) = 0$ so if $3 = ab$ in $\mathbb{Z}[i]$, $N(a)N(b) = 9$. But $\mathbb{Z}[i]$ has no elements of norm r. thus either a or b is a unit \implies 3 is prime in $\mathbb{Z}[i]$. Similarly 7 is prime in $\mathbb{Z}[i]$

Prop 12.1. Let $p \in \mathbb{Z}$ be a prime number. The following are equivalent: (i) p is not prime in $\mathbb{Z}[i]$ (ii) $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$ (iii) $p = 2$ or $p = 1$ mod 4

Proof. (i) \implies (ii): Let $p = xy, x, y \in \mathbb{Z}[i]$ not units. Then $p^2 = N(p) =$ $N(x)N(y), N(x), N(y) > 1$. Thus $N(x) = N(y) = p$. Writing $x = a + bi$ gives $p = N(x) = a^2 + b^2$ (ii) \implies (iii): the squares mod 4 are 0 and 1. Thus if $p = a^2 + b^2$, then $p \not\equiv 3 \mod 4$ (iii) \implies (i): Already saw 2 is not prime in Z[i]. By theorem 9.3, $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic of order $p-1$. so if $p=1 \mod 4$, then $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic of order $p-1$. So if $p=1 \mod 4$, then $(\mathbb{Z}/p\mathbb{Z})^{\times}$ contains an element of order 4, i.e. $\exists x \in \mathbb{Z}$ with $x^4 \equiv 1 \mod p$, but $x^2 \not\equiv 1 \mod p$. Then $x^2 \equiv -1 \mod p$. Now $p \mid x^2 + 1 = (x + i)(x - i)$ but $p \nmid x + i$ and $p \nmid x - i$, thus p not prime in $\mathbb{Z}[i]$

Theorem 12.2. The primes in $\mathbb{Z}[i]$ are (up to associates) (i) $a + bi$, where $a, b \in \mathbb{Z}$ and $a^2 + b^2 = p$ is a prime number with $p \equiv 2$ or $p \equiv 1 \mod 4$. (ii) Prime numbers $p \in \mathbb{Z}$ with $p \equiv 3 \mod 4$

Proof. First we check these are primes:

- (i) $N(a + bi) = p$. If $a + bi = uv$, then either $N(u) = 1$ or $N(v) = 1$. Thus $a + bi$ is irreducible, hence prime
- (ii) Prop 12.1

Now let $z \in \mathbb{Z}[i]$ be a prime (irreducible). Then $\bar{z} \in \mathbb{Z}[i]$ is also irreducible and $N(z) = z\bar{z}$ is a factorization into irreducibles.

Let $p \in \mathbb{Z}$ be a prime number dividing $N(z)$. If $p \equiv 3 \mod 4$, then p is prime in $\mathbb{Z}[i]$. Thus $p \mid z \text{ or } \overline{z}$, so p is an associate of z or \overline{z}

 $\implies p$ is an associate of z

Otherwise, $p \equiv 2$ or $p \equiv 1 \mod 4$ and

 $p = a^2 + b^2 = (a + bi)(a - bi)$ some $a, b \in \mathbb{Z}$

Then $(a+bi)(a-bi) \mid z\overline{z}$. Thus z is an associate of $a+bi$ or $a-bi$ by uniqueness of factorization

Remark. In theorem 12.2 (i), if $p = a^2 + b^2$, $a + bi$ and $a - bi$ are not associates unless $p = 2$. $(1 + i) = (1 - i)i$

Corollary 12.3. An integer $n \geq 1$ is the sum of 2 squares iff every prime factor p of n with $p \equiv 3$ $mod 4$ divides n to an even power

Proof. $n = a^2 + b^2 \iff n = N(x)$ some $x \in \mathbb{Z}[i] \iff n$ is a product of norms of primes in $\mathbb{Z}[i]$. Theorem 12.2 implies that the norms of primes in $\mathbb{Z}[i]$ are the primes $p \in \mathbb{Z}$ with $p \not\equiv 3 \text{ mod } 5$

4, and squares of primes $p \in \mathbb{Z}$ with $p \equiv 3 \mod 4$

Example. $65 = 5 \cdot 13$ Factoring into primes in Z[i] gives $5 = (2 + i)(2 - i)$, $13 = (2 + 3i)(2 - 3i)$. Thus $65 = (2+3i)(2+i)(2+3i)(2+i)$ i.e.

$$
65 = N((2+3i)(2+i)) = N(1+8i) \implies 65 = 1^2 + 8^2
$$

But also

$$
65 = N((2 + i)(2 - 3i)) = N(7 - 4i) \implies 65 = 7^2 + 4^2
$$

Definition. (i) $\alpha \in \mathbb{C}$ is an algebraic number if \exists non-zero $f \in \mathbb{Q}[X]$ with $f(\alpha) = 0$ (ii) $\alpha \in \mathbb{C}$ is an algebraic integer if \exists monic $f \in \mathbb{Z}[X]$ with $f(\alpha) = 0$

Notation. Let R be a subring of S, and $\alpha \in S$. We write $R[\alpha]$ for the smallest subring of S containing R and α , i.e.

$$
R[\alpha] = \operatorname{Im}(g(X) \mapsto g(\alpha))
$$

$$
R[X] \to S
$$

Let α be an algebraic number, and let $\phi : \mathbb{Q}[X] \to \mathbb{C}$, $g(X) \mapsto g(\alpha)$. $\mathbb{Q}[X]$ is a PID \implies ker $(\phi) = (f)$ for some $f \in \mathbb{Q}[X]$. Then $f \neq 0$ since α an algebraic number. Upon multiplying f by a unit, we may assume that f is monic

Definition. f above is the **minimal polynomial** of α . By isomorphism theorem

$$
\mathbb{Q}[X]/(f) \cong \mathbb{Q}[\alpha] \leq \mathbb{C}
$$

Thus $\mathbb{Q}[\alpha]$ is an integral domain $\implies f$ irreducible in $\mathbb{Q}[X] \implies \mathbb{Q}[\alpha]$ is a field

