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0 Overview

Definition. A topological surface is a topological space Σ s.t.
(i) ∀p ∈ Σ there is an open neighbourhood p ∈ U ⊂ Σ s.t. U is homeomorphic to R2, or a disc

D2 ⊂ R2, with its usual Euclidean topology
(ii) Σ is Housdorff and second countable

Remarks.
(i) R2 ∼= D(0, 1) = {x ∈ R2 : ‖x‖ < 1} (homeomorphic to)
(ii) A space X is Housdorff if for p 6= q in X∃ disjoint open sets p ∈ U and q ∈ V in X.

A space X is second countable if it has a countable base, i.e. ∃{Ui}i∈N open sets s.t. every
open set is a union of some of the U

(iii) IfX is Housdorff/ second countable, so are subspaces ofX. Euclidean space has these properties.
(For second countable, consider the open sets B(c, r) with c ∈ Qn ⊂ Rn and r ∈ Q+ ⊂ R+)

(i) is the point. (ii) is for technical honesty.

0.1 Examples of Topological Spaces

Examples. (i) R2 the plane
(ii) Any open subset of R2, i.e. R2\z where z is closed.

• z = {0}. R2\{0} is a surface
• z = {(0, 0)} ∪ {(0, 1/n) : n = 1, 2, 3, . . . }

(iii) Graphs: let f : R2 → R be a continuous function. The fraph

Γf = {(x, y, f(x, y)) : (x, y) ∈ R2}
⊂ R2

Recall if X,Y are spaces, the product topology on X × Y has basic open sets U × V with U ⊂ X
and V ⊂ Y open. It has the feature that f : Z → X × Y is continuous ⇐⇒ πX ◦ f : Z → X and
πY ◦ f : Z → Y are continuous, where πX is the projection to X and πY is the projetcion to Y .
Application: Γf ⊂ X × Y , if f : X → Y is continuous, is homeomorphic to X.

Γf ⊂ X × Y

X

s
s : x 7→ (x, f(x))

(continuous by above)π|Γf

So π|Γf
and s are inverse homeomorphisms. So

Γf ∼= R2

for any f : R2 → R so Γf is a topological surface

Note. As a topological surface, Γf is independent of f . Later, as a geometric object, it will reflect
features of f
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Examples. (iv) The sphere:

S2 = {(x, y, z) ∈ R2 : x2 + y2 + z2 = 1}

(subspace topology)

N

p

π+(p)

Stereographic projection

π+ : S2\{(0, 0, 1)→ R2 (z = 0) ⊂ R3

(x, y, z) 7→
(

x

1− z
,

y

1− z

)
We can check:

O

N

π+(p)
= (x0, y0, 0)
= (x, y, z) + λ(x, y, z − 1)

p
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Examples (continued). (iv) We note that π+ is continuous and has inverse

(u, v) 7→
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
So π+ is a continuous bijection with continuous inverse and hence a homeomorphism.

S

q

π−(q)

Stereographic projection

π− : S2\{(0, 0,−1)→ R2 (z = 0) ⊂ R3

(x, y, z) 7→
(

x

1 + z
,

y

1 + z

)
This is also a homeomorphism from S2\{(0, 0,−1)} to R2. So S2 is a topological surface:
∀p ∈ S2, either p lies in the domain of π+ or of π− (or both) so it lies in an open set S2\{(0, 0, 1)}
or S2\{(0, 0,−1)} homeomorphic to R2. (Housdorff and second countable from R2)

Remark. S2 is compact as a topological space, since it is a closed bounded set in R3

Examples. (v) The real projective plane: the group Z/2 acts on S2 by homeomorphisms via the
antipodal map a : S2 → S2

a(x, y, z) = (−x,−y,−z)

i.e. ∃ homeomorphism Z/2→ Homeo(S2), the groups of all homeomorphisms under composition
of maps. Non-trivial element 7→ a

Definition. The real projective plane is the quotient space of S2 given by identifying every point
with its antipodal image:

RP2 = S2/(Z/2) = S2/ ∼ xã(x)
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Lemma. As a set, RP2 is naturally in bijection with the set of straightlines in R2 through 0

Proof.

l

Any straight line through 0 ∈ R3 meets S2 in exactly a pair of antipodal points and each such
pair determines a straight line
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Lemma. RP2 is a topological surface

Proof. We check that it is Housdorff: Recall if x is a space and q : X → Y is a quotient
map, V ⊂ Y is open ⇐⇒ q−1V ⊂ X is open

p

−p

−q

q

If [p] 6= [q] ∈ RP2, then ±p and ±q are distinct antipodal pairs. Take small open discs
centered on p, q and their antipodal images, as in the diagram. This gives us disjoint open
neighbourhoods of [p], [q] in RP2.
Note we could take small balls B±p(δ), B±q(δ)) (δ << 1 small), which meet S2 in open sets.
If q : S2 → RP2 is the quotient map, then q(Bq(p)) is open since

q−1(qBδ(p)) = Bδ(p) ∪ (−Bδ(p))

RP2 is also countable.
Let U be a countable base for topology on S2, and (wlog) ∀U ∈ U , the antipodal image is in
U . Let Ū be the family of open sets in RP2 of the form q(U) ∪ q(−U), U ∈ U .
Now if V ≤ RP2 is open, by definition q−1V is open in S2. So q−1V contains some U ∈ U
and hence containce U ∪ (−U). So Ū is a countable base for the quotient topology on RP2.
Finally, let p ∈ S2 and [p] ∈ RP2 its image. Let D̄ be a small closed disc neighbourhood of
p ∈ S2.

p

D ⊂ S2

Quotient map q|D̄ : D̄ → q(D̄) ⊂ RP2 is continuous from a compact space to a Houssdorff
space. Also on D̄, the map q is injective. Recall “Topological inverse function theorem”: a
continuous bijection from a compact space to a Housdorff space is a homeomorphism. So
q|D̄ : D̄ → q(D̄) is a homeomorphism inducting a homeomorphism q|D : D → q(D) ∈ RP2

where D is the open disc interior of D̄. So [p] ∈ q(D) has an open neighbourhood in RP2

homeomorphic to an open dic and we are done.

Examples. (vi) Let S1 = {z ∈ C : |z| = 1}. The torus S1 × S1 with the subspace topology from
C2 (which is the product topology)
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Lemma. The torus is a topological surface

Proof. We consider the map

R2 → S1 × S1 ⊂ C× C (s, t) 7→ (e2πis, e2πit)

Note: this induces a map:

R2

R2/Z2

S1 × S1
e

ê

i.e. on the equivalence relation on R2 given by translating by Z2, e is constant on the equiva-
lence classes so induces a map of sets

R2/Z2 → S1 × S1

View R2/Z2 as the quotient space for q : R2 → R2/Z2. The map [0, 1]→R2 → R2/Z2 is onto,
so R2/Z2 is compact. So ê is a continuous map from a compact space to a Housdorff space,
and a bijection, so a homeomorphism (T.I.F.T)

p

e

[p]

S1 × S1

Note we already know S1 × S1 is compact and Housdorff (closed and bounded in R4). As for
S2 → RP2. Pick [p] = q(p), p ∈ R2 and a small closed disc D̄(p) ⊂ R2 s.t. ∀(n,m) ∈ R× R

D̄(p) ∩ (D̄(p) + (n,m)) = ∅

Then e|D̄(p) is injective and a|D̄(p) is injective. Now restricting to the open disc as before, we
get an open disc neighbourhood of [p] ∈ S1 × S1. Since [p] arbitrary, S1 × S1 is a topological
surface
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(x, 1)

(x, 0)

(0, y) (1, y)

Another viewpoint: R2/Z2 is also given by imposing on [0, 1]2 the equivalence relation generated by:

(x, 0) ∼ (x, 1) ∀0 ≤ x ≤ 1

(0, y) ∼ (1, y) ∀0 ≤ y ≤ 1

Examples. (vii) Let p be a planar Euclidean polygon. Assume the edges are oriented and paired,
and (for simplicity) assume the Euclidean lengths of the e and ê are equal if {e, ê} are paired.

b

a−1a

b−1

b

a−1a

b

a

a−1

c

b

b−1

c
Label by letters and describe orientation
by a sign a± relative to the clockwise
orientation of R2

If {e, ê} are paired edges, there is a unique isometry from e to ê respected their orientations,
say

feê : e→ ê

These maps generate an equivalence relation on p, where we identify x ∈ P with feê(x) whenever
x ∈ e.

Lemma. P/ ∼ (with the quotient topology) is a topological surface
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Example. The torus on [0, 1]/ ∼

P = [0, 1]2

If p ∈ interior(P )

I pick δ > 0 sufficiently small that Bδ(p) and Bδ(p) in R2 lie in interior(p). Now argue as before: the
quotient map is injective on Bδ(p) and a homeomorphism on its interior.
If p ∈ edge(p),

p p

Say p = (0, y0) ∼ (1, y0) and δ > 0 sufficiently small that half discs of radius δ as shown don’t meet
vertices(P ). Define a map from the union of these hald-discs to B(0, δ) ⊂ R2 via (x, y) 7→ (x, y − y0)
say fU on the right half-disc (V ) and (x, y) 7→ (x− 1, y − y0) say fV on the left half disc (V ).
Recall: if X = A ∪ B is a union of closed subspaces and f : A → Y, g : B → Y are continuous and
f |A∩B = g|A∩B then they define a continuous map on X
Explicitly: fU , fV are continuous on [0, 1]2 =⇒ they induce continuous maps on qU, qV ⊂ T 2

q : [0, 1]2 → [0, 1]2/ ∼= T 2
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Example (continued). Thus in T 2, the half discs qU, qV overlap but our maps agree on the closed
intersection locus (as fU , fV compatible with equivalence relation). Hence, fU , fV give and define a
continuous map on an open neighbourhood of [p]− T 2 to B(0, δ) ⊂ R2

Now “usual argument” (pass to closed disc, use T.I.F.T, pass back to interior) shows that if [p] ⊂ T 2

lies on the image of edge of [0, 1]2, it has an open neighbourhood homeomorphic to a disc.
Analagously, at the vertex of [0, 1]2

(x, y) 7→ (x, y)

(x, y) 7→ (x− 1, y − 1)

This shows [0, 1]2/ ∼ is a topological surface.
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Example. For a general planar polygon P ⊂ R2:
Our equivalence relation

x 7→ feê(x) x ∈ e ⊂ Edge(p)

{e, ê} pairs, f : e→ ê compatible walk orientation. This induces an equivalence relation on Vert(P ):

All vertices in one equivelnce class

3 equivalence classes of vertices (†)

If v ∈ Vert(P ) has r vertices in its equivalence class, ∃r sectors in P , of total angle αV .
Any sector can be identified with our favourite sector

(x, y) ∈ R2 or (r, θ) ∈ R2 0 ≤ r < δ, θ ∈ [0, 2π/r]

In (†), we get an open disc neighbourhood of v (red dot) via

compare (†)

If r = 1, we have two arrows pointing outward or two arrows pointing inward. In either case, our
quotient space is a cone, homeomorphic to R2.

γ γ

These open neighbourhoods of points in P/ ∼ show P/ ∼ is locally homeomorphic to a disc. We can
also see P/ ∼ is Housdorff and second countable: By construction, if the δ discs, half discs or sections
are sufficiently small and p, q ∈ P lie in different equivalence classes, these are disjoint. So P/ ∼ is
Housdorff.
For second countable, we can consider discs in interior of P with rational centres and radii, and if e ∈
edge(P ) and e → [0, length(e)] an isometry, take only 1/2 discs on e which are centered at rational
values in [0, length(e)] and have rational radius and at vertices allow rational radius sectors. This
gives us a countable base
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Examples. (vii) Given topological surface, Σ1,Σ2, we can remove an open disc from each and give
the resulting boundary circles

γ1

γ2

γ1 ∼ γ2

Explicitly, we take Σ1\D1 ∪ σ1\D2 and impose a quotient relation θ ∈ ∂D1 ∼ θ ∈ ∂D2 where
∂Di is the boundary of Di and θ parameter.
The result Σ1#Σ2 is called the connect sum of Σ1 and Σ2. (In principle, this depends on many
choices, suppressed from the notation)

Lemma. The connect sum Σ1#Σ2 is a topological surface
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Examples.

ad−1

c−1

d

c b−1

a−1

b

Consider octagon P

Claim:

P/ ∼∼=

a

b−1

a−1

b

=
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Example.

∼= RP2

Since: LHS is the same identification space as

∼= D/ ∼

θ ∈ S1 ∼ −θ

−θ

θ

RP2 = S3/± 1 = (Closed upper hemisphere)/θ ∼ −θ for points on equator

x

−x

=

−θ

θ

Definition. A subdivision of a compact topological surface Σ comprises:
(i) A finite set V ⊂ Σ of vertices
(ii) A finite collection E = {ei : [0, 1]→ Σ}i∈Σ of edges s.t.

• ∀i : ei is a continuous injection on its interior and e−1
i V = {0, 1}

• ei and ej have disjoint images except perhaps their endpoints in V
(iii) Such that each connected component of Σ\(

⋃
ei[0, 1] ∪ V ) is homeomorphic to an open disc

called a face. (So the closure of a face has a boundary F̄\F lying in E ∪ V )
A subdivision is a triangulation if each closed face (closure of a face) contains exactly 3 edges, and
two closed faces are disjoint ir meet in exactly one edge (or possible just one vertex)
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Examples.

displays a subdivision of S2

displays a triangulation of S2

shows a subdivision of T 2 with 1 vertex, 2 edges, 1 face

Note.

NOT a triangulation
(faces meet in more than 1 edge) Is a triangulation of T 2
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Remark.

Denotes a very degenerate subdivision of S2 (1 vertex, 0 edges, 1 face)

Definition. The Euler characteristic of a subdivision is the number #V − #E + #F . (no. of
vertices - no. of edges + no. of faces)

Theorem. (i) Every compact topological surface admits subdivisions (and indeed triangulations)
(ii) The Euler characterstic, denoted χ(Σ) does not depend on the choice of subdivision and de-

scribes a topological invariant of the surface (depends only on the homeomorphism type of
Σ)

Examples. (i) χ(S2) = 2
(ii) χ(T 2) = 0
(iii) If Σ1 and Σ)2 are compact topological spaces, we can form Σ1#Σ2 by removing an oen

disc Di ⊂ Σi which is a face of a triangulation, and giving the boundary circles ∂Di by a
homeomorphism taking edges to edges

→

∂D1 ∂D2

Then Σ1#Σ2 inherits a subdivision, and

χ(Σ1#Σ2) = χ(Σ1) + χ(Σ2)− 2

In particular, if

. . .

g holes

Σg = = #g
1T

2

Then χ(Σg) = 2− 2g; f is called the genus of Σ
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Remark. For the theorem earlier, (i) is hard. (ii) We should believe as we can turn a subdivision
into a triangulation

and we can relate triangulations by local means

(changing the set of edges), and easy to see these preserve χ. But
• Hard to rigorise this
• You learn essentially nothing

A much cleaner approach is disclosed in Part II Algebraic Topology

Note. Recall, if Σ is a topological surface, each p ∈ Σ lies in an oen neighbourhood p ∈ U ⊂ Σ with
U homeomorphic to an open disc (or R2)

Definition. A pair (U,ϕ) where U ⊂ Σ open and ϕ : U → V ⊂ R2 a homeomorphism is called a
chart for Σ
(If p ∈ U we might say “a chart for Σ at p”)

Definition. A collection {(Ui, ϕi)i∈I : ϕi : Ui → Vi} of charts such that
⋃
i∈Σ Ui = Σ is called an

atlas for σ. The inverse
σ = ϕ−1 : V → U ⊂ Σ

is called a local parameterisation for Σ
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Examples. (i) If Z ∈ R2 is clsoed, R2\Z is a topological surface eith an atlas with one chart
(R2\Z,ϕ = id.)

(ii) For S2, we have an atlas with 2 charts, the 2 stereographic projections

x

z

y

πyz

R2
yz

not a good chart at (0, 0, 1)

Definition.

Σ

U1

U2

Let (Ui, ϕi) be charts containing p

ϕ1

V1
V2

(†)

(†) is ϕ1(U1 ∩ U2) −−−−−−→
ϕ2◦ϕ1−1

ϕ2(U1 ∩ U2)

The map ϕ2 ◦ ϕ−1
1

∣∣
ϕ1(U1∩U2)

is called the transition map between the charts. This is a homeomor-
phism of open sets in R2

Note. Recall if V ⊂ Rn and V 1 ⊂ Rn are open, then a map f : V → V 1 is called smooth if it is
infinitely differentiable, i.e. it has partial derivatives of all orders
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Definition. If V ⊂ Rn and V 1 ⊂ Rn a homeomorphism, f : V → V 1 is called a diffeomorphism if
it is smooth and its inverse is smooth

Definition. Ab abstract smooth surface Σ is a topological surface with an atlas of charts
{(Ui, ϕi) : ϕi : Ui → Vi ⊂ R2}i∈I ,

⋃
i∈I = Σi s.t. all transition maps ϕi◦ϕj : ϕj(Ui∩Uj)→ ϕi(Ui∩Uj)

are diffeomorphisms of open sets in R2

Note. It would NOT make sense to ask for the ϕi themselves to be smooth, as Σ is just a topological
space.

Example. The atlas of 2 charts with stereographic projections gives S2 the structure of an abstract
smooth surface

Example. The torus S2 = R2/Z2

Recall, we obtained charts from (the inverses of) the projection restricted to small discs in R2 (ones
disjoint from translation by Z ⊕ Z\{0, 0}). The transition maps are translations fo T 2 inherits the
structure of an abstract smooth surface.
Explicitly:
e : R2

R2/Z2

T 2

∼=

(t, s) 7→
(
e2πit, e2πis

)

Consider the atlas
{e(Dε(x, y)) : e−1 on this image} where ε < 1

2

These are charts on T 2 and the transition maps are (restrictions), and the transition maps are
(restrictions to the appropriate domain of) translations in R2. So T 2 has the structure (via this atlas)
of an abstract smooth surface

Remark (Philosophical). Being a topological surface is structure. (One can ask if a topological space
X is a topological surface or not).
Being an abstract smooth surface is data. (I have to you an atlas of charts with smooth transition
maps with smooth inverses: there could be many choices)
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Definition. Let Σ be an abstract smooth surface and f : Σ → Rn a continuous map. We say f is
smooth at p ∈ Σ if

ϕ

V

p
f(p)

f

R2

Rn

whenever (U,ϕ) is a chart at p belonging to my smooth atlas for Σ, the map

f ◦ ϕ−1 : ϕ(U)→ Rn

is smooth. (ϕ(U) ⊂ R2 an open set)

Note. Smoothness of f at p is independent of te choice of chart (U,ϕ) at p in the smooth atlas,
since the transition maps between two such are diffeomorphisms.

Σ

U

U ′

ϕ

ϕ(U)
ψ(U ′)

ψ ◦ ϕ−1 : ϕ(U ∩ U ′) diffm

−−−−→ ψ(U ∩ U ′)

f

Rn

ψ

p

We have a related definition
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Definition. If Σ1 and Σ2 are abstract smooth surfaces, a map f : Σ1 → Σ2 is smooth if “it is
smooth in the local charts”

(U,ϕ)

p

f(p)
f

Rn

(U ′, ψ)

R2

ψ(f(p))

R2

ϕ(p)

ψ ◦ f ◦ ϕ−1

I.e. given charts (U,ϕ) at p and (U ′, ϕ) at f(p) (in our chosen smooth atlases), we want ψ ◦ f ◦ ϕ−1

smooth at ϕ(p)

Note. Again: smoothness of f does not depend on the choices of charts at p.f(p) provided we take
charts from our smooth atlas

Definition. abstract smooth surfaces Σ1 and Σ2 are diffeomorphic if ∃ a homeomorphism

f : Σ1 → Σ2

which is smooth and has smooth inverse

Remark. We often pass from a given smooth atlas for an abstract smooth surface Σ to the maximal
“compatible” such atlas: i.e. we add to our atlas {(U1, ϕi)i∈x} for Σ all charts (V, ψ) with the property
that the transition maps are still all diffeomorphisms. (Technically use Zorn’s Lemma)

Recall: if V ⊂ Rn and V ′ ⊂ Rm are open, then f : V → V ′ is smooth if it is infinitely differentiable.

Definition. If Z ⊂ Rn is an arbitrary subset, we say f : Z → Rm (continuous) is smooth at p ∈ Z
if ∃ open p ∈ B ⊂ Rn and a smooth map F : B → Rm s.t.

F |B∩Z = f |B∩Z

i.e. f is locally the restriction of a smooth map defined on an open set

21



Definition. If X ⊂ Rn and Y ⊂ Rm are subsets, we say X and Y are diffeomorphic if ∃f : X → Y
continuous s.t. f is a smooth homeomorphism with smooth inverse

Definition. A smooth surface in R3 is a subspace Σ ⊂ R3 s.t. ∀p ∈ Σ,∃ an open set p ∈ U ⊂ Σ
s.t. U is diffeomorphic to an open set in R2

∀p ∈ Σ,∃ open ball p ∈ B ⊂ R3 s.t. if U = B ∩ Σ, and a smooth map f : B → V ⊂ R2 oen
s.t. f |U → V is a homeomorphism and the inverse map V → U ⊂ Σ ⊂ R3 is also smooth
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Theorem. For a subset Σ ⊂ R3, the following are equivalent:
(i) Σ is a smooth surface in R3

(ii) Σ is locally the graph of a smooth function over one of the coordinate planes, i.e. ∀p ∈ Σ∃ open
p ∈ B ⊂ R2 and open V ⊂ R2 s.t.

Σ ∩B = {(x, y, g(x, y)) : g : V → R smooth}

(or a graph over the xz or yz plane, locally)
(iii) Σ is locally cut out by a smooth function with nonzero derivative, i.e. ∀p ∈ Σ,∃ open p ∈ B ⊂ R3

and f : B → R smooth s.t.

Σ ∩B = f−1(0) and Dfx 6= 0∀x ∈ B

(iv) Σ is locally the image of an allowable parametrization, i.e. if p ∈ Σ,∃ open p ∈ U ⊂ Σ and
σ : V → U (V ⊂ R2, U ⊂ Σ ⊂ R3 open) s.t. σ2 is a homeomorphism and Dσ|x has rank 2
∀x ∈ V

Proof. (i) (ii) =⇒ all others.
• If Σ is locally {x, y, g(x, y)}, then one gets a chart from projection πxy which is
smooth and defined on an open neighbourhood of points of Σ in its domain ((ii)
=⇒ (i))

• If Σ is locally {(x, y, g(x, y))}, it is locally cut out by f(x, y, z) = z−g(x, y). Clearly
∂f
∂z 6= 0 ((ii) =⇒ (iii))

• The parametrisation σ(x, y) := (x, y, g(x, y)) is allowable as smooth and σx =
(1, 0, gx), σy = (0, 1, gy) are linearly independent (and σ is injective) ((ii) =⇒
(iv))

(ii) (i) =⇒ (iv) is part of the definition of being a smooth surface in R3 and hence locally
diffeomorphic to R2. [At p ∈ Σ,Σ is locally diffeomorphic to R2 and the inverse of such
a local diffeomorphism gives an allowable parametrisation]

(iii) (iii) =⇒ (ii) was “illustrative example # 2” for the implicit function theorem
(iv) We’ll show (iv) =⇒ (ii), (i) and then done. Let p ∈ Σ and V → Σ ⊂ R3 σ(0) = q ∈

U ⊂ Σ. If σ = (σ1(u, v), σ2(u, v), σ3(u, v))

Dσ =

[
∂σ1

∂u
∂σ1

∂v
∂σ2

∂u
∂σ2

∂v

]
so ∃2 rows defining an invertible matrix our Θ 7→ p. Suppose the 1st 2 rows and let
pr := πxy and consider pr ◦ σ : V → R2. Inverse function theorem (since D(pr ◦ σ)|0
isomorphism) says this is locally invertible. So Σ is locally a graph, i.e. (ii) holds.
Moreover, if we let φ := pr ◦ σ

B(p, δ) 3 (x, y, z) 7→ φ−1(x, y)

Here φ−1 : W → Σ. This is locally defined, smooth and open in R3

Example. The unit sphere S2 ⊂ R3 is f−1(0) for

f : R3 → R (x, y, z) 7→ x2 + y2 + z2 − 1

If p ∈ S2, Df |p 6= 0, so f is a smooth surface in R3
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Example. Surfaces of revolution:
Let γ : [a, b]→ R2 be a smooth map with image in the xz-plane

γ(t) = (f(t), 0, g(t))

Assume γ is injective, γ′(t) 6= 0 ∀t, f > 0. The associated surface of revolution has (allowable)
parametrisation

σ(u, v) = (f(u) cos v, f(u) sin v, g(u))

(u, v) ∈ (a, b)× (θ, θ + 2v) v ∈ (0, 2π)

Note
σu = (fu cos v, fu sin v, gu)

(σv = −f(u) sin v, f(u) cos v, 0)

and ‖σu + σv‖ = f2((f ′)2 + (g′)2) 6= 0
so Dσ has rank 2 and σ is injective on given domain, so allowable
diagram

Example. The orthogonal group O(3) acts on S2 by diffeomorphisms

Proof. A ∈ O(3) defines an invertible linear (smooth) map R3 → R3 preserving S2, so
inducted map on S2 is a homeomorphism which is smooth in our definition. (globally so
locally restriction of a smooth map).
Compare: action of Möb on @ = C ∪ {∞}
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Remark. (ii) above says that if Σ is a smooth surface in R3, each p ∈ Σ belongs to a chart (U,ϕ),
where ϕ is (the restriction of) πxy, πyz, πxz from R3 → R2 (co-ordinate plane projection)

R2
xy

Σ ⊂ R3

R2
yz

The transition map
(x, y) 7→ (x, y, g(x, y)) 7→ (y, g(x, y))

has inverse
(y, z) = (h(y, z), y, z) 7→ (h(y, z), y)

All the transition maps between such charts involve projection maps and the smooth maps involved
in Σ as a graph. This gives Σ the structure of an abstract sooth surface

Our next goal is to prove the Theorem. The non-trivial work comes from the inverse function theorem
and its friends

Theorem (Inverse function theorem). Let U ⊂ Rn and f : U → Rn be continuously differentiable.
Let p ∈ U, f(p) = q and suppose Df |p is invertible. Then thre is an open neighbourhood V of q and
a differentiable map

g : V → Rn, g(q) = p

with image an open neighbourhood U ′ ⊂ U of p, s.y. f ◦ g = idV . If f is smooth, so is g
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Remark. Dg|q = (Df |p)−1 by Chain Rule.
Inverse function Theorem concerns f : Rn → Rn with Df |p -. If we have a map f : Rn → Rm where
n > m, can ask about what to conclude if Df |p onto? Df |p = ( ∂fi∂xj

)n×m having full rank means,
permuting co-ordinates if necessary, I can assume last m columns linearly independent

Theorem (Implicit function Theorem). Let p = (x0, y0) ∈ U ⊂ Rk×Rl and a map f : U → Rl where
p 7→ 0 with ( ∂fi∂yj

)l×l is an isomorphism at p. Then there’s an open neighbourhood x0 ∈ V ⊂ Rk and
a continuously differentiable map g : V → Rl, x0 7→ y0 s.t. if (x, y) ∈ ∩(V − Rl), then

f(x, y) = 0 ⇐⇒ y = g(x)

Addendum: If f is smooth, so is g

Proof. Introduce F : U → Rk × Rl with (x, y) 7→ (x, f(x, y)) then

DF =

[
I ∗
0 ∂fi

∂yj

]

o DF |(x0,y0
is isomorphism. So inverse function theorem says F is locally invertible near

F (x0, y0) = (x0, f(x0, y0)) = (x0, 0). Take a product open neighbourhood

(x0, 0) ∈ V × V ′ V ⊂ Rk, 0 ∈ V 1 ⊂ Rl

And the continuously differentiable inverse

G : V × V ′ → U ′ ⊂ U ⊂ Rk × Rl

s.t. F ×G = idV×V ′ . Write G(x, y) = (ϕ(x, y), ψ(x, y)) then

F ×G(x, y) = (ϕ(x, y), f(ϕ(x, y), ψ(x, y)))

= (x, y)

So ϕ(x, y) = x. So G has form
(x, y) 7→ (x, ψ(x, y))

And f(x, ψ(x, y)) = y when (x, y) ∈ V × V ′ so f(x, y) = 0 ⇐⇒ y = ψ(x, 0). Define
g : V → Rl, x 7→ ψ(x, 0) = y and this does what we want
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Example. Let f : R2 → R be smooth, f(x0, y0) = 0 and suppose ∂f
∂y |(x0,y0) 6= 0. Then ∃ smooth

g : (x0 − ε, x0 + ε)→ R, g(x0) = y0 s.t.

f(x, y) = 0 ⇐⇒ y = g(x)

for (x, y) in some open neighbourhood of (x0, y0)
Since f(x, g(x)) = 0

∂f

∂x
+
∂f

∂y
· g′(x) = 0

=⇒ g′(x) = −fx
fy

noting fy 6= 0

(Idea: set f(x, y) = 0 is “implicitly” desribed in g, a function for which we have an integral expression)

Example. Let f : R3 → R be smooth

f(x0, y0, z0) = 0

Let Σ = f−1(0) and assume Df |(x0,y0,z0) 6= 0. Permuting coordinates if necessary, ∂f∂z |(x0,y0,z0 6= 0.
Then ∃ an open neighbourhood (x0, y0) ∈ V ⊂ R2 and a smooth g : V → R, (x0, y0) 7→ z0 s.t. in
open (x0, y0, z0) ∈ U, f−1(0) ∩ U = Σ ∩ U = Graph(g) i.e. is {(x, y, g(x, y)) : (x, y) ∈ V }

Note. If V, V ′ are open subsets of R2, and f : V → V ′ a diffeomorphism, then at x ∈ V,Df |x ∈
GL(2,R). Invertible as f is a diffeomorphism.
Let GL+(2,R) ≤ GL(2,R) be the subgroup of matrices of positive determinant. We say f is
orientation-oreserving if Df |x ∈ GL+(2,R) ∀x ∈ V .