Prop 12.4. Let α be an algebraic integer and $f \in \mathbb{Q}[X]$ its minimal polynomial. then $f \in \mathbb{Z}[X]$ and $(f) = \ker(\theta) \leq \mathbb{Z}[X]$ where $\theta : \mathbb{Z}[X] \to \mathbb{C}$ is the map $g(X) \mapsto g(\alpha)$

Proof. Let $\lambda \in \mathbb{Q}^{\times}$ s.t. $\lambda f \in \mathbb{Z}[X]$ is primitive. then $\lambda f(\alpha) = 0$, so $\lambda f \in \text{ker}(\theta)$. Let $g \in \text{ker}(\theta) \subseteq \mathbb{Z}[X]$. Then $g \in \text{ker}(\phi)$ and hence $\lambda f \mid g$ in $\mathbb{Q}[X]$. Lemma 11.4 $\implies \lambda f \mid g$ in $\mathbb{Z}[X]$. Thus ker $(\theta) = (\lambda f)$. Now α is an algebraic integer, hence $\exists g \in \text{ker}(\theta)$ monic. Then $\lambda f | g$ in $\mathbb{Z}[X] \implies \lambda = \pm 1$. Hence $f \in \mathbb{Z}[X]$, and $(f) = \text{ker}(\theta)$.

Let $\alpha \in \mathbb{C}$ an algebraic integer. applying isomorphism theorem θ gives

 $\mathbb{Z}[X]/(f) \cong \mathbb{Z}[\alpha]$

Example. $i, \sqrt{2}, \frac{-1+\sqrt{3}}{2}, \sqrt[n]{p}$ have minimal polynomials

$$
X^2 + 1, X^2 - 2, X^2 + X + 1, X^n - p
$$

Thus

$$
\frac{\mathbb{Z}[X]}{(X^2+1)} \cong \mathbb{Z}[i], \quad \frac{\mathbb{Z}[X]}{(X^2-2)} \cong \mathbb{Z}[\sqrt{2}] \text{ etc.}
$$

Corollary 12.5. If α is an algebraic integer and $\alpha \in \mathbb{Q}$, then $\alpha \in \mathbb{Z}$

Proof. Let α be an algebraic integer. Then prop 12.4 \implies min poly has coefficients in \mathbb{Z} . $\alpha \in \mathbb{Q} \implies \min \text{ poly is } X - \alpha \text{ and so } \alpha \in \mathbb{Z}$

13 Noetherian Rings

We showed that any PID R satisfies the "ascending chain condition" (ACC): If $I_1 \subseteq I_2 \subseteq \ldots$ are ideals in R, then $\exists N \in \mathbb{N}$ s.t. $I_n = I_{n+1} \ \forall n \geq N$. More generally:

Lemma 13.1. Let R be a ring. R satisfies ACC \iff All ideals in R are finitely generated **Proof.** " \Leftarrow ": let $I_1 \subseteq I_2 \subseteq \dots$ be a chain of ideals and $I = \bigcup_{n \geq 1} I_n$, which is again an ideal. By assumption, $I = (a_1, \ldots, a_m)$ for some $a_1, \ldots, a_n \in R$. These elements belong to a neted union so $\exists N \in \mathbb{N}$ s.t. $a_1, \ldots, a_m \in I_N$. Then for $n \geq N$ $(a_1, \ldots, a_m) \subseteq I_N \subseteq I_n \subseteq I = (a_1, \ldots, a_m)$ so $I_n = I_N = I$. " \implies ": Assume $J \triangleleft R$ not finitely generated. choose $a_1 \in J$. Then $J \neq (a_1)$, so we can choose $a_2 \in J \backslash (a_1)$. Then $J \neq (a_1, a_2)$, so we can choose $(a_3) \in J\setminus (a_1, a_2)$. Continuing this process, we obtain a chain of ideals $(a_1) \subsetneq (a_1, a_2) \subsetneq (a_1, a_2, a_3) \subsetneq \ldots$

with dtrict inclusions \mathbb{X} to ACC

Definition. A ring satisfying ACC is called Noetherian

13.1 Hilbert's Basis Theorem

Theorem 13.2 (Hilbert's Basis Theorem). If R is a Noetherian ring, then $R[X]$ is Noetherian

Proof. Assume $J \subseteq R[X]$ is not finitely generated. Choose $f_1 \in J$ of minimal degree. Then $(f_1) \neq J$. Choose $f_2 \in J \setminus (f_1)$ of minimal degree. Then $(f_1, f_2) \neq J$ and so on. Obtain a sequence $f_1, f_2, f_3, \dots \in R[X]$ with $\deg f_i \leq \deg f_{i+1}$. Set $a_i :=$ leading coefficient of f_i . We obtain

$$
(a_1) \subseteq (a_1, a_2) \subseteq (a_1, a_2, a_3) \subseteq \dots
$$

a chain of ideals in R. Since R is Noetherian, $\exists m \in \mathbb{N}$ s.t. $a_{m+1} \in (a_1, \ldots, a_m)$. Let $a_{m+1} = \sum_{i=1}^{m} \lambda_i a_i$, and set

$$
g = \sum_{i=1}^{m} \lambda_i X^{\deg f_{m+1} - \deg f_i} f_i
$$

Then deg $f_{m+1} = \deg g$ and they have the same leading coefficient a_{m+1} . Then $f_{m+1}-g \in J$ and $\deg(f_{m+1}-g) < \deg f_{m+1} \implies f_{m+1}-g \in (f_1, \ldots, f_m)$ by minimality of deg $f_{m+1} \implies f_{m+1} \in (f_1, \ldots, f_m)$ \mathbb{X} . Thus J finitely generated $\implies R[X]$ Noetherian by Lemma 13.1

Corollary 13.3. • $\mathbb{Z}[X_1, \ldots, X_n]$ Noetherian • $F[X_1, \ldots, X_n]$ Noetherian for F a field

Example. Let $R = \mathbb{C}[X_1, \ldots, X_n]$. Let $V \subseteq \mathbb{C}^n$ be a subset of the form

$$
\{(a_1, ..., a_n) \in \mathbb{C}^n : f(a_1, ..., a_n) = 0, \ \forall f \in F\}
$$

where $F \subseteq R$ is a possibly infinite set of polynomials. Let $I = \{ \sum_{i=1}^{m} \lambda_i f_i : m \in \mathbb{N}, \lambda_i \in R, f_i \in F \}$. Then $I \subseteq R$. R Noetherian \implies

$$
I=(g_1,\ldots,g_r),\;g_i\in I
$$

Thus

 $V = \{(a_1, \ldots, a_n) \in \mathbb{C}^n : g_i(a_1, \ldots, a_n) = 0, i = 1, \ldots, r\}$