Definition. An abstract smooth surface Σ is orientable if it admits an atlas {(Ui, ϕi) : ∪Ui = Σ}
s.t. the transition maps are orientation-preserving diffeomorphisms of open subsets of R2.
A choice of such an atlas is an orientation of Σ and we say Σ is oriented

Remark. An oriented atlas (in this sense) belongs to a maximal compatible oriented smooth atlas
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Lemma. If Σ1 and Σ2 are abstract smooth surfaces and they are diffeomorphic, then Σ, is orientable
if and only if Σ2 is orientable

Proof. Suppose f : Σ1 → Σ2 is a diffomorphism and Σ2 is orientable and equipped with an
oriented smooth atlas.

p

f(p)
f

Σ2

ψ

R2

ψ(f(p))

Σ1

Let’s consider the atlas on Σ1 of charts of form (f−1U,ψ ◦ f |f−1U ) where (U,ψ) is a chart
at f(p) in our atlas for Σ2. A transition map between 2 such is exactly a transition map in
the Σ2 atlas. Put differently, it maximal smooth atlas, we already have for Σ1 (an abstract
smooth surface), w’ll allow (Ũ , ψ̃) exactly when for any chart (U,ψ) at f(p) in the Σ2 atlas,
the map ψ ◦ f ◦ ψ̃−1 preserves orientation.
If the atlas on Σ2 was maximal as an oriented atlas, this recovers previous set of charts.
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Remarks.
(i) There’s no really sensible classification of all smooth or topological surfaces, e.g. R2\Z for Z

closed in R2 realises unvountably many homeomorphism types (Hard Exercise).
By contrast, copact smooth surfaces up to diffeomorphism are classified by (Euler characteristic,
orientability)

(ii) There is a definition of orientation-preserving homeomorphism, which needs Algebraic Topology
The Möbius band is the surface

It turns out that an abstract smooth surface is orientable ⇐⇒ it contains no subsurface
homeomorphic to the Möbius band. So we say a topological surface is orientable ⇐⇒ it
contains no subsurface (open set) homeomorphic to a Möbius band, as an ad hoc definition

(iii) We can get other structures on an abstract smooth surface by asking for a smooth atlas s.t. if
ϕ1ϕ

−1
2 is one of our transition maps, then D(ϕ1ϕ

−1
2 )|x ∈ G ≤ GL(2,R) e.g. G = {e} leads to

“Euclidean surfaces” (or {±I})

(iv) G = GL(1,C) ≤ GL(2,R) is the theory of Riemann surfaces

Examples. (i) For S2 with the atlas of two stereographic projections, we computed the transition
map

(u, v) 7→
(

u

u2 + v2
,

v

u2 + v2

)
on R2\{0}

and (check) this is orientation-preserving
(ii) For T 2, we exhibited an atlas s.t. all the transition maps were translations of R2 (restricted to

small open discs)

We want to investigate orientability for surfaces in R3. Recall an affine subspace of a vector space is
a translate of a linear subspace

Definition. Let Σ be a smooth surface in R3 and p ∈ Σ. Fix an allowable parametrisation

σ : V → U ⊂ Σ 0 7→ p ∈ U

where V an open subset of R2.
Then the tangent plane Tp of Σ at p is image(Dσ)0 ⊂ R3, a 2d vector subspace of R3. The affine
tangent plane of Σ at p is p+ TpΣ ⊂ R3
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Lemma. TpΣ is well-defined, i.e. independent of the choice of allowable parametrisation near p

Proof. (i) If

σ : V → U ⊂ Σ σ(0) = p

σ̃ : Ṽ → Ũ ⊂ Σ σ̃(0) = p

are two allowable parametrisations, near p

Σ

U

Ũ

σ

V Ṽ

σ̃

p

R2
R2

There’s a transition map σ−1 ◦ σ̃ is a diffeomorphism of open sets in R2. This means we
can write

σ̃ = σ ◦ (σ−1 ◦ σ̃)

where σ−1 ◦ σ̃ a diffeomorphsm so D(σ01 ◦ σ̃)|0 is an isomorphism. This means
image(Dσ̃|0) and image(Dσ|0) agree

(ii) Let γ : (−ε, ε)→ R be a smooth map s.t. γ has image inside Σ and γ(0) = p. Then we
claim γ′(0) ∈ TpΣ. Well, if σ : V → U ⊂ Σ is our allowable parametrisation near p, and
ε is small enough so image(γ) ⊂ U ⊂ Σ, then we can write

γ(t) = σ(u(t), v(t))

for smooth functions, u, v : (−ε, ε)→ V . Then

γ′(t) = σu · u′(t) + σv · v′(t) ∈ image(Dσ)

This exhibits
TpΣ = R{γ′(0) : γ is a smooth curve as above}
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Definition. If Σ is a smooth surface in R3, and p ∈ Σ, the normal direction to Σ at p is just
(TpΣ)⊥ (the Euclidean orthogonal complement to TpΣ w.r.t. 〈·, ·〉eucl)
So at each p ∈ Σ, there are two unit normal vectors

Σ

γ′(0)

p+ TpΣ

Affine tangent plane is the “best linear approximation” to Σ at p

Definition. A smooth surface in R3 is two-sided if it admits a continuous global choice of unit
normal vector
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Lemma. A smooth surface in R3 is orientable with its abstract smooth surface structure if and only
if it is two-sided

Proof. Let σ : V → U ⊂ Σ be an allowable parametrisation for U ⊂ Σ and say σ(0) = p
(V,U open). Define the positive unit normal w.r.t. σ at p to be the normal nσ(p) s.t.

{σu, σv, nσ(p)} and {e1, e2, e3}

are related by a positive determinant change of basis matrix, where {e1, e2, e3} is the standard
basis. Explicitly

nσ(p) =
σu × σv
‖σu × σv‖

If σ̃ is another allowable parametrisation σ̃ : Ṽ → Ũ ⊂ Σ, 0 7→ p and suppose Σ is orientable
as an abstract surface and σ̃ belongs to the same oriented smooth atlas. So

σ = σ̃ ◦ ϕ

with ϕ = σ̃−1 ◦ σ. Write Dϕ|0 =

[
α β
γ δ

]
. Chain rule says

σu = ασ̃u + γσ̃v

σv = βσ̃u + δσ̃v

and
σu × σv = det(Dϕ|0)︸ ︷︷ ︸

>0

·σ̃u × σ̃v (†)

. Determinant > 0 as σ, σ̃ belong to the same oriented atlas. So the positive unit normal at p
was intrinsic; it depends on the orientation fo Σ but not the choice of allowable parametrisation
in the oriented atlas. And the expression σu × σv/‖σu × σv‖ is continuous, so Σ is 2-sided.
Conversely, if Σ is 2-sided and we have a continuous choice of normal vector, we can consider the
subatlas of the natural smooth atlas s.t. allow a chart (U,ϕ) if the associated parametrisation
ϕ−1 = σ has {σu, σv, n} is a positive basis for R3.
Same (†) shows transition maps between such charts are orientation-preserving. So Σ is
orientable.

Lemma. If Σ is a smooth surface in R3 and A : R3 → R3 is a smooth map preserving Σ setwise,
then DA|p : R3 → R3 sends TpΣ to TA(p)Σ whenever p ∈ Σ.
Suppose γ : (−ε, ε) → R3 is a smooth map s.t. image(γ) ⊂ Σ and γ(0) = p. (Recall TpΣ is spanned
by γ′(0) for such γ.) Now A ◦ γ : (−ε, ε)→ R3 also has image in Σ and

DA|γ(0) ◦Dγ|0 = DA|p(γ′(0)︸ ︷︷ ︸
∈TpΣ

)

= D(A ◦ γ)|0︸ ︷︷ ︸
∈TA(p)Σ
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Example. If S2 ⊂ R3,

p

Then the normal line (TpΣ)⊥ = (TpS
2)⊥ = R〈p〉 is the line through p. (Since SO3 acts transitively

on S2, check this at the north pole.) So there is at each point an outwards-pointing normal n(p) (s.t.
p 6∈ R≥0n(0) + p). So S2 is 2-sided, and so orientable

Example (A Möbius band). Let σ(t, θ) = ((1 − t sin θ/2) cos θ, (1 − t sin θ/2) sin θ, t cos θ/2) where
(t, θ) ∈ V1 = {t ∈ (−1/2, 1/2), θ ∈ (0, 2π)} or V2 = {t ∈ (−1/2, 1/2, θ ∈ (−π, π))

We start with the unit circle x2 + y2 = 1 in the xy-plane (t = 0), and take an open interval of length
1, and this line rotates as you move around the circle s.t. has rotated by θ/2 at point θ

Check: if σi is σ on Vi then σi is allowable (smooth, injective, Dσi injective)
Also: σt × σθ = (− cos θ cos θ/2,− sin θ cos θ/2,− sin θ/2) =: nθ (already unit length).
As θ → 0+, nθ → (−1, 0, 0), as θ → 2π−, nθ → (+1, 0, 0) and so this surface is not 2-sided

1 Geometry of Surfaces in R3 - Length, Area and Curvature
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1.1 Length

Definition. Let γ : (a, b)→ R3 smooth.

t

γ′(t)

The length of γ is:

L(γ) :=

∫ b

a

‖γ′(t)‖ dt

Note. If s : (A,B)→ (a, b) is monotone increasing, and let τ(t) = γ(s(t)), then

L(τ) =

∫ B

A

‖τ ′(t)‖ dt =

∫ B

A

‖γ(s(t))‖| s′(t)|︸ ︷︷ ︸
≥0

dt = L(γ)

Lemma. If γ : (a, b)→ R3 is continuously differentiable and γ′(t) 6= 0 ∀t, then γ can be parametrised
by arc-length (i.e. in a parameter s s.t. |γ′(s)| = 1 ∀s)

Proof. Exercise.

Let Σ be a smooth surface in R3 and let σ : V → U ⊂ Σ allowable. If γ : (a, b)→ R3 is smooth and
has image ⊂ U then ∃u(t), v(t) : (a, b)→ V s.t. γ(t) = σ(u(t), v(t))

=⇒ γ′(t) = σuu
′(t) + σvv

′(t)

=⇒ ‖γ′(t)‖2 = Eu′(t)2 + 2Fu′(t)v′(t) +Gv′(t)

where

E = 〈σu, σu〉 = ‖σu‖2

F = 〈σu, σv〉 = 〈σv, σu〉
G = 〈σv, σv〉 = ‖σv‖2

are smooth functions on V , and 〈·, ·〉 is usual Euclidean inner product. Note E,F,G depend only on
σ, NOT on γ
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Definition. The first fundamental form (FFF) of Σ in the parametrisation of σ is the expression

E du2 + 2F dudv +Gdv2

The notation is designed to remind you that if γ : (a, b)→ R3 lands in σ(V ) = U ⊂ Σ, then

length(γ) =

∫ b

a

√
Eu′(t)2 + 2Fu′(t)v′(t) +Gv′(t) dt

where γ(t) = σ(u(t), v(t))

Remark. Really, the Euclidean inner product 〈·, ·〉 on R3 gives me an inner product on TpΣ ⊂ R3.
If we pick a parametrisation σ, TpΣ = image(Dσ|p) = 〈σu, σv〉R span. FFF is a symmetric bilinear
form on TpΣ (varying smoothly in p) expressed in a basis coming from the parametrisation σ, so it

is often helpful to consider
[
E F
F G

]

Example. (i) The plane R2
xy ⊂ R3 has parametrisation σ(u, v) = (u, v, 0) so σu = (1, 0, 0);σv =

(0, 1, 0), FFF: du2 + dv2

(ii) Or in polar coordinates σ(r, θ) = (r cos θ, r sin θ, 0) for r ∈ (0,∞), θ ∈ (0, 2π). Now σr =
(cos θ, sin θ, 0) and σθ = (−r sin θ, r cos θ, 0) and FFF dr2 + r2dθ2

Definition. Let Σ,Σ′ be smooth surfaces in R3. We say Σ and Σ′ are isometric if there is a
diffeomorphism

f : Σ→ Σ′

s.t. for every smooth curve γ : (a, b)→ Σ

lengthΣ(γ) = lengthΣ′(f ◦ γ)

Example. If Σ′ = f(Σ) where f : R3 → R3 is a “rigid motion”, i.e.

f : v 7→ Av + b, A ∈ O(3), b ∈ R3

(so f preserves 〈·, ·〉eucl on R3), then f : Σ→ Σ′ is an isometry

Note. In the definition, imortantly, f is only a priori defined on Σ, not all of R3.
Often, we are really intereted in a local statement.

Definition. We say Σ,Σ′ are locally isomorphic (near point p ∈ Σ and q ∈ Σ′) if ∃ open neigh-
bourhoods p ∈ U ⊂ Σ and q ∈ U ′ ⊂ Σ′ which are isometric
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Lemma. Smooth surfaces Σ,Σ′ in R3 are locally isometric near p ∈ Σ and q ∈ Σ′ if and only if there
exist allowable parametrisations

σ : V → U ⊂ Σ

σ′ : V → U ′ ⊂ Σ′

with p ∈ U, q ∈ U ′, for which the FFF’s are equivalent (equal as functions on V )

Proof. We know (by definition) that the FFF of σ determines lengths of all curves on Σ inside
σ(V ) = U .
We will show lengths of curves determine the FFF of a parametrisation.
Given σ : V → U ⊂ Σ, w.l.o.g. V = B(0, δ) for some δ > 0, with σ(0) = p, and consider

γε : [0, ε]→ U ⊂ Σ, ε < δ, t 7→ σ(t, 0)

Then

d

dε
L(γε) =

d

dε

∫ ε

0

√
E(t, 0) dt

=
√
E(ε, 0)

so d
dε

∣∣
ε=0

L(γε) =
√
E(0, ε) so lengths of curves γε determine E at p.

Analagously χε : [0, ε] → Σ, t 7→ σ′(0, t) and we find their lengths determine
√
E(0, ε) then

λε : [0, ε]→ Σ, t 7→ σ(t, t) determines
√

(E = 2F + g)(0, 0), so (knowing E,G) we get F
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Examples. (i) The sphere {x2+y2+z2 = a2} ∈ R3 has an open set with allowable parametrisation

σ(u, v) = (a cosu cos v, a cosu ∈ v, a sinu)

u = latitude = (−π, π)

v = longitude = (0, 2π)

latitude

longitude

(parametrises the complement of a 1/2 great circle)

σu = (−a sinu cos v,−a sinu sin v, a cosu)

σv = (−a cosu sin v, a cosu cos v, 0)

E = σu · σv = a2, F = 0, G = a2 cos2 u

FFF: a2 du2 + a2 cos2(u) dv2

(ii) Surface of revolution: take q(t) = (f(t), 0, g(t)) in xz-plane and rotate about z-acis

σ(u, v) = (f(u) cos v, f(u) sin v, g(u))

σu = (fu cos v, fu sin v, gu)

σv = (−f sin v, f cos v, 0)

FFF: (f2
u + g2

u) du2 + f2 dv2
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Examples (continued). (iii) Cone:

x

z

y

a1

tan−1(a)

For u > 0 and v ∈ (0, 2π)
σ(u, v) = (au cos v, au sin v, u)

parametrises complement of one line on the cone
FFF: (1 + a2) du2 + a2u2 dv2

If we cut open the cone and unfold it, we get a plane sector:

2πa

θ0

√
1 + a2

θ0 = 2πa√
1+a2

Parametrise this plane sector by

σ(r, θ) = (
√

1 + a2r cos

(
aθ√

1 + a2

)
,
√

1 + a2r sin

(
aθ√

1 + a2

)
, 0)

r > 0, θ ∈ (0, θ0). We can check that we have:
FFF: (1 + a2) dr2 + r2a2 dθ2

So the cone is locally isometric to the plane
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Note. The cone

and the plane

cannot be globally isometric, since these two spaces are not homeomorphic
(The cone ∼=C0 S1 × R, in the plane R2, every compact set K lies inside a larger compact set
K = V (0, N)N >> 0, s.t. R2\K is connected. But on S1 × R

K

for any compact K ′ ⊃ K, (S1 × R)\K ′ is disconnected)

Let Σ be a smooth surface in R3, p ∈ Σ, and take two allowable parametrisations near p

σ : V → U ⊂ Σ, σ(0) = p

σ̃ : Ṽ → U ⊂ Σ, σ̃(0) = p

We have a transition map F = σ̃−1 ◦ σ : V → V ′ (diffeomorphism) of open sets of R2

We have FFFs [
E F
F G

]
for σ,

[
Ẽ F̃

F̃ G̃

]
for tildeσ
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Lemma. [
E F
F G

]
= (DF )T

[
Ẽ F̃

F̃ G̃

]
DF

TpΣ + p

σ

Ṽ

Dσ : v0 7→ v, w0 7→ w

σ̃

p

V

w

v

w0
v0

w̃0

ṽ0

F

Proof. [
E F
F G

]
=

[
σuσu σuσv
σvσu σvσv

]
= (Dσ)TDσ

Now σ = σ̃ ◦ F amd result follows

Remark. Later, we will define “FFF” (called abstract Riemannian metrics) on abstract smooth
surfaces by making local definitions on charts and insisting they transform in this way

If v, w ∈ R3, v · w = |v||w| cos θ

v

w

θ

⊆ R2σ〈v, w〉R span

Considering v, w ∈ TpΣ, cos θ = v·w
|v||w| . If we have an allowable parametrisation σ for Σ near p and

Dσ|0(v0) = v, σ(0) = p, and Dσ|0(w0) = w then

cos θ =
I(v0, w0)√

I(v0, w0)
√
I(w0, v0)

where I denotes the FFF of σ at 0 (so I(v0, w0) = vT0

[
E F
F G

]
w0)
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Lemma. If Σ is a smooth surface in R3 and σ : V → U ⊂ Σ is an allowable parametrisation, then σ
is conformal (preserves angles) exactly when E = G, F = 0

Proof. Consider curves

γ : t 7→ (u(t), v(t)) in V
γ̃ : t 7→ (ũ(t), ṽ(t))

with γ(0) = γ̃(0) = 0 ∈ V and

σ : V → U ⊂ Σ s.t. σ(0) = p ∈ Σ

Then the curves σ ◦ γ and σ ◦ γ̃ meet at angle θ on Σ, where

cos θ =
Eu̇ ˙̃u+ F (u̇ ˙̃v + v̇ ˙̃u) +G(v̇ ˙̃v)

(Eu̇2 + Fu̇v̇ +Gv̇)1/2(E ˙̃u2 + 2F ˙̃u ˙̃v +G ˙̃v2)1/2

If σ is conformal and γ(t) = (t, 0), γ̃(t) = (0, t), meeting at π/2 in V , they meet at π/2 on Σ,
and then F = 0.
Similarly, if γ(t) = (t, t) and γ̃(t) = (t,−t) these are orthogonal in V , so images are orthogonal
on Σ, and then E = G.
Conversely, if σ is s.t.

E = G and F = 0

then wrt σ, the FFF of Σ is of the form ρ( du2 + dv2) for ρ(= E) : V → R a smooth function.
i.e. the FFF is a pointwise rescaling of the Euclidean fundamental form du2 + dv2. But
rescaling doesn’t change angles

Remarks.
(i) Historically important for maps, cf ES2
(ii) Existence of conformal charts is closely connected to “Riemann surfaces”, topological surfaces

locally modelled on C
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1.2 Area

Recall a parallelogram

v

w

spanned by vectors v and w

has area
(〈v × w, v × w〉)1/2 = (〈v, v〉〈w,w〉 − 〈v, w〉2)1/2

Σ

p

TpΣ

v

w

Suppose we have an allowable parametrisation

σ : V → U ⊂ Σ, σ(0) = p

and consider σu, σv ∈ TpΣ. These span a parallelogram in TpΣ which we think of as an “infinitesimal”
parallelogram on Σ of area

(〈σu, σu〉〈σv, σv〉 − 〈σu, σv〉2)1/2 =
√
EG− F 2

Definition. Let Σ be a smooth surface in R3 and σ : V → U ⊂ Σ allowable. Then Area(U) =∫
V

√
EG− F 2 dudv

Note. Suppose σ : V → U , σ̃ : Ṽ → U are both allowable. So σ̃ = σ ◦ϕ, ϕ = σ−1 ◦ σ̃ transition map
and [

Ẽ F̃

F̃ G̃

]
= (Dσ̃)TDσ̃ = (Dϕ)T

[
E F
F G

]
Dϕ

So √
ẼG̃− F̃ 2 = |det(Dϕ)| ·

√
EG− F 2

Now the change-of-variables formula for integration, and fact that ϕ : Ṽ → V is a diffeomorphism,
shows ∫

Ṽ

√
ẼG̃− F̃ 2 dũdṽ =

∫
V

√
EG− F 2 dudv

So Area(U) is intrinsic and well-defined.
ALSO: we can compute area(U) for any open U ⊂ Σ, not necessarily lying in a single parametrisation,
by covering it in pieces which do lie in sets σ(V ).
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Example. Consider a graph

Σ = {(u, v, f(u, v)) : (u, v) ∈ R2, f : R→ R smooth}

We take the obvious parametrisation

σ : (u, v) 7→ (u, v, f(u, v))

σu = (1, 0, fu)

σv = (0, 1, fv)

and
√
EG− F 2 =

√
1 + f2

u + f2
v .

If UR ⊂ Σ is part of the graph lying over B(0, R) ⊂ R2,

Area(UR) =

∫
B(0,R)

√
1 + f2

U + f2
v du2 dv2

≥ πR2

With equality only when fu = 0 = fv throughout B(0, R i.e. only when UR ≤) plane (z = const.)
So projection from Σ to R2

xy is not area preseving unless Σ is plane parallel to R2
xy

Example. Contrast above with the following (Archimedes)

The radial projection from S2 to the cylinder is area-preserving. (cf ES2)
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Take a plane and bend it:

γ γ

This won’t change lengths and areas, but we clearly change the way the surface sits in R3. We
measure that change by considering how Σ deviated from its own tangent planes.
Let σ : V → U ⊂ Σ be allowable. Use Taylor’s theorem

σ(u+h, v+ l) = σ(u, v)+hσu(u, v)+ lσv(u, l)+
1

2
(h2σuu(u, v)+2hlσuv(u, v)+ l2σvv(u, v))+O(h3, l3)

where h, l are small so (u, v) and (u+ h, v + l) ∈ V .
Recall, if p = σ(u, v)

TpΣ = 〈σu, σv〉

So the distance from σ(u+ h, v + l) to TpΣ + p, measured orthogonally, is given by projection to the
normal direction:

〈n, σ(u+ h, v + l)− σ(u, v)〉 =
1

2
(h2〈n, σuu〉+ 2hl〈n, σuv〉+ l2〈n, σvv〉) +O(h3, l3)

Definition. The second fundamental form of the smooth surface Σ in R3 in the allowable
parametrisation σ is the quadratic form

Ldu2 + 2M dudv +N dv2

where

L = 〈n, σuu
M = 〈n, σuv〉
N = 〈n, σvv〉

where (as usual) n = σu×σv

‖σu×σv‖ the positive unit normal

Note. Again,
[
L M
M N

]
defines a quadratic form on TpΣ, varying smoothly in p
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Lemma. Let V be connected and σ : V → U ⊂ Σ an allowable parametrisation s.t. 2nd FF vanishes
identically w.r.t. σ. Then U lies in an affine plane R2 ⊂ R3

Proof. Recall
〈n, σu〉 = 0 = 〈n, σv〉

=⇒ 〈nu, σu〉+ 〈n, σuu = 0

〈nv, σv〉+ 〈n, σvv = 0

〈nv, σu〉+ 〈n, σuv = 0

So in the second fundamental form

L = 〈n, σuu〉 = −〈nu, σv〉
M = 〈n, σuv〉 = −〈nv, σu = −〈nu, σv〉
N = 〈n, σvv〉 = −〈nv, σv〉

So if 2nd FF vanishes then nu is orthogonal to σu, σv and 〈n, n〉 = 1 =⇒ 〈n, nu〉 = 0 =⇒ nu
orthogonal to n.
So nu orthogonal to {σu, σv, n} =⇒ nu ≡ 0 and similarly nv ≡ 0, so n is constant by MVT.
So U is constrained in the affine hyperplane {x · n = constant}

Remark. Recall the FFF is a non-degenerate symmetric bilinear form on TpΣ.
Contrast with 2nd FF

Remark. The FFF in parametrisation σ was

(Dσ)TDσ ·
[
E G
F G

]
·
[
σu · σv σuσv
σvσu σvσv

]
Analagously the 2nd FF

(Dn)TDσ =

[
L M
M N

]
= −

[
nu · σu nu · σv
nv · σu nv · σv

]
(using the alternative expressions for L,M,N derived in the previous proof).
So if σ : V → Σ and σ̃ : Ṽ → Σ are 2 allowable parametrisations for U ⊂ Σ with transition map

ϕ : Ṽ →∼=C∞ V ϕ = σ−1 ◦ σ

then [
L̃ M̃

M̃ Ñ

]
= ±(Dϕ)T

[
L M
M N

]
Dϕ

where we get a minus sign if ϕ is orientation reversing. Here note that

nσ◦ϕ|(ũ,ṽ) = ± nσ|ϕ(ũ,ṽ)

for (ũ, ṽ) ∈ Ṽ . With sign depending on det(Dϕ) (assume V, Ṽ connected)
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Example.

x

z

y

The cylinder has allowable parametrisation

σ(u, v) = (a cosu, a sinu, v), u ∈ (0, 2π), v ∈ R

Note σuv = 0 = σvv
=⇒ M = N = 0

Check 2nd FF is
[
−a 0
0 0

]
i.e. −adu2

Next goal: “intrinsic” description of 2nd FF for an oriented smooth surface in R3

Definition. Let Σ ⊂ R3 be a smooth oriented surface. The Gauss map

n : Σ→ S2 = {x2 + y2 + z2 = 1} ⊂ R3

is the map p 7→ n(p) normal unit vector at p, well-defined as σ oriented

Lemma. The Gauss map n : Σ→ S2 is smooth

Proof. Smoothness can be checked locally. We know if σ : V → U ⊂ Σ is allowable and
compatible with orientation, then at σ(u, v) = p ∈ Σ

n(p) =
σu × σv
‖σu × σv‖

and this is smooth since σ is smooth (and denominator never vanishes)
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Remark. If Σ = F−1(0), F : R3 → R where F is smooth and DF |x 6= 0 ∀x ∈ Σ (so Σ is a smooth
surface in R3), recall

n(p) =
∇F
‖∇F‖

Σ

p

TpΣ

n(p)

n

S2

n(p)

Note. By definition, if n : Σ→ S2 is the Gauss map

TpΣ = Tn(p)S
2 (= n(p)⊥)

Concretely: if v ∈ TpΣ is γ′(0) where γ : (−ε, ε)→ Σ, γ(0) = p, γ smooth, then n ◦ γ : (−ε, ε)→ S2

has
n ◦ γ(0) = n(p)

and
Dn|p(v) = (n ◦ γ)′(0) = Tn(p)S

2 = TpΣ

So Dn|p : TpΣ→ TpΣ can be viewed as an endomorphism of a fixed 2d subspace of R3.
Recap of the funamental forms:
Take Σ an oriented (so two-sided) smooth surface in R3

(i) The FFF is a symmetric bilinear form 〈·, ·〉 : TpΣ× TpΣ→ R which is restriction of 〈·, ·〉eucl to
TpΣ ⊂ R3. We’ll write

Ip(v, w) v, w ∈ TpΣ

(ii) The 2nd FF is the symmetric bilinear form TpΣ× TpΣ→ R, (v, w) 7→ Ip(v, w) defined by

Ip(v, w) = Ip(−Dn|p(v), w)

where n : Σ→ S2 is the Gauss map
If we choose an allowable (oriented) parametrisation σ : V → U ⊂ Σ near p ∈ Σ and if

Dσ|0(v̂) = v σ(0) = p

Dσ|0(ŵ) = w v,w ∈ TpΣ

then

Ip(v, w) = v̂T
[
E F
F G

]
ŵ

Ip(v, w) = v̂T
[
L M
M N

]
ŵ
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Lemma. The Gauss map n : Σ→ S2 satisfies

Dn|p : TpΣ→ TpΣ

is a self-adjoint linear map w.r.t. the non-degenerate inner product Ip on TpΣ

Proof. The lemma means

Ip(Sn|p(v), w) = Ip(v,Dn|p(w)) v, w ∈ TpΣ

We know (e.g. from our local expression) that Ip and I are symmetric so

Ip(Dn|p(v), w) = −Ip(v, w)

= −Ip(w, v)

= Ip(Dn|p(w), v)

= Ip(v,Dn|p(w))

Remark. The “fundamental theorem of surfaces in R3” says that a smooth oriented connected surface
in R3 is determined up to rigid motion (global isometry of R3) by its first and 2nd FF

Definition. Let Σ be a smooth surface in R3. The Gauss curvature κ : Σ→ R of Σ is the function

p 7→ det(Dn|p : TpΣ→ TpΣ)

Remark. This is always well-defined, even if Σ is not oriented. (since Σ is always locally orientable,
e.g. in the open subset of an allowable parametrisation, and the unit normal to Σ is at most ambiguous
up to sign. But for a 2× 2 matrix, det is unchanged on reversing the sign)

Method. Computing κ:
Take Σ smooth in R3 and σ an allowable parametrisation for an open subset.
Recall:

Ip : TpΣ× TpΣ→ R (v, w) 7→ 〈v, w〉eucl
Ip : TpΣ× TpΣ→ R (v, w) 7→ Ip(−Dn|p(v), w)

and have Dn|p : TpΣ→ TpΣ.
The choice of parametrisation σ for p ∈ U gives me a preferred basis {σu, σv} for TpΣ and in this
basis

Ip =

[
E F
F G

]
︸ ︷︷ ︸

A

, Ip =

[
L M
M N

]
︸ ︷︷ ︸

B

and we write S for Dn|p in this same basis {σu, σv
The identity Ip(v, w) = Ip(−Dn|p(v), w) says B = −STA

=⇒ S = −(BA−1)T = −A−1B

=⇒ κ(p) = det(S|p) =
LN −M2

EG− F 2
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Note. Recall: we already saw that if σ, σ̃ are 2 allowable parametrisations for U , and ϕ = σ−1 ◦ σ̃,
we saw [

Ẽ F̃

F̃ G̃

]
= (Dϕ)T

[
E F
F G

]
Dϕ[

L̃ M̃

M̃ Ñ

]
= ±(Dϕ)T

[
L M
M N

]
Dϕ

from which we directly see that the expression LN−M2

EG−F 2 is intrinsic

Example.

x

z

y

n
n(p)

p

The image of n : Σ→ S2 is contained in the equator S1 ⊂ S2.
So ∀p ∈ Σ, Dn|p : TpΣ → TpΣ has 1 dimensional image since ∀γ : (−ε, ε) → Σ, n ◦ γ ⊂ S1. So
det(Dn|p) = 0 and κ(p) = 0 ∀p

Definition. If Σ is a smooth surface in R3 and if κ ≡ 0 on Σ, we say Σ is flat

Remark. We saw before that if σ is an allowable parametrisation σ : V → U ⊂ Σ and if we write
nσ for n ◦ σ so nσ : V → S2 then

Dnσ|0 : σu 7→ (nσ)u and σv 7→ (nσ)v

so κ(p) = 0 ⇐⇒ (nσ)u × (nσ)v = 0
Usually, we just write n for nσ and the above as nu × nv = 0
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Example. If Σ is the graph of a smooth function of f then (ES2)

κ =
fuufvv − f2

uv

(1 + f2
u + f2

v )2

so depends on the Hessian of f .
If f(u, v) =

√
r2 − u2 − v2, then

fuu|0 = fvv|0 = −1

r
, fuv|0 = 0

and κ(0, 0, r) = 1/r2.
Since O(3) acts transitively on the sphere, we see κ(p) = 1/r2 ∀p ∈ S2

r

Example. Let Σ be the smooth surface in R3 {z = x2 + y2}. We claim for a suitable choice of
orientation, the image of the Gauss map is the open northern hemisphere