Lemma 13.4. Let R be a Noetherian ring and $I \leq R$. Then R/I is Noetherian

Proof. Let $J'_1 \subseteq J'_2 \subseteq \ldots$ a chain of ideals in R/I . By ideal correspondence we have $J'_i = J_i/I$ fir sine $J_1 \subseteq J_2 \subseteq \ldots$ a chain of ideals in R (containing I) R Noetherian $\implies \exists N \in \mathbb{N} \text{ s.t. } J_n = J_{n+1} \forall n \ge N \implies \exists N \in \mathbb{N} \text{ s.t. } J'_n = J'_{n+1} \forall n \ge N.$ Thus R/I is Noetherian

Examples. (i) $\mathbb{Z}[i] = \mathbb{Z}[X]/(X^2 + 1)$ is Noetherian (ii) $R[X]$ is Noetherian $\implies R[X]/(X) \cong R$ is Noetherian

Examples (of non-Noetherian rings). (i) $R = \mathbb{Z}[X_1, X_2, \dots] = \bigcup_{n \geq 1} \mathbb{Z}[X_1, \dots, X_n]$ i.e. polynomials in countably many variables

$$
(X_1) \subsetneq (X_1, X_2) \subsetneq (X_1, X_2, X_3) \subsetneq \dots
$$

an infinite ascending chain (ii) $R = \{f \in \mathbb{Q}[X] : f(0) \in \mathbb{Z}\} \leq \mathbb{Q}[X]$

$$
(X)\subsetneq (\frac{1}{2}X)\subsetneq (\frac{1}{4}X)\subsetneq (\frac{1}{8}X)\subsetneq \ldots
$$

Since $2 \in R$ is not a unit

14 Modules - Definitions and Examples

Definition. Let R be a ring. A module over R is a triple $(M, +, \cdot)$ consisting of a set M and two operations

 $+: M \times M \to M \longrightarrow R \times M \to M$

such that

(i) $(M, +)$ is an abelian group, say with identity $0(= 0_M)$

(ii) The operation · satisfies

$$
(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m, \ \forall r_1 r_2 \in R, m \in M
$$

$$
r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2, \ \forall r \in R, m_2, m_1 \in M
$$

$$
r_1 \cdot (r_2 \cdot m) = (r_1 r_2) \cdot m, \ \forall r_1, r_2 \in R, m \in M
$$

$$
1_R \cdot m = m, \ \forall m \in M
$$

Remark. Don't forget closure when checking $+$, · well-defined

Example. (i) Let $R = F$ be a field. Then an F-module is precisely the same as a vector space over F

(ii) $R = \mathbb{Z}$, a \mathbb{Z} -module is precisely the same as an abelian group, where

$$
\cdot : \mathbb{Z} \times A \to A
$$

\n
$$
(n, a) \mapsto \begin{cases}\n\frac{n \text{ times}}{a + \dots + a} & \text{if } n > 0 \\
0 & \text{if } n = 0 \\
-\frac{n \text{ times}}{a + \dots + a} & \text{if } n < 0\n\end{cases}
$$

(iii) F a field, V a vector space over F and $\alpha: V \to V$ a linear map. We can make V into an $F[X]$ -module via

$$
\cdot : F[X] \times V \to V
$$

$$
(f, v) \mapsto (f(\alpha))(v)
$$

Note. Different choices of α make V into different F[X]-modules so sometimes write $V = V_{\alpha}$ to make this clear

Example. General constructions

(i) For any ring R , R^n is an R-module via

$$
r \cdot (r_1, \ldots, r_n) = (rr_1, \ldots, rr_n)
$$

in particular, taking $n = 1$, R is an R-module

(ii) If $I \subseteq R$ then I is an R-module (restrict the usual multiplication on R) and R/I is an R-module via

 $r \cdot (s + I) = rs + I$

(iii) $\phi: R \to S$ a ring homomorphism. Then an S-module M may be regarded as an R module via $R \times M \to M$, $(r, m) \mapsto \phi(r)m$. In particular, if $R \leq S$ then any S-module may be viewed as an R-module

Definition. M an R-module. $N \subseteq M$ is an R-submodule (written $N \leq M$) if it is a subgroup of $(M, +)$ and $r \cdot n \in N \forall r \in R, n \in N$

Example. (i) A subset of R is an R-submodule precisely when it is an ideal (ii) When $R = F$ is a field, module \equiv vector space, submodule \equiv vector subspace

Definition. If $N \leq M$ an R-submodule, the quotient M/N is the quotient of groups under + with

 $r \cdot (m+N) = r \cdot m + N$

This is well-defined, and makes M/N an R -module

Definition. Let M, N be R-modules. A function $f : M \to N$ is an R-module homomorphism if it is a homomorphism of abelian groups and

$$
f(r \cdot m) = r \cdot f(m) \quad \forall r \in R, m \in M
$$

Example. If $R = F$ is a field, an F-module homomorphism is just a linear map

Theorem 14.1 (First isomorphism theorem). Let $f : M \to N$ be an R-module homomorphism. Then

$$
\ker(f) := \{ m \in M : f(m) = 0 \} \le M
$$

Im $(f) := \{ f(m) \in N : m \in M \} \le N$

and

 $M/\ker(f) \cong \text{Im}(f)$

Proof. Similar to before

Theorem 14.2 (Second isomorphism theorem). Let $A, B \leq M$ be R-submodules. Then

$$
A + B := \{a + b : a \in A, b \in B\} \le M
$$

 $A \cap B \leq M$

and

$$
\frac{A}{A \cap B} \cong \frac{A+B}{B}
$$

Proof. Apply first isomorphism theorem to the composite $A \to M \to M/B$, $m \to m + B$

For third isomorphism theorem, note \exists bijection {submodules of M/N } \leftrightarrow {submodules of M containing N }