Proof.

x

z

y

n

n(p)
n(p)

S2

Σ

Note Σ is invariant under Rθ : R3 → R3.
ES2: n(Rθ(p)) = Rθ(n(p))
So it suffices to compute n(p) for

p = (x, 0, t) = (x, 0, x2) ∈ Σ

Σ = F−1(0), for F : R2 → R
(x, y, z) 7→ z − x2 − y2

(which has DF |p 6= 0) so

n(p) =
∇F
‖∇F‖

=
(−2x, 0, 1)√

1 + 4x2

at (x, 0, x2). We can check

x 7→ (−2x, 0, 1)√
1 + 4x2

sends R 7→ {y = 0, z > 0} ⊂ S2

Note. If we choose the other orientation on Σ, then we get the open lower hemisphere as image of
Gauss
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Definition. If Σ is a smooth surface in R3 and p ∈ Σ, we say p is:
• elliptic if κ(p) > 0
• hyperbolic if κ(p) < 0
• parabolic if κ(p) = 0

Lemma. (i) In a sufficiently small neighbourhood of an elliptic point p,Σ lies entirely on one sde
of the affine tangent plane p+ TpΣ

(ii) In a sufficiently small neighbourhood of a hyperbolic point, Σ, meets both sides of its affine
tangent plane

p

Σ

TpΣ + p

Elliptic p, κ(p) > 0

p

Hyperbolic p, κ(p) < 0

TpΣ + p

Proof. Take a local parametrisation σ near p. Recall κ = (LN −M2)/(EG− F 2) and
EG− F 2 > 0 since Ip is positive definite. Recall that if

w = hσu + lσv ∈ TpΣ

then 1
2 Ip(w,w) measured the signed distance from σ(h, l) to TpΣ (here σ(0, 0) = p),

measured via inner product with the positive normal distance

1

2
(Lh2 + 2Mhl +Nl2) +O(h3, l3)

If p elliptic,
[
L M
M N

]
has eigenvalues of same sign so is positive or negative definite at

p, so in a neighbourhood of p, this signed distance only has one sign locally. But if p
is hyperbolic, then Ip(w,w) takes both signs in a neighbourhood of p, so Σ meets both
sides of p+ TpΣ

Remark. If p is parabolic, cannot conclude either (Monkey Saddle)
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Prop. Let Σ be a compact smooth surface in R3. Then Σ has an elliptic point

Proof. As Σ is compact, we know it is closed and bounded as a cubset of R3. So for R >> 0,
Σ ⊂ B(0, R). Decrease R to the minimal such value: up to applying a global isometry
(rotation of R3)

p

TpΣ = TpS
2 S2(R)

Σ

i.e. we’ve used rotation to put a point of contact of Σ and S2(R) on the positive z-axis.
Locally near p, we can view Σ as the graph of a smooth function f st.

f −
√
R2 − u2 − v2 ≤ 0

f : V → R3, V open in R2.
Consider the Taylor serries o f and note fu = 0 = fv at (u, v) = (0, 0) as f(0, 0) = p is a
maximum

=⇒ 1

2
(fuuu

2 + 2fuvuv + fvvv
2) +

1

2R
(u2 + v2) ≤ 0

for sufficiently small u, v so
[
L M
M N

]
is locally negative definite near (0, 0)

=⇒ κ|σ(0,0) = κ(p) > 0

(In fact at p, κ(p) ≥ 1/R2, which is κ(p) of S2(R))

Moral. There is a nice reformulation of Gauss curvature using area
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Theorem. Let Σ be a smooth surface in R3 and p ∈ Σ where κ(p) 6= 0. Pick a small open neigh-
bourhood p ∈ U ⊂ Σ and a decreasing sequence

p ∈ Ai ⊂ U ⊂ Σ

where Ai open neighbourhoods which “shrink to” p in the sense that

∀ε > 0 Ai ⊂ B(p, ε) ⊂ R3 ∀i >> 0

Then
|κ(p)| = lim

i→∞

AreaS2(n(Ai))

AreaΣ(Ai)

i.e. Gauss curvature is an infinitesimal measure of how much Gauss map n distorts area

Proof. Fix an allowable parametrisation σ : V → U ⊂ Σ near p, s.t. σ(0, 0) = p. Using σ, we
get σ−1Ai = Vi ⊂ V open. since Ai shrink to p⋂

i∈I
Vi = {(0, 0)}

AreaΣ)Ai =

∫
Vi

√
EG− F 2 dudv

=

∫
Vi

‖σu × σv‖ dudv (†)

Recall: (chain rule applied to n ◦ γ for γ a curve in Σ) that

Dn|(u,v)σu 7→ nu, σv 7→ nv

Since κ(p) = κ(σ(0, 0)) 6= 0, the map n ◦ σ : V → S2 ⊂ R2 has rank 2 derivative near (0, 0),
so it defines an allowable parametrisation for an open neighbourhood of n(p) ∈ S2, by inverse
function theorem. Therefore

AreaS2(n(Ai)) =

∫
Vi

‖nu × nv‖dudv

(i.e. some formula as (†) but on S2) provided i >> 0 so σ−1Ai = Vi lies in the open
neighbourhood of (0, 0) where n ◦ σ is a diffeomorphism∫

Vi

‖nu × nv‖ dudv =

∫
Vi

‖Dn(σu)×Dn(σv)‖ dudv

=

∫
Vi

|det(Dn))| · ‖σu × σv‖ dudv

=

∫
Vi

|κ(u, v)| · ‖σu × σv‖ dudv

Since κ is continuous, given ε > 0, ∃δ > 0 s.t. |κ(u, v)−κ(0, 0)| < ε if (u, v) ∈ B((0, 0), δ) ⊂ V
so if i >> 0

|κ(u, v)| ∈ (|κ(p)| − ε, |κ(p)|+ ε)

throughout Vi.
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Proof (continued). So

(|κ(p)| − ε)
∫
Vi

‖σu × σv‖ dudv′ ≤
∫
Vi

|κ(u, v)| · ‖σu × σv‖ dudv

≤ (|κ(p) + ε)

∫
Vi

‖σu × σv‖dudv︸ ︷︷ ︸
AreaΣ(Ai)

i.e.
|κ(p)| − ε ≤ AreaS2(n(Ai))

AreaΣ(Ai)
≤ |κ(p)|+ ε

(this holds ∀i >> 0) so done

Remark. Compare the pictures:

In the top picture, n locally preserves orientation: γ oriented anticlockwise looking down at Σ along
n(p), and n ◦ γ similarly oriented anticlockwise if we look down at S2 at n(p) along normal.
But in the lower picture, n locally reverses orientation: the curve n ◦ γ has opposite sense to curve γ.
Gauss defined this signed area of n(Ai) to be area(n(Ai)) if κ > 0, −area(n(Ai)) if κ < 0 and then
stated

κ(p) = lim
Ai→p

signed areaS2(n(Ai))

areaΣ(Ai)

Note this result also holds when κ = 0, with a bit more care

Gauss curvature is constrained by two amazing theorems:
• local result, called the “theorema egregium” (remarkable theorem)
• global rigidity
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Theorem. The Gauss curvature of a smooth surface in R3 is an isometry invariant i.e. if f : Σ1 → Σ2

is a diffeomorphism of surfaces in R3, which is an isometry then

κ(p) = κ(f(p)) ∀p ∈ Σ

(The Gauss curvature can be extracted from Ip even though its definition uses Ip and Ip)

Theorem (Gauss-Bonnet theorem). If Σ is a compact smooth surface in R3 then∫
Σ

κdAΣ = 2πχ(Σ)

(dAΣ =
√
EG− F 2 locally)

How might one prove “theorema egregium”?
• direct proof in part II
• ask a different question: are some allowable parametrisations of a smooth surface in R3 “better”

than others?
A paramterisation: σ : V → U ⊂ Σ defines distinguished curves, the images of coordinate lines

σ

R2

V
U

Σ

So looking for a “best” local parametrisation is related to looking for distinguished local curves
in Σ

Later we’ll see every smooth surface in R3 admits a local parametrisation such that FFF has form
du2 +G(u, v) dv2 (i.e. E = 1, F = 0), and (ES3) if you have a local parametrisation then

κ = (expression in G)

This is a (more conceptual?) route to theorema egregium

2 Geodesics

If γ : [a, b]→ R3 is smooth, recall

length(γ) :=

∫ b

a

‖γ′(t)‖ dt
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Definition. The energy of γ

E(γ) :=

∫ b

a

‖γ′(t)‖2 dt

Given γ : [a, b]→ Σ smooth, for a smooth surface Σ in R3, then:

Definition. A one-parameter variation (with fixed end-points) of γ is a smooth map

Γ : (−ε, ε)× [a, b]→ Σ

s.t. if γs = Γ(s, ·) then
(i) γ0(t) = γ(t) ∀t
(ii) γs(a), γs(b) are independent of s

a

b

γ

γε/2

Definition. A smooth curve γ : [a, b] → Σ is a geodesic if for every variation (γs) of γ with fixed
end points, we have

d

ds

∣∣∣∣
s=0

E(γs) = 0

i.e. γ is a “critical point” of the energy functional on curves from γ(a) to γ(b).
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Equation. Suppose γ has image in the image of an allowable parametrisation σ, and write

γs(t) = σ(u(s, t), v(s, t))

Suppose FFF wrt σ is
E du2 + 2F dudv +Gdv2

and set
R := Eu̇2 + 2Fu̇v̇ +Gv̇2

where u̇ = ∂u
∂t and v̇ = ∂v

∂t so

E(γs) =

∫ b

a

R dt

noting R depends on s. so

∂R

∂s
= (Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)
∂u

∂s

+ (Evu̇
2 + 2Fvu̇v̇ +Gv v̇

2)
∂v

∂s

+ 2(EU̇ + F v̇)
∂u̇

∂s

+ 2(Fu̇+Gv̇)
∂v̇

∂s

so
d

ds
E(γs) =

∫ b

a

∂R

∂s
dt

We can integrate by parts and note that ∂u
∂s and ∂v

∂s vanish at the endpoints a, b (variation has fixed
endpoints). So

d

ds

∣∣∣∣
s=0

E(γs) =

∫ b

a

(A
∂u

∂s
+B

∂v

∂s
) dt

where

A = Euu̇
2 + 2Fuu̇v̇ +Guv̇

2 − 2
d

dt
(Eu̇+ F v̇)

B = Evu̇
2 + 2Fvu̇v̇ +Gv v̇

2 − 2
d

dt
(Fu̇+Gv̇)

Corollary. A smooth curve γ : [a, b]→ Σ (with image in the image of σ) is a geodesic if and only if
it satisfies the geodesic equations:

d

dt
(Eu̇+ F v̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)

d

dt
(Fu̇+Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ +Gv v̇
2)

Note: these only depend on γ not {γs}
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Remarks.
(i) Solving a differential equation is a local property on γ:

γ(b)

γ(a)

Variation {γs} so original definition of geodesic also has a local character

(ii) Unlike length L(γ), the energy E(γ) does depend on the paramterisation of γ. If f, g : [a, b]→ R
are smooth, Cauchy-Schwartz says(∫ b

a

fg dt

)2

≤
∫ b

a

f2 dt

∫ b

a

g2 dt

Apply this with
f =
√
R = (Eu̇2 + 2Fu̇v̇ +Gv̇)1/2, g = 1

to see Length(γ)2 ≤ E(γ)(b− a).
Since we get equality in Cauchy-Schwartz only when f = cġ ffor a constant c, which here would
say ‖γ̇(t)‖ = constant so γ parametrised proportional to arc length

Corollary. (i) If γ has constant speed and locally minimises length, then γ is a geodesic
(ii) If γ globally minimised energy (amongst paths with the same end-points) then it globally

minimises length, and is paramtetrised with constant speed
(so geodesics are naturally constant-speed parametrised)

Remark.

p q
red arc is a geodesic from p to q

Want geodesics to be local but not necessarily global-length minimisers.
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Example. The plane R2 has parametrisation

σ(u, v) = (u, v, 0) and FFF: du2 + dv2

Geodesic equations:
d

dt
(u̇) =

d

dt
(v̇)

for a acurve γ(t) = (u(t), v(t), 0) = σ(u(t), v(t)) i.e. ü = 0 = (̈v). So

u(t) = αt+ β

v(t) = γt+ δ

which is a straight line parametrised at constant speed
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Example. Take the unit sphere with parametrisation

σ(u, v) = (cosu cos v, cosu sin v, sinu)

u ∈ (−π/2, π/2) latitude; v ∈ (0, 2π) longitude.
FFF: du2 + cos2(u) dv2 (E = 1, F = 0, G = cos2(u))
Geodesic equation:

d

dt
(u̇) = − cos(u) sin(u)v2

d

dt

(
cos2(u)v̇

)
= 0

=⇒ ü+ sin(u) cos(u)v̇2 = 0

v̈ − 2 tan(u)u̇v̇ = 0

Let’s assume our geodesic is parametrised at unit speed. Then

u2 + cos2(u)v̇2 = 1

so v̈/v̇ = 2 tan(u)u̇
=⇒ ln(v̇) = −2 ln(cosu) + constant

=⇒ u̇ =
C

cos2(u)

So u̇2 = 1− C/ cos2(u).
So

u̇ =

√(
cos2(u)− C2

cos2(u)

)
Then

v̇

u̇
=

dv

du
=

C

cos(u)
√

cos2(u)− C2

and so

V =

∫
∂v

∂u
du =

∫
C sec2(u)√

1− C2 sec2 u
du

and if we set w = C tanu√
1−C2

then

r =

∫
dw√

1− w2
= sin−1(w) + const = sin−1(λ tanu) + δ

for constants λ, δ. We saw: sin(v − δ) = λ tanu

sin r cos δ − cos v sin δ − λ tanu = −

=⇒ (sin v cosu)︸ ︷︷ ︸
x

cos δ − (cos v cosu)︸ ︷︷ ︸
y

sin δ − λ sinu︸︷︷︸
z

= 0

So our geodesic γ lies on a plane through 0 ∈ R3, i.e. γ is an arc of a great circle on S2
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Example. A Torus in R3

x

z

y

Rotate (x− a)2 + z2 = 1 about xz-axis. An allowable parametrisation is

σ(u, v) = ((a+ cosu) cos v, (a+ cosu) sin v, sinu)

FFF: du2 + (a+ cosu)2 dv2

E = 1, F = 0, G = (a+ cosu)2

Note: if formally we set a = 0, this recovers the unit sphere and its FFF.
Follow same procedure as for S2, or formally substitute cosu 7→ a+ cosu and we’ll get

dv

du
=

C

(a+ cosu)
√

(a+ cosu)2 − C2

which can’t be integrated using classical functions (c.f. “elliptic” functions)

Next goal: give a different characterisation of geodesics on a smooth surface in R3

Moral. Straight lines in R2 are not just locally shortest but locally straightest.
Idea: characterise via saying the change in the tangent vector of the curve is as small as it could be
subject to the fact that the curve γ stays on the surface
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Prop. Let Σ be a smooth surface in R3. A smooth curve γ : [a, b] → Σ is a geodesic if and only if
the vector γ̈(t) is everywhere normal to Σ

Proof. Being a geodesic as we defined or having γ̈(t) normal to Σ, are both local conditions
on γ, so we can work in one allowable parametrisation. As usual:

σ : V → U ⊂ Σ

and suppose γ(t) = σ(u(t), v(t)) so

γ̇(t) = σuu̇+ σv v̇

so γ̈ is normal to Σ exactly when it’s orthogonal to TpΣ = 〈σu, σv〉 if and only if

〈 d

dt
(σuu̇+ σv v̇) , σu〉 = 0 (†)

〈 d

dt
(σuu̇+ σv v̇) , σv〉 = 0 (††)

We’ll consider (†), which is equivalent to

d

dt
〈σuu̇+ σv v̇, σu〉 − 〈σuu̇+ σv v̇,

d

dt
(σu)〉 = 0

Noting
〈σu, σu〉 = E, 〈σu, σv〉 = F

this is:
d

dt
(Eu̇+ F v̇)− 〈σuu̇+ σv v̇, σuuu̇+ σuv v̇〉 = 0

d

dt
(Eu̇+ F v̇)−

{
u̇2〈σu, σuu〉+ u̇v̇ (〈σu, σuv〉+ 〈σv, σuu〉) + v̇2〈σvσuv

}
= 0

But
E = 〈σu, σu〉 =⇒ Eu = 2〈σu, σuu〉

and
G = 〈σv, σv〉 =⇒ Gu = 2〈σv, σuv

and
F = 〈σu, σv〉 = 〈σv, σu〉 =⇒ Fu = 〈σu, σuv〉+ 〈σuu, σv〉

and (†) becomes
d

dt
(Eu̇+ F v̇) =

1

2

(
Euu̇

2 + 2Fuu̇v̇ +Guv̇
2
)

the first of the geodesic equations.
Similarly (††) is equivalent to the second geodesic equation

Remark. Note
d

dt
〈γ̇(t), γ̇(t)〉 = 2〈 γ̇(t)︸︷︷︸

tang. to Σ

, γ̈(t)︸︷︷︸
norm. to Σ

〉

So 〈γ̇(t), γ̇(t)〉 is constant i.e. geodesics are indeed parametrised with constant speed, so proportional
to arc-length
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Example. A surface with symmetry,

Σ

π

C

Let Σ be a smooth surface in R3 and assume there is a plane Π ⊂ R3 s.t.
(i) Π ∩ Σ is a smooth embedded curve C ⊂ Σ
(ii) Σ is setwise preserved by reflection in Π
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Claim. C is a geodesic when parametrized at constant speed

Proof.

C

p

We can write R3 = Π⊕ Π⊥ (e.g.) suppose p is the origin of our co-ordinates, by translation,
and also R3 = TpΣ⊕ Rnp
Clearly ReflΠ acts on Π by identity Π+ by −1.
Since ReflΠ fixes Σ setwise and fixes p, it also preserves TpΣ, so it also preserves Rnp

=⇒ Rnp ⊂ Π

as Π not identity on TpΣ.
Let’s parametrise C locally near p via

t 7→ γ(t) ∈ C ⊂ Σ ⊂ R3

at constant speed. Well:
γ(t) ⊂ Π =⇒ γ̇(t), γ̈(t) ∈ Π

But
〈γ̇(t), γ̈(t)〉 = 0

so
γ̇(t) ∈ Π ∩ TpΣ

and γ̈(t) is orthogonal to this and in Π

=⇒ γ̈(t) ∈ Rnp ⊂ Π

so γ is a geodesic

Remark. As given, C is not parametrized at all

Example. Surfaces of revolution revisited
We take η(u) = (f(u), 0, g(u)) in xz-plane and rotate it about xz-axis.
(η smooth, injective, f(u) > 0)

Definition. A circle obtained by rotating a point of η is called a parallel.
A curve obtained by rotating η itself by a fixed angle is called a meridian.
A plane in R3 containing the z-axis is a plane of symmetry.

Corollary. All meridians are geodesics

64



Lemma. A parallel u = U0 (constant) is a geodesic (parametrised at constant speed) ⇐⇒ f ′(u0) = 0

geodesic parallels

not geodesic parallels

geodesic parallels

Proof. We take our usual allowable parametrisation

σ(u, v) = (f(u) cos v, f(u) sin v, g(u) a < u < b, v ∈ (0, 2π)

Then the FFF is
((f ′)2 + (g′)2) du2 + f2 dv2

We can parametrise η by arc-length and then FFF becomes

du2 + f2 dv2

i.e. E = 1, F = 0, G = f(u)2. Geodesic equations are then:

d

dy
(u̇) = ü = ffuv̇

2

d

dt

(
f2v̇
)

= 0

and we know γ(t) = (u(t), v(t)) is constant speed so

u̇2 + f2v̇2 = constant (non-zero)

Up to now this was for any geodesic on surface of revolution.
Parallels: u = u0 = constant

=⇒ u̇ = 0 v̇ =
const.
f(u0)

2nd geodesic equation automatically holds.
1st geodesic equation holds exactly if

fu|u0
= 0
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γ

θ

Consider a curve γ(t) on our surface of revolution making angle θ with the parallel of radius ρ(= f)

Claim (Clairout’s Relation). If γ is a geodesic, then ρ cos θ is constant along γ

Proof. As usual, if γ(t) = σ(u(t), v(t)) and γ̇(t) = σuu̇+σv v̇ and note that the tangent vector
to the parallel is σv, then we know (cf discussion of angles wrt FFF)

cos θ =
〈σv, σuu̇+ σv v̇

‖σv‖ · ‖σuu̇+ σv v̇‖

and if γ is parametrised by arc-length then

‖σuu̇+ σv v̇‖ = 1

so (using F = 0 and G = f2 in our case)

cos θ = |f(u)v̇| = ρv̇

2nd geodesic equation ( d
dtf

2v̇ = 0)

=⇒ ρ cos θ is constant
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Example. Ellipsoid of revolution:

Observe: usually for a surface of revolution we take η in the xz-plane away from the z-axis (f > 0)
But in fact we can allow η to meet the z axis orthogonally as in the ellipsoid (or for a sphere) [Or,
remove the 2 poles]

γ

θ0

ρ cos θ is constant along geodesic γ
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Example (continued). If we meet ρ0-parallel at angle θ0, and suppose γ is not a meridian, so
θ0 ∈ [0, π/2), so

ρ cos θ constant =⇒ ρ bounded below

Geodesic that isn’t meridian is trapped between parallels coming from bound on ρ.
When we can�say global things about geodesics, because we can’t solve the equations, there’s an
important local existence theory.
Recall Picard’s theorem

I = [t0 − a, t0 + a] ⊂ R

B = {x : ‖x− x0‖ ≤ b} ⊂ Rn

and f : I ×B → Rn continuous and Lipchitz in 2nd variable

‖f(t, x1)− f(t, x2)‖ ≤ N‖x1 − x2‖

Then
dx

dt
= f)t, x), x(t0) = x0

has a unique solution for some interval |t− t0| < h (e.g. for h = min{a, b/s), s = sup ‖f‖)

Note. If f is smooth, then the solution depends smoothly on the initial consition (and is smooth)
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Our setting: recall
d

dt
(Eu̇+ F v̇) =

1

2

(
Euu̇

2 + 2Fuu̇v̇ +Guv̇
2
)

d

dt
(Fu̇+Gv̇) =

1

2

(
Evu̇

2 + 2Fvu̇v̇ +Gv v̇
2
)

i.e. [
E F
F G

] [
ü
v̈

]
=
[
. . .
]

M →M−1 is smooth in GL(2,R)→ GL(2,R) so the geodesic equations are

ü = A(u, v, u̇, v̇)

ü = B(u, v, u̇, v̇)

for smooth A,B. We introduce p = u̇, q = v̇ and rewrite as

u̇ = p

v̇ = q

ṗ = A(u, v, p, q)

q̇ = B(u, v, p, q)

so Picard’s theorem applies, noting since A,B smooth, a local bound on ‖DA and ‖DB‖ will give us
the required Lipschitz condition

Corollary. Let Σ be a smooth surface in R3. For p ∈ Σ and 0 6= v ∈ TpΣ, there is some ε > 0 and a
geodesic

γ : [0, ε)→ Σ

s.t. γ(0) = p, γ̇(0) = v. Moreover, γ depends smoothly on the initial condition (p, v).

The local existence of geodesics gives rise to parametrisations of Σ with nice properties.
Fix p ∈ Σ and consider a geodesic arc γ starting at p and parametrised by arc-length

p

γ

For t > 0, small, let γi be the geodesic s.t.

γt(0) = γ(t)

γ′t(0) is orthogonal to γ′(t), γt parametrised by arc-length.
Define σ(u, v) = γv(u) defined for u ∈ [0, ε), v ∈ [0, δ)
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Lemma. For ε, δ sufficiently small, σ defines an allowable parametrisation of an open set in Σ (taking
interior of domain)

Proof. Smoothness of σ is immediate from our note/ last line in Picard’s theorem.
At (0, 0), σu, σv are orthogonal by construction so they are linearly independent for ε, δ
sufficiently small.
SoDσ has rank 2 and (shrinking set if necessary) σ is injective and parametrisation is allowable

Corollary. Any smooth surface Σ in R3 admits local parametrisations for which the FFF is of shape

du2 +G(u, v) dv2

i.e. E = 1, F = 0

Proof. We’ll consider this parametrisation σ(u, v) = γv(u). If we fix v0, the curve u 7→ γv0
(u)

is a geodesic parametrised by arc-length so

E = 〈σu, σu〉 = 1

Also, one of the geodesic equations

d

dt
(Fu̇+Gv̇) =

1

2
(Evu̇

2 + 2Fvu̇v̇ +Gv v̇
2)

and again consider v = v0, u(t) = t.
We get d

dy (F ) = 0 or equivalently

Fuu̇ = 0 =⇒ Fu = 0

so F is independent of u. But when u = 0, then (by construction of γv as orthogonal to γ at
γ(v)), we see F = 0. so F = 0 everywhere

Remark. Co-ordinates built this way are sometimes called “geodesic normal co-ordinates”

p

γ
Fix v, vary u: geodesics

u fixed, varying v: Typically NOT a geodesic
(except u = 0 i.e. γ itself)
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Remark. In these co-ordinates
(i) G(0, v) = 1
(ii) Gu(0, v) = 0

(i) holds because σv has length 1 at u = 0
(ii) holds because u = 0 is a geodesic with arc-length parametrisation and

d

dt
(Eu̇+ F v̇) =

1

2
(Euu̇

2 + 2Fuu̇v̇ +Guv̇
2)

which becomes
0 =

1

2
Gu(0, v)

Remark. In ES3, we show that for a smooth surface in R3 with allowable parametrisation s.t.
E = 1, F = 0, have

κ = −
√
Guu√
G

If Σ is in R3 and a : R3 → R3 is just a dilation (x, y, z) 7→ (ax, ay, az), then

κa(Σ) =
1

a2
κΣ

(the coeffs E,F,G rescale by a2, and L,N,M by a, c.f. our computation for spheres of radii R for
different R)

Question: what do constant curvature surfaces look like?
By dilating, it suffices to understand surfaces of constant curvature 1,−1, 0
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Prop. Let Σ be a smooth surface in R3

(i) If κΣ ≡ 0, then Σ is locally isometric to (R2, du2 + dv2)
(ii) If κΣ ≡ 1, then Σ is locally isometric to (S2, du2 + cos2(u) dv2)

Proof. We know Σ admits an allowable parametrisation with E = 1, F = (so κ =
−
√
Guu/

√
G) and s.t.

G(0, v) = 1

Gu(0, v) = 0

If κ = 0, we get √
Guu = 0

so
√
Guu = A(v)u+B(v) and our “boundary conditions” on G show

B(v) ≡ 1, A(v) ≡ 0

Then the FFF is du2 + dv2.
κ = +1,

√
Guu +

√
G = 0

so √
G = A(v) sinu+B(v) cosu

Now boundary conditions show
A(v) ≡ 0, B(v) ≡ 1

so FFF du2 + cos2(u) dv2. In parametrisation

σ(u, v) = (cosu cos v, cosu sin v, sinu)

this was the FFF of the round unit sphere

Remark. If κ = −1, and we do the same thing, we’ll get FFF: du2 + cosh2(u) dv2, which we might
not recognise from any smooth surface in R3

• we can look for one (“tractoid”)
• we can widen our imagination and let go of R3

Remark. In fact, the change of variables

V = ev tanhu

W = ev sechu

turns du2 + cosh2(u) dv2 into dV 2+ dW 2

W 2 which is a “standard” presentation of the FFF of the “hyper-
bolic plane”
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Definition. Let V ⊂ R3 be an open set. An (abstract) Riemannian metric on V is a smooth
map

V → {positive-definitite symmetric bilinear forms} ⊂ R4

v 7→
[
E(v) F (v)
F (v) G(v)

]
s.t. E > 0, G > 0, EG− F 2 > 0

p

v

V

R2

If v is a vector at p ∈ V

‖v‖2E(p) F (p)
F (p) G(p)

 = vt
[
E(p) F (p)
F (p) G(p)

]
v

and if γ : [a, b]→ V is smooth

Length(γ) =

∫ b

a

(Eu̇2 + 2Fu̇v̇ +Gv̇2)1/2 dt

where γ(t) = (u(t), v(t)) : [a, b]→ V
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Definition. Let Σ be an abstract smooth surface, so Σ =
⋃
i∈I Ui, Ui ⊂ Σ and

ϕi : Ui → Vi ⊂ R2

a homeomorphism and s.t. the transition maps

ϕiϕ
−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj)

is smooth ∀i, j
A Riemannian metric on Σ, usually called g or ds2, is a choice of Riemannian metric on each Vi
which are compatible in the following sense:

Σ

U

Ũ

σ

Vi

Ṽi

σ̃

f

f : σ̃−1 ◦ σ transition map

ϕΣ ϕ̃Σ

Require:

(df)t
[
Ẽ F̃

F̃ G̃

]
df =

[
E F
F G

]
(†)

so df defines an isometry from an open set in the chart (U,ϕ(U) = V ) to one in (Ũ , ϕ(Ũ) = Ṽ )
c.f. (†) was the transformation law for FFF
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Example. Recall the torus T 2 = R2/Z2 =

We exhibited an atlas of charts for whcih the transition maps were restrictions of translations of open
subsets of R2.
Equip each Vi ⊂ R2 (image of such a chart) with the Euclidean metric du2 + dv2 i.e. the map
Vi → {+ve def. s.b.f} is constant at I.
If f is a translation, Df = Identity and

(Df)tI(Df) = I (†)

holds trivially.
So T 2 inherits a global Riemannian metric which is flat (everywhere locally isometric to R2).
Contrast:
For a torus in R3 e.g. our torus of revolution, we know there is an elliptic point (it’s compact and
smooth in R3).
So the (abstract) flat Riemannian metric is not the induced metric from any embedding of T 2 as a
smooth surface in R3

Example. The real projective plane RP2 admits a Riemannian metric with constant curvature +1.
Indeed, we built a smooth atlas for RP2 with charts of the form (U,ϕ) where U = qÛ , q : S2 → RP2

quotient map, Û ⊂ S2 small enough such that Û ⊂ (open hemisphere), and ϕ : U → V ⊂ R2 was
ϕ̂ ◦ q−1|U ϕ̂ : Û → V chart on S2.
Transition maps for this atlas were all the identity or induced from the antipodal map of S2.
But a : S2 → S2 (antipodal) is an isometry so both transition maps preserve usual round metric on
S2

Example. In ES1, we considered the Klein bottle

Whcih has a smooth atlas s.t. all transition maps are translations or reflections.
These preserve the usual flat metric on R2, so Klein bottle inherits a flat Riemannian metric.
(Note: RP2, Klein do NOTE embed in R3 so we had no “non-abstract” construction of Riemannian
metrics on these)
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Definition. If (Σ1, g1) and (Σ2, g2) are abstract smooth surfaces with Riemannian metrics gi on Σi,
then a diffeomorphism

f : Σ1 → Σ2

is an isometry if it preserved the lengths of all cruves

Example. If (Σ2, g2) is given and f : Σ1 → Σ2 is a diffeomorphism, we can equiv Σ1 with a metric
(called the pullbac metric f∗g2 = g1) s.t. f becomes an isometry.
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Prop. Given a Riemannian metric g on a connected abstract smooth surface Σ, define the length
metric

dg(p, q) = inf
γ
L(γ)

where γ varies over piecewise smooth paths in Σ from p to q, and L(γ) is computed using g. Then
(i) dg is a metric (in the sense of metric spaces) on Σ, and
(ii) dg induces the given topology on Σ

Proof. Σ is path-connected so ∃ some piecewise smooth path from p to q so dg(p, q) <∞ ∀p, q

Σ

p

q

Take some continuous path from p to q and a finite set of charts (Ui, ϕi) with associated
parametrisations σi = ϕ−1

i : Vi → Ui ⊂ Σ s.t. path ⊂
⋃N
i=1 0i.