Theorem 14.3 (Third isomorphism theorem). If $N \le L \le M$ are R-submodules, then

$$
\frac{M/N}{L/N}\cong \frac{M}{L}
$$

Remark. In particular, these apply to vector spaces (compare with results from Linear Algebra)

Notation. Let M be an R-module. If $m \in M$, write

$$
Rm = \{ rm \in M : r \in R \}
$$

the submodule generated by m . If $A, B \leq M$ then $A + B = \{a + b : a \in A, b \in B\} \leq M$

Definition. M is finitely generated if $\exists m_1, \ldots, m_n \in M$ such that $M = Rm_1 + Rm_2 + \cdots + Rm_n$

Lemma 14.4. M finitely generated $\iff \exists$ a surjective R-module homomorphism $f: \mathbb{R}^n \to M$ for some $n \in \mathbb{N}$

Proof. " \Rightarrow ": If $M = Rm_1 + \cdots + Rm_n$, define $f: R^n \to M$, $(r_1, \ldots, r_n) \mapsto \sum r_i m_i$ a surjective R-module homomorphism. " \Leftarrow ":Let $e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in R^n$. Given $f: R^n \to M$ surjective, set $m_i: f(e_i)$.

Then any $m \in M$ is of the form

$$
f(r_1,\ldots,r_m)=f(\sum r_ie_i)=\sum r_if(e_i)=\sum r_im_i
$$

Thus $M = Rm_1 + \cdots + Rm_n$

Corollary 14.5. Let $N \leq M$ be an R-submodule. If M is finitely generated, then M/N is finitely generated

Proof. Let $f: R^n \to M$ be a surjective R-module homomorphism. Then $R^n \to M \to M/N$, $m \mapsto m + N$ is a surjective R-module homomorphism

Example. A submodule of a finitely generated module need not be finitelygenerated. Let R be a non-Noetherian ring and $I \leq R$ a non-finitely generated ideal. Then R is a finitely generated R -module, and I is a submodule which is not finitely generated

Remark. A submodule of finitely generated module over a Noetherian ring is finitely generated

Definition. Let M be an R-module

- (i) An element $m \in M$ is torsion if $\exists 0 \neq r \in R$ with $r \cdot m = 0$
- (ii) M is a torsion module if every $m \in M$ is torsion
- (iii) M is **torsion-free** if $0 \neq m \in M$ is not tortion

Example. The torsion elements in a Z-module (abelian group) are the elements of finite order. Any F-module (vector space) is torsion-free

15 Direct Sums and Free Modules

Definition. Let M_1, \ldots, M_n be R-modules. The **direct sum** $M_1 \oplus \cdots \oplus M_n$ is the set $M_1 \times \cdots \times M_n$ with operations

$$
(m_1, \ldots, m_n) + (m'_1, \ldots, m'_n) = (m_1 + m'_1, \ldots, m_n + m'_n)
$$

 $r \cdot (m_1, \ldots, m_n) = (rm_1, \ldots, rm_n)$

 $M_1 \oplus \cdots \oplus M_n$ is R-module

Example. $R^n = R \oplus \cdots \oplus R$

Lemma 15.1. If $M = \bigoplus_{i=1}^{n} M_i$ and $N_i \leq M_i$ $\forall i$, then setting $N = \bigoplus_{n=1}^{n} N_i \leq M$, we have

$$
M/N \cong \bigoplus_{i=1}^{n} M_i/N_i
$$

Proof. Apply 1st iso. theorem to the surjective R-module homomorphism

$$
M \to \bigoplus_{i=1}^n M_i/N_i
$$

 $(m_1, \ldots, m_n) \mapsto (m_1 + N_1, \ldots, m_n + N_n)$

with kernel $N = \bigoplus_{i=1}^n N_i$

Definition. Let $m_1, \ldots, m_n \in M$. The set $\{m_1, \ldots, m_n\}$ is **independent** if $\sum_{i=1}^n r_i m_i = 0 \implies$ $r_1 = r_2 = \cdots = r_n = 0$

Definition. A subset $S \subseteq M$ generates M freely if

- (i) S generates M, i.e. $\forall m \in M, m = \sum r_i s_i, r_i \in R, s_i \in S$
- (ii) Any function $\psi : S \to N$ where N is an R-module, extends to an R-module homomorphism $\Theta: M \to N$.

(such an extension is unique by (i)).

An R-module which is freely generated by some subset $S \subseteq M$ is called free and S is called a free basis

Prop 15.2. For a subset $S = \{m_1, \ldots, m_n\} \subseteq M$, the following are equivalent: (i) S generates M freely

(ii) S generates M and S is independent

(iii) Every element can be written uniquely as $r_1m_1 + \cdots + r_nm_n$ for some $r_1, \ldots, r_n \in R$

(iv) The R-module homomorphism $R^n \to M$, $(r_1, \ldots, r_n) \mapsto \sum r_i m_i$ is an isomorphism

Proof. (i) \implies (ii). Let S generate M freely. If S is not independent, then $\exists r_1 \dots, r_n \in R$ with $\sum r_i m_i = 0$ and some $r_j \neq 0$. Define $\psi : S \to R$,

$$
m_i \mapsto \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}
$$

This extends to R-module homomorphism $\Theta : M \to R$. We then have

$$
0 = \Theta(0) = \Theta(\sum r_i m_i) = \sum r_i \Theta(m_i) = r_j \mathbb{X}
$$

Thus S is independent.