Now pick points

x0 = p ∈ U1

x1 ∈ U1 ∩ U2

x2 ∈ U2 ∩ U3

...
xN−1 = q ∈ UN−1 ∩ UN

and smooth paths in Vi from ϕi(xi) to ϕi+1(xi+1).
Since our atlas is smooth, being a smooth path in some Ui is the same as being smooth in
Ui+1 whenever Ui ∩ Ui+1 6= ∅, as the transition maps are smooth.
So indeed p, q ∈ Σ are joined by some piecewise smooth path. We can reverse paths:

p

q
γ

We also have:

p

q

γ−1
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Proof (continued). and we can concatenate:

p

q
γ

rγ̃

then we have γ̃ ◦ γ : [0, 1]→ Σ from p to r.
Reversl and concatenation n class of piecewise smooth paths implies

dg(p, q) = dg(q, p)

and
dg(p, r) ≤ dg(p, q) + dg(q, r)

remaining dg(p, q) = 0 =⇒ p = 1 (converse is obvious)

p
ϕ(p)

f

R2

V = ϕ(U)Σ

Take p ∈ Σ and fix chart (U,ϕ) at p. W.l.o.g. suppose V = B(0, 1) ⊂ R2, with ϕ(p) = 0. If
q 6= p ∈ Σ, ∃ε > 0 s.t. q 6∈ ϕ−1(B(0, ε)).
Suppose γ : [0, 1]→ Σ is a piecewise smooth path from p to q.

p

φ−1
(
B(0, ε)

)

q
γ

Certainly γ must escape ϕ−1(B(0, ε)) 3 p. By ∆-inequality, suffices to show ∃δ > 0 s.t. dg(p, q) ≥ δ

whenever r ∈ Boundary(ϕ−1(B(0, ε))) = ϕ−1({circle radius ε in R2}).

Data of Riemannian metric g on Σ includes
[
Ez Fz
Fz Gz

]
for z ∈ B(0, ε) ⊂ V .

Also have usual Euclidean inner product[
1 0
0 1

]
∀z ∈ B(0, ε) ⊂ V
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Proof (continued). So ∀z ∈ B(0, ε) we have 2 positive definite inner products, and B(0, ε) is compact
so ∃δ > 0 s.t. [

Ez − δ Fz
Fz Gz − δ

]
still +ve definite ∀z ∈ B(0, ε)

(i.e. EF −G2 > 0 ∀z ∈ B(0, ε) so bounded below by something positive).
So Lengthg(γ̂) ≥ Lengthδ·euclidean(γ̂) (†)
for any γ̂ contained in B(0, ε). So taking γ̂ = ϕ[γ∩ϕ−1(B(0, ε))] (part of γ in B(0, ε) w.r.t. our chart
).
(†) has RHS ≥ δε so dg(p, q) ≥ δε

Remark. We’ve proved (i), we should think why the last step of the argument, comparing the inner

products
[
E F
F G

]
associated to g with Euclidean inner products, also gives (ii) i.e. dg-metric topology

is the one we have from Σ being locally homeomorphic to R2

Definition. We define an abstract Riemanian metric on the disc

D = B(0, 1) = {z ∈ C : |z| < 1}

by

ghyp =
4(du2 + dv2)

(1− u2 − v2)2

=
4|dz|2

(1− |z|2)2

I.e. if γ : [0, 1]→ D is smooth,

Lghyp
(γ) = 2

∫ 1

0

|γ̇(t)|
1− |γ(t)|2

dt

and if γ(t) = (u(t), v(t))

L(γ) = 2

∫ 1

0

(u̇(t)2 + v̇(t)2)1/2

q − u(t)2 − v(t)2
dt

(c.f. a FFF with

E = G =
4

(1− u2 − v2)2
, F = 0

but there is no embedding in R3 in the background).
The flat metric on R2 and the round metric on S2 both have large (transitive) isometry groups.

Recall the Möbius group

Möb = {z 7→ az + b

cz + d
:

[
a b
c d

]
∈ GL(2,C)}

acts on C ∪ {∞}
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Lemma.

Möb = {T ∈ Möb : T (D) = D}

= {z 7→ eiθ
z − a
1− āz

: |a| < 1}

= {
[
a b
b̄ ā

]
∈ Möb : |a|2 − |b|2 = 1}

Proof. ∣∣∣∣ z − a1− āz

∣∣∣∣ = 1 ⇐⇒ (z − a)(z̄ − ā) = (1− āz)(1− az̄)

⇐⇒ zz̄ − az̄ − āz + aā = 1− az̄ − āz + aāzz̄

⇐⇒ |z|2(1− |a|2) = 1− |a|2

⇐⇒ |z| = 1

So z 7→ eiθ z−a1−āz does preserve |z| = 1 and sends 0 ∈ D to a ∈ D. So preserves disc

Lemma. The Riemannian metric ghyp = 4|dz|2
(1−|z|2)2 is invariant under Möb(D), i.e. it acts by hyper-

bolic isometries.

Proof. Möb(D) is generated by eiθz and z 7→ z−a
1−āz , |a| < 1. The first (rotations) clearly

preserve ghyp.
For second type, let w = z−a

1−āz so

dw =
dz

1− z̄z
+

z − a
(1− āz)2

ā dz

=
dz

(1− āz)2
(1− |a|2)

Then

|dw
1− |w|2

=
|dz|

|1− āz|2
(1− |a|2)(

1−
∣∣∣ z−a1−āz

∣∣∣2)
=

|dz|(1− |a|2)

|1− āz|2 − |z − a|2

=
|dz|

1− |z|2

so done
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Lemma. (i) Every pair of points in (D, ghyp) is joined by a unique geodesic (up to reparametri-
sation)

(ii) The geodesics are diameters of the disc and circular arcs orthogonal to ∂D

geodesics in the hyperbolic disc

The whole geodesics (i.e. the ones that are defined on R) are called hyperbolic lines

Proof.

0
a

γ

Let a ∈ R+ ∩D and γ a smooth path from 0 ∈ D to a. Say γ(t) = (u(t), v(t)) and note that
Re(γ)(t) = (u(t), 0) is also a smooth path from 0 to a

L(γ) =

∫ 1

0

2|γ̇(t)|
1− |γ(t)|2

dt

=

∫ 1

0

2
√
u̇2 + v̇2

1− u2 − v2
dt

≥
∫ 1

0

2|u̇(t)|
1− u2

dt

≥
∫ 1

0

2u̇(t)

1− u(t)2
dt

With equalities ⇐⇒ v̇ ≡ 0 ⇐⇒ v ≡ 0 and equality ⇐⇒ u is monotonic.
So the arc of the diameter (parametrised monotonically) is globally length-minimised among
all paths from 0 to a, and hence a geodesic.
Indeed L(diameter arc) = 2 tanh−1(a).
Now 0 and a ∈ R+ ∩D are joined by a unique geodesic and Möb(D) acts transitively and can
be used to send any p, q ∈ D to 0, a ∈ R+ ∩D.
Since isometries send geodesics to geodesics, every p, q ∈ D is joined by one geodesic.
And Möbius maps send circles to circles, and preserve angles and hence orthogonality to ∂D.
This impies our description of geodesics
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Corollary. If p, q ∈ D, then

dhyp(p, q) = 2 tanh−1

∣∣∣∣ p− q1− p̄q

∣∣∣∣
Definition. The hyperbolic upper half-plane (h, ghyp) is the set

h = {z ∈ C : Im(z) > 0}

with the abstrat Riemannian metric dx2+ dy2

y2 (or |dz|2
Im(z)2 )

Lemma. The (D2, ghyp) and (h, ghyp) are isometric

Proof. We have maps
h→T D D → h

w 7→ w − i
w + i

z 7→ i

(
1− z
1 + z

)
whcih are inverse diffeomorphisms (compare to ES4).
If w ∈ h, let T (w) = w−i

w+i ∈ D. Then

T ′(w) =
1

w + i
− w − i

(w + i)2
=

2i

(1 + i)2

Considering T (w) = z ∈ D

|dz|
1− |z|2

=
|d(Tw)

1− |T (w)|2
=
|T ′(w)| · |dw|

1− |Tw|2

=
2|dw|

|w + i|2
(

1−
∣∣∣w−iw+i

∣∣∣2) =
|dw|

2Im(w)

i.e. 4|dz|2
(1−|z|2)2 is the metric obtained under pullback by T from |dw|

Im(w)

Corollary. In (h, ghyp), every pair of points is joined by a unique geodesic, and the geodesics are
vertical straight lines and semi-circles centered on R

h

Proof. Our isometry h→ D is given my a Möbius map sending R∪{∞} → ∂D, and Möbius
maps preserve circles and orthogonality
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Remarks.
(i) Wehn we discussed surfaces in R3 with constant Gauss curvature, we saw that if something had

κ = −1, its FFF in geodesic normal co-ordinates was du2 + cosh2(u) dv2 and there is a change
of variables taking that to dV 2+dW 2

W 2 (= ghyp on h)
Gauss’ theorema egregium implies Gauss curvature makes sense for an abstract Riemannian
metric (lengths, areas angles do; so do geodesics, and hence so do co-ordinate systems letting
us express/ define κ)
So h has constant curvature −1

(ii) Suppose we looked for a metric
d : D ×D → R≥0

on D2 with the properties
• Möb(D)-invariant:

d(Tx, Ty) = d(x, y) ∀T ∈ Möb(D)

• R ∩D to be length-minimising
Möb(D)-invariance means that d is completely determined by d(0, a)for a ∈ R+ ∩ F . Call this
p(a).
If R+ ∩D is “length-minimising”, distance along it should be additive, so if 0 < a < b < 1,

d(0, a) + d(a, b) = d(0, b)

i.e.
p(a) + p(

b− a
1− ab

) = p(b)

If we furthermore suppose p is differentiable and differentiate w.r.t. b and set b = a,

p′(A) =
p′(a)

1− a2

i.e. p(a) = const.tanh−1(a).
So up to scale, length metric associated to ghyp onD is the only metric with these nice properties.
The scale is chosen to make κ ≡ −1 (and not −c for some other c > 0)

We would like to understand the full isometry group of (D, ghyp) or (h, ghyp) The result is we need
to add “reflections” in hyperbolic lines, called inversions
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Definition. Let Γ ⊂ Ĉ be a circle or line. We say points z, z′ ∈ Ĉ are inverse for Γ if every circle
through z and orthogonal to Γ also passes through z′

Γ

z

z′

Lemma. For every circle Γ ⊂ C and z ∈ C, there is a unique inverse point w.r.t. Γ for z

Proof. Recall Möbius maps send circles (in Ĉ) to circles and preserve angles. So if z, z′ are
inverse for Γ, and Γ ∈ Möb, then Tz and Tz′ are inverse for T (Γ).
If Γ = R∪ {∞}, then Jz = z̄ gives inverse points (i.e. this map satisfies the requirements and
is unique such).
Now if Γ ⊆ Ĉ is any circle, ∃T ∈ Möb s.t.

T (R ∪ {∞}) = Γ

Define inversion in Γ by
JΓ : z 7→ T (conj.)T−1(z)

This works!

Definition. The map z 7→ JΓ(z) sending z to the unique inverse point z′ for z w.r.t. Γ is called
inversion in Γ.
(This fixes all points of Γ and exchanges the two complementary regions)

Examples. (i) If Γ is a straight line (circle in Ĉ through ∞ ∈ Ĉ), JΓ is reflection in Γ
(ii) If S1 = {|z| = 1}

JS1 : z 7→ 1

z̄
(0 7→ ∞)

(cf. ES4)
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Remark. A composition of two inversions is a Möbius map. Let C : z 7→ z̄ be inversion in R ∪ {∞}
so if Γ is any circle,

JΓ = T ◦ C ◦ T−1 (*)

where T (R ∪ {∞}) = Γ. Now given Γ1 and Γ2 circles, and Ti takes R ∪ {∞} to Γi, then

JΓ1
◦ JΓ2

= (JΓ1
◦ C) ◦ (C ◦ JΓ2

)

= (C ◦ JΓ1
)−1 ◦ (C ◦ JΓ2

)

and
C ◦ JΓ = C ◦ T ◦ C ◦ T−1

by (*). So STP C ◦ T ◦ C ∈ Möb. But if T (z) = az+b
cz+d

C ◦ T ◦ C : z 7→ āz + b̄

c̄z + d̄
∈ Möb

Lemma. An orientation preserving isometry of (H2, ghyp) is an element of Möb(H) where

H = D or h

The full isometry group is generated by inversions in hyperbolic lines (circles ⊥ to ∂H)

Proof. Suffices to prove this in either model.
In D, inversion in R ∩D, i.e. conjugation, preserves

ghyp =
4|dz|2

(1− |z|2)2

Now Möb(H) acts transitively on geodesics and its acting by isometries, so all inversions in
hyperbolic lines are isometries.
Now suppose α ∈ Isom(D, ghyp) is some isometry of the hyperbolic disc. a := α(0) ∈ D and
using z 7→ z−a

1−āz , ∃T ∈ Möb(D) s.t. R ◦ T ◦ α sends D ∩ R+ to itself.

0

T ◦ α(R+ ∩D)

Composing with C and if necessry, ∃A ∈ Isom(D) of the form (inversion)◦(Möbius) s.t. A ◦α
fixes R ∩D pointwise & and fixes iR ∩D pointwise (unique geodesic through 0 ⊥ to R ∩D).
Now A ◦ α =id, so α = A−1. If α preserved orientation and fixed R ∩D, it necessarily fixed
iR ∩D pointwise and so in fact α = (R ◦ T )−1 ∈ Möb.
In general, α ∈ 〈 Möb(H), inversions in hyperbolic geodesics〉 and we saw compositions of 2
inversions are Möbius maps, and in fact every Möbius map is a product of inversions (cf ES4)
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Remark. In upper half-plane model

Möb(h) = PSL(2,R)

= {z 7→ az + b

cz + d
:

[
a b
c d

]
∈ GL(2,R)}

and
dhyp(a, b) = 2 tanh−1

∣∣∣∣b− ab− ā

∣∣∣∣
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Definition. Let α ∈ Isom+(H) = Möb(H) orientation preserving isometries. Suppose α 6= id. We
say α is

• Elliptic if α fixes p ∈ H

• Parabolic if α fixes a unique point of ∂H

(If p =∞ ∈ h, then α : z 7→ z + t)
• Hyperbolic if α fixes 2 points on ∂H

p2

p1

α fixes this setwise

Exercise: All elements of Möb(H) falls into one of these 3 cases
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Definition. Let l, l′ be hyperbolic lines. We say l, l′ are
(i) Parallel if they meet in ∂H but not in H
(ii) Ultraparallel if they do not meet in H ∪ ∂H
(iii) Intersecting if they meet in H

intersecting parallel ultra-parallel

Exercise (cf ES4): What is JΓ1
◦ JΓ2

where {Γ1,Γ2} are in the 3 cases?