 $(ii) \implies (iii) \implies (i)$ and $(iii) \iff (iv)$ are exercises

Example. A non-trivial finite abelian group is not a free \mathbb{Z} module

Example. The set $\{2,3\}$ generates \mathbb{Z} as a \mathbb{Z} -module, but they are not independent since

 $(3) \cdot 2 + (-2) \cdot 3 = 0$

Furthermore, no subset of $\{2,3\}$ is a free basis since $\{2\}$, $\{3\}$ do not generate

Prop 15.3 (Invariance of dimension). R a non-zero ring. If $R^m \cong R^n$ as R-modules, then $m = n$

Proof. First, we introduce a general construction. Let $I \triangleleft R$ and M an R-module. Define $IM = \{ \sum a_i m_i : a_i \in I, m_i \in M \} \le M$. The quotient M/IM is an R/I -module via

$$
(R+I)\cdot(m+IM)=rm+IM
$$

(well-defined: if $b \in I$, $b \cdot (m + IM) = bm + IM = 0 + IM)$ Suppose $R^m \cong R^n$. Choose $I \trianglelefteq R$ a maximal ideal (Use Zorn's Lemma + ES2 Q4). By the above, get an isomorphism of R/I -modules

$$
\left(\frac{R}{I}\right)^m\cong\frac{R^m}{IR^m}\cong\frac{R^n}{IR^n}\cong\left(\frac{R}{I}\right)^n
$$

But $I \subseteq R$ is maximal $\implies R/I$ a field. so $m = n$ by invariance of dimension for vector spaces

16 The Structure Theorem and applications

Note. Until further notice: R a Euclidean domain. $\phi: R\setminus\{0\} \to \mathbb{Z}_{\geq 0}$ a Euclidean function. Let A be an $m \times n$ matrix with entries in R

Note. Similarly, we can define elementary column operations (EC1 to EC3), realised by right multiplication by $n \times n$ invertible matrix

Definition. Two $m \times n$ matrices A and B are equivalent if ∃ sequence of elementary row and column operations taking A to B. If they are equivalent, then $\exists P, Q \text{ s.t. } B = QAP$

Theorem 16.1 (Smith Normal Form). An $m \times n$ matrix $A = (a_{ij})$ over a Euclidean domain R is equivalent to a diagonal matrix

The d_i are called invariant factors - will show they are unique up to associates

 \lceil \perp \mathbf{I} \perp $\overline{1}$ $\overline{1}$ \mathbf{I} \mathbf{I}

Proof. If $A = 0$, done. Otherwise upon swapping rows and columns, may assume $a_{11} \neq 0$. We will reduce $\phi(a_{11})$ as much as possible via the following algorithm

(i) If $a_{11} \nmid a_{1j}$ for some $j \ge 2$, then write $a_{ij} = qa_{11} + r q, r \in R$, $\phi(r) < \phi(a_{11})$. Subtracting q times column 1 from column j and swapping these coluns makes top left entry r

(ii) If $a_{11} \nmid a_{i1}$ for some $i \geq 2$, then repeat above process with row operations

Steps (i) and (ii) decrease $\phi(a_{11})$, so can repeat finitely many times until $a_{11}|a_{1j} \forall j \geq 2$, $a_{11} | a_{i1} \; \forall i \geq 2.$

Subtracting multiples of the first row/ column from the others gives

$$
A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & & & \\ \vdots & A^{1} & & \\ 0 & & & \end{bmatrix}
$$

where A^1 is an $(m-1) \times (n-1)$ matrix.

(iii) If $a_{11} \nmid a_{ij}$ for some $i, j \ge 2$, then add ith row to first row and perform column operations as before to decrease $\phi(a_{11})$. Then restart algorithm.

After finitely many steps obtain:

$$
A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & & & \\ \vdots & A^{1} & & \\ 0 & & & \end{bmatrix}
$$

with $a_{11} = d_1$ say s.t. $d_1 | a_{ij} \ \forall i, j$. Applying same method to A^1 gives the result

For uniqueness of invariant factors, introduce minors of A

Definition. A $k \times k$ minor of A is the determinant of a $k \times k$ submatrix (i.e. a matrix formed by deleting $n - k$ rows and $n - k$ columns)

Definition. The kth fitting ideal Fit_k(A) \leq R is the ideal generated by the k \times k minors of A

Lemma 16.2. If A and B are equivalent matrices, then $Fit_k(A) = Fit_k(B) \forall k$

Proof. We show that $(ER1 - ER3)$ don't change $Fit_k(A)$ (same proof works for EC1 - EC3) (ER1) add λ times jth row to ith row, so A becomes A'

$$
A' = \begin{bmatrix} a_{i1} + \lambda a_{j1} \dots a_{in} + \lambda a_{jn} \\ a_{j1} & \dots & a_{jn} \end{bmatrix}
$$

Let C be a $k \times k$ submatrix of A and C' the corresponding submatrix of A':

• If we did not choose *i*th row, then $C = C'$

 \implies det $C = \det C'$

• If we choose both of the rows i and j , then C and C' differ by a row operation

 \implies det $C = \det C'$

• If we chose *i*th row but not the *j*th row, then by expanding along the *i*th row

$$
\det(C') = \det(C) + \lambda \det(D)
$$

where D is another $k \times k$ submatrix of A (in D we choose *j*th row instead of *i*th row). Thus $\det(C') \in \text{Fit}_k(A)$ Hence $\text{Fit}_k(A') \subseteq \text{Fit}_k(A)$. Since (ER1) is reversible, we get " \supseteq " and hence equality. (ER2) and (ER3) are similar but easier.

Now if A has SNF

$$
\begin{array}{cccc}\n d_1 & & & \\
 & \ddots & & \\
 & & d_t & \\
 & & & 0 & \\
 & & & & \n\end{array}
$$

1 $\overline{1}$ \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} $\overline{1}$ \mathbf{I}

 $d_1 \mid d_2 \mid \cdots \mid d_t$. Then $\text{Fit}_k(A) = (d_1 d_2 \ldots d_k) \trianglelefteq R$. Thus the products $d_1 \ldots d_k$ (up to associates) depend only on A.

Cancelling out, shows that each d_i (up to assiciate) depends only on A .

 \lceil $\overline{}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$

Example. Consider the matrix
$$
A = \begin{bmatrix} 2 & -1 \ 1 & 2 \end{bmatrix}
$$
 over \mathbb{Z} .
\n
$$
\begin{bmatrix} 2 & -1 \ 1 & 2 \end{bmatrix} \xrightarrow{c_1 + c_1 + c_2} \begin{bmatrix} 1 & -1 \ 3 & 2 \end{bmatrix} \xrightarrow{c_2 + c_1 + c_2} \begin{bmatrix} 1 & 0 \ 3 & 5 \end{bmatrix} \xrightarrow{R_2 + R_2 - 3R_1} \begin{bmatrix} 1 & 0 \ 0 & 5 \end{bmatrix}
$$
\nBut also $(d_1) = (2, -1, 1, 2) = (1) \implies d_1 = \pm 1$
\n $(d_1 d_2) = (\det A) = (5) \implies d_1 = \pm 5$

Moral. We will use SNF to prove the structure theorem. First, some preparation

Lemma 16.3. R a Euclidean Domain. Any submodule of R^m is generated by at most m elements

Proof. Let $N \leq R^m$. Consider the ideal

 $I = \{r \in R : \exists r_2, \dots, r_m \in R \text{ s.t. } (r, r_2, \dots, r_m) \in N\} \leq R$

Since ED \implies PID, we have $I = (a)$, some $a \in R$. Choose some $n = (a, a_2, \dots, a_m) \in N$. For $(r_1, \ldots, r_m) \in N$, we have $r_1 = ra$ for some r, so $(r_1, r_2, \ldots, r_m) - rn = (0, r_2 - ra_2, \ldots, r_m$ ra_m) which lies in $N' := N \cap \{0\} \times R^{m-1} \leq R^{m-1}$ hence $N = Rn + N'$. By induction, N' is generated by n_2, \ldots, n_m hence $\{n, n_2, \ldots, n_m\}$ generates N

Theorem 16.4. Let R be a ED and $N \leq R^m$. There is a free basis x_1, \ldots, x_m for R^m s.t. N is generated by d_1x_1, \ldots, d_tx_t for some $r \leq m$ and $d_1, d_2, \ldots, d_t \in R$ with $d_1 | d_2 | d_t$.

Proof. By Lemma 16.3, we have $N = Ry_1 + \cdots + Ry_n$ for some $n \leq m$. Each y_i belongs to R^m so we can form an $m \times n$ matrix

$$
A = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix}
$$

By theorem 16.1, A is equivalent to

$$
A' = \begin{bmatrix} d_1 & & & & \\ & \ddots & & & \\ & & d_t & & \\ & & & 0 & \\ & & & & \ddots \end{bmatrix}
$$

with $d_1 | d_2 | \cdots | d_t$.

 A' obtained from A by elementary row and column operations. Each row operation changes our choice of free basis for R^m . Each column operation changes our set of generators for N. Thus after changing free basis of R^m to x_1, \ldots, x_m , say, the submodule N is generated by $d_1x_1, \ldots d_tx_t$ as claimed

16.1 Structure Theorem

Theorem 16.5 (Structure Theorem). Let R be a ED and M a finitely generated R-module. Then

$$
M \cong \frac{R}{(d_1)} \oplus \frac{R}{(d_2)} \oplus \cdots \oplus \frac{R}{(d_t)} \oplus \underbrace{R \oplus \cdots \oplus R}_{k \text{ copies}}
$$

for some $0 \neq d_i \in R$ with $d_1 | d_2 | \cdots | d_t$ and $k \geq 0$. The d_i are called invariant factors

Proof. Since M is finitely generated, \exists a surjective R-module homomorphism $\phi : R^m \to M$ for some m (Lemma 14.1). By first isomorphism theorem $M \cong R^m/\text{ker}(\phi)$. By theorem 16.4, \exists free basis x_1, \ldots, x_m for R^m s.t. ker(ϕ) is generated by $d_1x_1, d_2x_2, \ldots, d_tx_t$ with $d_1 | d_2 |$ \cdots | d_t . Then

$$
M \cong \frac{R \oplus R \oplus \cdots \oplus R \oplus R \oplus \cdots \oplus R}{d_1 R_2 \oplus d_2 R \oplus \cdots \oplus R_t R \oplus 0 \oplus \cdots \oplus 0}
$$

$$
\cong \frac{R}{(d_1)} \oplus \frac{R}{(d_2)} \oplus \cdots \oplus \frac{R}{(d_t)} \oplus \underbrace{R \oplus \cdots \oplus R}_{m-t \text{ copies}}
$$

by Lemma 15.1

Remark. After deleting those d_i which are units, the module M uniquely determined (up to associated) - proof omitted

Corollary 16.6. Let R be a ED. Then any finitely generated torsion-free module is free

Proof. M torsion-free \implies no submodules of the form $R/(d)$ with $d \neq 0$. Thus $M \cong R^m$ for some m

Example. $R = \mathbb{Z}$. Consider the abelian group G generated by a and b subject to the relations

$$
2a + b = 0 \quad -a + 2b = 0
$$

Then $G \cong \mathbb{Z}^2/N$, where N is generated by $\begin{bmatrix} 2 & 1 \end{bmatrix}$, $\begin{bmatrix} -1 & 2 \end{bmatrix}$. $A =$ $\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$ has SNF $\begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$. Thus can change basis for \mathbb{Z}^2 s.t. N is generated by $(1,0)$ and $(0,5)$. Thus $G \cong \frac{\mathbb{Z} \oplus \mathbb{Z}}{\mathbb{Z} \oplus \mathbb{Z} \mathbb{Z}}$ $\frac{\mathbb{Z} \oplus \mathbb{Z}}{\mathbb{Z} \oplus 5\mathbb{Z}} \cong \frac{\mathbb{Z}}{5\mathbb{Z}}$ $\overline{5\mathbb{Z}}$

More generally

Theorem 16.7 (Structure Theorem for Finitely Generated Abelian Groups). Any finitely generated abelian groups G is isomorphic to $\mathbb{Z}/d_1\mathbb{Z}\oplus\mathbb{Z}/d_2\mathbb{Z}\oplus\cdots\oplus\mathbb{Z}/d_t\mathbb{Z}\oplus\mathbb{Z}^r$ where $d_1\mid d_2\mid\cdots\mid d_t$ and $r\geq 0$

Proof. Take $R = \mathbb{Z}$ in structure theorem

Remark. The special case G finite $(r = 0)$ was quoted as Theorem 6.4

In section 6, we saw that any finite abelian group can be written as a product of C_{p_i} 's where p is a prime number. To generalise this we need

Lemma 16.8. Let R be a PID and $a, b \in R$ with $gcd(a, b) = 1$. Then R $\frac{R}{(ab)} \cong \frac{R}{(a)}$ $\frac{R}{(a)}\oplus \frac{R}{(b)}$ $\frac{1}{(b)}$ as R-modules (case $R = \mathbb{Z}$ was Lemma 6.2)

Proof. R a PID \implies $(a, b) = (d)$ for some $d \in R$. But $gcd(a, b) = 1 \implies d$ a unit. So $\exists r, s \in R \text{ s.t. } ra + sb = 1.$

Define an R-module homomorphism

$$
\psi: R \to \frac{R}{(a)} \oplus \frac{R}{(b)}
$$

$$
x \mapsto (x + (a), x + (b))
$$

Then $\psi(sb) = (1 + (a), 0 + (b)), \psi(ra) = (0 + (a), 1 + (b)),$ thus $\psi(sbx + ray) = (x + (a), y + (b))$ for any $x, y \in R$ hence ψ is surjective.

Clearly $(ab) \subset \text{ker}(\psi)$. Converselt if $x \in \text{ker}(\psi)$, $x \in (a) \cap (b)$ and $x = x(ra + sb) = r(ax) +$ $s(xb) \in (ab)$. Then ker $(\psi) = (Ab)$. First isomorphism theorem \implies

$$
\frac{R}{(ab)} \cong \frac{R}{(a)} \oplus \frac{R}{(b)}
$$

as modules

Theorem 16.9 (Primary decomposition theorem). Let R be a ED and M a finitely generated Rmodule. Then

$$
M \cong \frac{R}{(p_1^{n_1})} \oplus \cdots \oplus \frac{R}{(p_k^{n_k})} \oplus R^m
$$

as R-modules where p_1, \ldots, p_k are primes (not necessarily distinct) and $m \geq 0$

Proof. By the structure theorem

$$
M \cong \frac{R}{(d_1)} \oplus \frac{R}{(d_2)} \oplus \cdots \oplus \frac{R}{(d_t)} \oplus R^m
$$

So it suffices to consider $M \cong \frac{R}{(d_i)}$. $d_i = up_1^{\alpha_1} \dots p_r^{\alpha_r}$ where u is a unit and p_1, \dots, p_r are distinct (non-associate) primes.

Lemma 16.6 \implies

$$
M \cong \frac{R}{(p_1^{\alpha_1})} \oplus \cdots \oplus \frac{R}{p_r^{\alpha_r}}
$$

Notation. Let V be a vector space over a field F. Let $\alpha: V \to V$ be a linear map and let V_{α} denote the $F[X]$ -module V where $F[X] \times V \to V$ is given, $(f(X), v) \mapsto f(\alpha)(v)$

Lemma 16.10. If V finite dimensional, then V_{α} is a finitely generated $F[X]$ -module

Proof. If v_1, \ldots, v_n generate V as a F-vector space, then they generate V_α as an $F[X]$ -module since $F \leq F[X]$

Example. (i) Suppose $V_{\alpha} \cong F[X]/(X^n)$ as $F[X]$ -module. Then $1, X, X^2, \ldots, X^{n-1}$ is a basis for $F[X]/(X^n)$ as an F-vector space, and w.r.t. this basis α has matrix

since α acts as "multiplication by X"

(ii) Suppose $V_{\alpha} \cong \frac{F[X]}{((X-\lambda)^n)}$ as $F[X]$ -modules. Then w.r.t. basis $1, X - \lambda, (X - \lambda)^2, \ldots, (X - \lambda)^{n-1}$, $\alpha - \lambda$ Id has matrix (*), thus α has matrix

(iii) Suppose $V_{\alpha} \cong \frac{F[X]}{(f)}$ where

$$
f(X) = X^n + a_{n-1}X^{n-1} + \dots + a_0
$$

Then w.r.t. basis $1, X, \ldots, X^{n-1}, \alpha$ has matrix

 $\sqrt{ }$ $\begin{array}{c} \hline \end{array}$ 0 $-a_0$ $1 \quad 0$: $0 \quad 1 \quad \ddots \quad \vdots$ \vdots \vdots \ddots \ddots $-a_{n-2}$ 0 0 1 $-a_{n-1}$ 1 $\overline{}$

This is called the companion matrix $C(f)$ of the monic polynomial f

Theorem 16.11 (Rational canonical form). Let $\alpha : V \to V$ be an endomorphism of a finite dimensional vector space, where F is any field. The $F[X]$ -module V_{α} decomposes as

$$
V_{\alpha} \cong \frac{F[X]}{(f_1)} \oplus \cdots \oplus \frac{F[X]}{(f_t)}
$$

where $f_i \in F[X]$ monic and $f_1 | f_2 | \cdots | f_t$. Moreover, w.r.t. a suitable basis or V (as an F-vector space) α has matrix

$$
\begin{bmatrix} C(f_1) & & \\ & \ddots & \\ & & C(f_t) \end{bmatrix} \tag{**}
$$

Proof. By Lemma 16.7, V_{α} is finitely generated as an $F[X]$ -module. Since $F[X]$ is a ED, the structure theorem implies

$$
V_{\alpha} \cong \frac{F[X]}{(f_1)} \oplus \cdots \oplus \frac{F[X]}{(f_t)} \oplus F[X]^m
$$

where $f_1 | f_2 | \cdots | f_t$.

Since V is finite dimensional, $m = 0$. Upon multiplying each f_i by a unit, we may assume f_i are monic

Remarks.

- (i) If a is represented by an $n \times n$ matrix A then the theorem says that A is similar to $(**)$
- (ii) The min. poly. of α is f_t . The char. poly. of α is $\prod_{i=1}^t f_i$ (\implies Cayley-Hamilton theorem)

Example. If $\dim V = 2$, $\sum \deg f_i = 2$

$$
V_{\alpha} \cong \frac{F[X]}{(X - \lambda)} \oplus \frac{F[X]}{(X - \lambda)} \text{ or } \frac{F[X]}{(f)}
$$

where f is char. poly of α

Corollary 16.12. Let $A, B \in GL_2(F)$ non-scalar matrices. Then A and B are similar \iff they have the same char. poly.

Example. " \implies ": Linear Algebra " \Leftarrow ": By the last example, A and B are both similar $C(f)$, where f is the char. poly. of A and B

Definition. The **annihilator** of an R -module M is

$$
\operatorname{Ann}_R(M) = \{ r \in R : rm = 0 \,\,\forall m \in M \} \trianglelefteq R
$$

Examples. (i) $I \leq R$, then $Ann_R(R/I) = I$ (ii) If A is a finite abelian group, then $Ann_{\mathbb{Z}}(A) = (e)$, where e is the exponent of A (iii) If V_{α} as above, $\text{Ann}_{F[X]}(V_{\alpha}) = (\text{min.poly. of } \alpha)$

Lemma 16.13. The primes in $\mathbb{C}[X]$ are the polynomials $X - \lambda$, for $\lambda \in \mathbb{C}$

Proof. By the fundamental theorem of algebra, any non-constant polynoial in $\mathbb{C}[X]$ has a root in \mathbb{C} , so a factor $X - \lambda$. Hence the irreducibles have degree 1

Theorem 16.14 (Jordan Normal Form). Let $\alpha: V \to V$ be an endomorphism of a finite dimensional C-vector space. Let V_{α} be V as regarded as a C[X]-module with X acting as α . There is an isomorphism of $\mathbb{C}[X]$ -modules

$$
V_{\alpha} \cong \frac{\mathbb{C}[X]}{((X - \lambda_1)^{n_1})} \oplus \cdots \oplus \frac{\mathbb{C}[X]}{((X - \lambda_t)^{n_t})}
$$

where $\lambda_1, \ldots, \lambda_t \in \mathbb{C}$ (not nec. distinct). In particular, \exists basis for V s.t. α has matrix

$$
\begin{bmatrix} J_{n_1}(\lambda_1) & & \\ & \ddots & \\ & & J_{n_t}(\lambda_t) \end{bmatrix}
$$

where

$$
J_n(\lambda) = \begin{bmatrix} \lambda & & & \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ & & 1 & \lambda \end{bmatrix}
$$

 $n \times n$ matrix.

Proof. $\mathbb{C}[X]$ is a ED, and V_α is finitely generated as a $\mathbb{C}[X]$ -module by Lemma 16.7. we apply the primary decomposition theorem noting that the primes in $\mathbb{C}[X]$ are as in Lemma 16.10. *V* finite dimensional \implies we get no copies of $\mathbb{C}[X]$.

 $J_n(\lambda)$ represents multiplication by X on $\frac{\mathbb{C}[X]}{((X-\lambda)^n)}$ w.r.t $1, (X-\lambda), (X-\lambda)^2, \ldots, (X-\lambda)^{n-1}$.

Remarks.

- (i) If α is represented by matrix A, then theorem says A is similar to a matrix in JNF
- (ii) The Jordan blocks are uniquely determined up to reordering. Can be proved by considering the dimensions of the generalised eigenspaces ker($(\alpha - \lambda \text{ id})^m$) $m = 1, 2, 3, ...$ (omit details)
- (iii) The min. poly. of α is $\prod_{\lambda}(X-\lambda)^{c_{\lambda}}$ where c_{λ} is the size of the largest λ -block
- (iv) The char. poly. of α is $\prod_{\lambda} (X \lambda)^{\alpha_{\lambda}}$ where α_{λ} is the sum of the sizes of the λ -blocks
- (v) The number of λ -blocks is the dimension of the λ -eigenspace

17 Modules over PID's

The Structure Theorem holds for PID's. We illustrate some ideas which go into the proof

Theorem 17.1. Let R be a PID. Then any finitely generated torsion-free R-module is free (For R a ED, this was Corollary 16.5)

Proof. Let $M = Rx_1 + \cdots + Rx_n$ with n as small as possible. If x_1, \ldots, x_n aer independent then M is free and we are done. Otherwise, $\exists r_1, \ldots, r_n \in R$ s.r. $\sum_{i=1}^n r_i x_i = 0$. Wlog. $r_1 \neq 0$. Lemma 17.2 (ii) shows that after replacing x_1 and x_2 with suitable x'_1 and x'_2 , we may assume that $r_1 \neq 0$ and $r_2 = 0$. Repeating this process (changing x_1 and x_3 , then x_1 and x_4 and so on), we may assume

$$
r_1 \neq 0, r_2 = r_3 = \cdots = r_n = 0
$$

Thus $M = Rx_2 + \cdots + Rx_n \times$ choice of n

Lemma 17.2. Let R be a PID and M an R-module. Let $r_1, r_2 \in R$ not both zero and let $d =$ $gcd(r_1, r_2)$ (i) $\exists A \in SL_2(R)$ s.t.

 $A\left[\begin{matrix}r_1\end{matrix}\right]$ $r₂$ $\Big] = \Big[\begin{matrix} d \\ 0 \end{matrix}\Big]$ $\overline{0}$ T

(ii) If $x_1, x_2 \in M$, then $\exists x'_1, x'_2 \in M$ s.t. $Rx_1 + Rx_2 = Rx'_1 + Rx'_2$ and

$$
r_1x_1 + r_2x_2 = dx'_1 + 0 \cdot x'_2
$$

Proof. R a PID \implies $(r_1, r_2) = (d) \implies \exists \alpha, \beta \in R \text{ s.t. } \alpha r_1 + \beta r_2 = d.$ Write $r_1 = s_1 d$ and $r_2 = s_2d$, some $s_1, s_2 \in R$. Then $\alpha s_1 + \beta s_2 = 1$ (i)

$$
\begin{bmatrix} \alpha & \beta \\ -s_2 & s_1 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} d \\ 0 \end{bmatrix}
$$

note det = $\alpha s_1 + \beta s_2 = 1$ (ii) Let

> $x'_1 = s_1 x_2 + s_2 x_2$ $x'_2 = -\beta x_1 + \alpha x_2$

Then $Rx'_1 + Rx'_2 \subseteq Rx_1 + Rx_2$. To prove the reverse inclusion, we solve for x_1 and x_2 in terms of x'_1 and x'_2 . This is possible since

$$
\det \begin{bmatrix} s_1 & s_2 \\ -\beta & \alpha \end{bmatrix} = \alpha s_1 + \beta s_2 = 1
$$

Finally, $r_1x_1 + r_2x_2 = d(s_1x_1 + s_2x_2) = dx'_1 + 0 \cdot x'_2$