Remark. The parallel postulate fails!

Definition. A hyperbolic triangle is the region bound by 3 hyperbolic lines, no two of which are
ultraparallel

Vertices lying at infinity (on ∂H) are called ideal vertices

Note. Remember points of ∂H are NOT in the hyperbolic plane
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Consider a hyperbolic triangle

A

B

C
α

βγ

We take a triangle in H2 with hyperbolic side lengths A,B,C and opposite angles α, β, γ

Note. The hyperbolic metric ghyp was

du2 + dv2

(1− u2 − v2)2
with E = G, F = 0

So this is conformal: angles computed w.r.t.ghyp agree with Euclidean angles
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Equation (Hyperbolic cosine formula).

coshC = coshA coshB − sinhA sinhB cos γ

Proof. To singulify, by an isometry, put vertex of angle γ at 0 ∈ D and put the vertex of
angle β on R+ ∩D

A

γ

0
a

b

C

dhyp(0, a) = 2 tanh−1(a)

i.e. a = tanh A
2 and b = eiγ tanh

(
B
2

)
and∣∣∣∣ b− a1− āb

∣∣∣∣ = tanh

(
C

2

)
If t = tanh(λ/2), “recall”

cosh(λ) =
1 + t2

1− t2

sinh(λ) =
2t

1− t2

So

cosh(A) =
1 + |a|2

1− |a|2

cosh(B) =
1 + |b|2

1− |b|2

and

coshC =
|1− āb|2 + |b− a|2

|1− āb|2 − |b− a|2

=
(1 + |a|2)(1 + |b|2)− 2(āb+ ab̄)

(1− |a|2)(1− |b|2)

but a ∈ R and b+ b̄ = 2Re(b) = 2b cos γ. Using that

coshC = coshA coshB − sinhA sinhB cos γ

as required
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Remarks.
(i) If A,B,C small, and

sinhA ≈ A

coshA ≈ 1 +
A2

2

then formula reuces to
C2 = A2 +B2 − 2AB cos γ

(up to higher order terms), Euclidean cosine formula.
Recall dilating a surface in R3 rescaled its curvature. Zooming in to any point on an abstract
smooth surface with a Riemannian metric, the surface looks closer and closer to being flat

(ii) cos γ ≥ −1 so formula says

coshC ≤ coshA coshB + sinhA sinhB

= cosh(A+B)

and cosh increasing so C ≤ A+B which is the triangle inequality for ghyp. (We already know
the triangle inequality holds for any length metric, but our formula refines it)
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2.1 Area of Triangles

Claim. Let T ⊂ H2 be a hyperbolic triangle with internal angles α, β, γ

Areahyp(T ) = π − α− β − γ

(this is a version of Gauss-Bonnet)

Proof. Möb(H2) acts transitively on triples of points in the boundary with the correct cyclic
order. In particular, ∃ a unique ideal triangle (all 3 vertices at infinity) up to isometry.
Consider:

T

−1 1

Areahyp(T ) =

∫ 1

−1

∫ ∞
√

1−x2

1

y2
dy dx

noting
√
EG− F 2 = 1

y2 . So

Area(T ) =

∫ 1

−1

dx√
1− x2

= π

Let A(α) be the area of a triangle with angles 0, 0, α

αα′

A(α) is decreasing in α, and clearly continuous in α.
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Proof (continued).

α

β

A(α) +A(β) = A(α+ β) + π

Set F (α) = π −A)α), this says
F (α) + F (β) = F (α+ β)

and F is continuous and increasing so F (α) = λα for some λ ∈ R+

=⇒ A(α) = π − λα

απ − α

This picture shows
A(α) +A(π − α) = π =⇒ λ = 1

General case:

A B

C

α

βγ

A′

B′

C ′

Now
ABC +A′CB′ +A′B′C ′ = AB′C ′ +A′BC ′

where ABC stands for Areahyp(triangle with vertices A,B,C)

=⇒ ABC + π − (π − γ) + π = (π − α) + (π − β)

which rearranges to what we want
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Note. We allow R to have ideal vertices, i.e. ones at infinity (on ∂H) then the internal angle is zero

If G is a hyperbolic n-gon, i.e. region bound by n hyperbolic geodesics:

then Area(G) is

(n− 2)π −
n∑
i=1

αi

where {αi} are the internal angles. (See this by cutting G into hyperbolic triangles. Recall any two
points in H2 are joined by a unique geodesic)
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Lemma. If g ≥ 2, there is a regular 4g-gon in H2 with internal angle

2π

4g
=

π

2g

Proof.

Take an ideal 4g-gon in D2, with all vertices at ∂D, being the 4g-th roots of unity. Slide
all-vertices radially inwards

This gives a continuous family of regular 4g-gons, and their areas vary monotonically from
(4g− 2)π to 0. The interval angle varies continuously from 0 to βmin s.t. (4g− 2)π = 4gβmin,
and

π

2g
∈ (0, βmin)
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Theorem. For each g ≥ 2, ∃ an abstract Riemannian metric on the compact surface of genus g with
curvature κ ≡ −1 (locally isometricto H2). Recall:

g = 3

genus g =number of holes

g = 0

g = 1

round sphere

κ ≡ 1

= R2/Z2

torus with κ ≡ 0

Proof. Recall

∼=

and
ad−1

c−1

d

c b−1

a−1

b

∼=
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Proof (continued). Analagously, a 4g-gon with side labels

a1, b1, a
−1
1 , b−1

1 , a2, b2, a
−1
2 , b−1

2 , . . . , ag, bg, a
−1
g , b−1

g

would give on gluing an orientable compact surface of genus g. Observation: let’s say a flag comprises
(i) an oriented hyperbolic line
(ii) a point on that line
(iii) a choice of side to the line
Given 2 such, there is a hyperbolic isometry taking one to the other. (We can “swap sides” using
inversions)

Take our regular 4g-gon with internal angle π/2g. For each paired set of 2 edges, there is a hyperbolic
isometry taking one to the other (respecting orientations) and taking the “inside” of polygon at e1 to
the “outside” at its twin e2.
Now we’ll give an atlas Σg as follows:

• if p ∈ interior(Polygon), just take a small disc contained in interior(P ) and include it into
D (⊆ R2)

• if p ∈ edge(P ), say e1, and p̂ ∈ e2 on the paired edge, we have an isometry γ from e1 to e2

exchanging sides (as above)

Ũ

U

γ

p̂p [p] = [p̂] ∈ Σ = (Polygon)/ ∼

Define U ∪ Ũ → D (hyperbolic disc) to be inclusion on U and γ on Ũ . These descend to maps
on

[U ] ⊆ Σ, [Ũ ] ⊂ Σ

which agree on the set [U ∩ Ũ ] (projection to Σg)
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Proof (continued). • In our gluing pattern, all 4g vertices are identified to one point of Σg and
we want a chart there.
Imaging putting a vertex of P at 0 ∈ D

v ∈ P
e

f

v̂

Condition that internal angles sum to 2π means that we have a neighboughood of [v] ∈ Σg

Define chart at [v] ∈ Σ this way all our charts are obtained either from inclusion into D, or the
composite of inclusion and some hyperbolic isometry. So the transition maps are hyperbolic
isometries (so smooth)
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Remark.

∼= R2/Z2T 2 =

The second description was especially helpful for seeing the flat metric.
In fact, for Σg, we picked 2g hyperbolic isometries (which paired sides) so we have a group

Γ = 〈γ1, . . . , γ2g〉 ⊆ Isom(H)

Part II Algebraic topology will construct

Σf = H/Γ

A variant construction: we have another construction of metrics on Σg (g ≥ 2) which starts from
polygons but is “more flexible”.
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Lemma. For each lα, lβ , lγ ∈ R>0 there is a right-angled hyperbolic hexagon with side lengths

lα, ?, lβ , ?, lγ , ?

Proof.

Take a pair of ultraparallel hyperbolic lines. ES4: ∃ a unique common perpendicular
geodesic. Given lα > 0 and lβ > 0, we shoot off new geodesics orthogonal to the originals
having travelled lα, lβ from the common perpendicular. In fact, given t > 0, ∃ an original
ultraparallel pair distance exactly t apart.

t

lα

lβ

If t >> 0, the new geodesics will also be ultraparallel.
∃ a threshold value t0, by continuity when the new geodesics first become parallel:

t0

lα

lβ

σ
σ̃
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Proof (continued). Now consider t ∈ (t0,∞). Then σ, σ̃ are ultraparallel, so they have a unique
common perpendicular. As we increase t, the length of that increases monotonically, so ∃ a value of
t > t0 s.t. the new common ⊥r has length lγ

t

lα

lβ

lγ

This is our right-angled hexagon

Definition. A pair of pants is any topological space homeomorphic to the complement of 3 open
discs in S2

Pair of pants (a surface with boundary)

lα lβ

lγ

tαβ

tγα
tβγ

lα lβ

lγ

tαβ

tγα
tβγ
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We take 2 copies of the (lα, lβ , lγ) hexagon. The original configuration of 2 ultraparallel geodesics
distance t apart is unique upt oisometry (exercise). So our hexagon is unique.
We glue this pair of polygons as indicated
Since hexagon was right-angled, in the end we get a “hyperbolic” pair of pants

2lα 2lβ

2lγ

tαβ

tγα tβγ

p

the boundary circles are geodesics in the sense that for any point on such, the local neighbourhood
is like

p
⊆ H
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Remark. Using pairs-of-pants, we also obtain hyperbolic metrics on compact surfaces.
If P1 and P2 are two hyperbolic “surfaces” with geodesic boundary circles and if γ1 ⊆ P1 and γ2 ⊆ P2

are boundary circles of the same hyperbolic length, then

P1 ∪γ1∼γ2 P2

inherits a hyperbolic metric where we glue by an isometry of γ1 and γ2

γ1

γ2

P1
P2

If l(γ1) = l(γ1) (length in the hyperbolic metrics on Pi), then P1∪γ1∼γ2 is hyperbolic

γ1 = γ2

Open neighbourhood looks like a disc in H since P was hyperbolic
At p ∈ γ1 ∼ γ2 we get a chart to a small disc in H using that the boundary circles were geodesic (cf
charts near points p ∈ edge(Q) for a hyperbolic polygon Q with side identifications).
Now every compact surface of genus g ≥ 2 can be built from pairs of pants

P1

P2

P1
P2
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Remark (continued). For g = 3:

P1
P2

P3 P4

P1

P2
P3

P4

These are topological piictures, but we can use them as guides for gluing pairs-of-pants along common-
length boundaries

Notes. We have many choices here
(i) lengths of circles coming from hyperbolic hexagons
(ii) Topologically different “pants” decompositions

Recall:
(i) In a spherical triangle with internal angles α, β, γ, we saw in ES2 area α + β + γ − π whilst a

hyperbolic triangle with internal angles α, β, γ had area π − α− β − γ
(ii) We also saw a convex Gauss-Bonnet theorem∫

Σ

κdA = 4π

if Σ bounds a convex region in R3 and κΣ > 0
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Theorem (Local Gauss-Bonnet). Let Σ be an abstract smooth surface with abstract Riemannian
metric gΣ. Take a geodesic polygon R on Σ, i.e. a smooth disc whose boundary is decomposed into
finitely many geodesic arcs. Then∫

R⊆Σ

κΣ dA =

n∑
i=1

αi − (n− 2)π

where {αi} are the internal angles of the polygon R

γ1

γ3

γ2

R
Geodesic polygon

Not a geodesic polygon for our purposes

Theorem (Global Gauss-Bonnet). If Σ is a compact smooth surface with abstract Riemannian metric
gΣ ∫

Σ

κΣ dA = 2πχ(Σ)
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Remarks.
(i) Gauss curvature, area and dA can be defined just using an abstract Riemannian metric
(ii) For our hyperbolic surfaces

• We glued Σg from a regular 4g-gon with angules π/2g so then total area of Σ∫
Σ

1 dA = Area(Polygon)

= (4g − 2)π −
4g∑
1

π

2g

= (4g − 4)π

and
κΣ ≡ −1, χ(Σg) = 2− 2g

• A right-angled hyperbolic hexagon has area

4π −
6∑
1

π

2
= π

Each pair of pants has 2-such, and a genus g surfaces uses 2g− 2 pants. So again this fits.
(iii) Shows χ(Σ) doesn’t depend on choice of triangulation
(iv) Suppose Σ is a flat surface, so κΣ ≡ 0 and γ is a closed geodesic, i.e. γ : R → Σ is defined on

all ofR but ∃T > 0 s.t. γ(t+ T ) = γ(t) ∀t

image(γ)

Then γ cannot bound a (smooth) disc in Σ

S2

κ > 1

γ

If κΣ = 0, γ not geodesic
Indeed,

Local Gauss-Bonnet

0 =

∫
R

κΣ dA =

n∑
1

αi − (n− 2)π︸ ︷︷ ︸
2π

n = 2 =⇒ α1 = π = α2

Global Gauss-Bonnet is deduced from local Gauss-Bonnet
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Lemma. A compact smooth surface admits subdivisions into geodesic polygons
(cf “exponential map” in Part II)

Given that lemma, take a subdivision on Σ and apply local Gauss-Bonnet∑
Polygons

∫
P

κΣ dA =

∫
Σ

κΣ dA

∑
n

∑
P an n−gon

(
n∑
i=1

αi(P )− (n− 2)π

)
= 2πV + 2πF − 2πE = 2πχ(Σ)

where V,E, F are the numbers of vertices, edges and faces in the subdivision.
The local G-B theorem is ver closely related to Green’s theorem in the plane
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Non-examinable sketch of this:
Green’s theorem says
Take a region R ⊆ R2 bound by piecewise smooth curve γ and take P,Q : V → R smooth defined on
open set V ⊇ R, then ∫

γ

P du+Qdv =

∫
R

(Qu − Pv) dy dv

Consider a geodesic polygon on Σ lying wholly in the domain of a local parametrisation defined on
some open V ⊆ R2.
We’ll work with an orthonormal basis for R2 varying from point to point (“moving frames”). Specifi-
cally we take

e = σu

f =
σv√
G

where we use geodesic normal co-ordinates u, v (s.t. E = 1, F = 0, G = G(u, v)). So TpΣ =
SpanR(e, f) if p ∈ image(σ). We parametrise γ by arc-length and let

I :=

∫
γ

〈e, ḟ〉dt

ḟ = fuu̇+ fv v̇ so let P = 〈e, fu〉, Q = 〈e, fV 〉 then

Qv − Pv = 〈ev, fv〉 − 〈fu, ev〉+ 〈e, fuv〉 − 〈e, fuv〉
= 〈ev, fv〉 − 〈fu, ev〉

= −
√
Guu (ES3)

=κ
√
G but

√
G =

√
EG− F 2

= κdA

so ∫
R

(Qu − Pv) dudv =

∫
R

κΣ dA

Let θ(t) = angle between γ̇(t) and e(t) (function of t ∈ Domain(γ))
i.e. γ̇(t) = e cos θ(t) + f sin θ(t)

=⇒ γ̈(t) = ė cos θ + ḟ sin θ + ηθ̇

where η = −e sin θ + f cos θ. γ is a (piecewise smooth) geodesic so (if Σ ⊆ R3 was smooth in R3)
then γ̈⊥TpΣ = 〈e, f〉R−Span so

〈γ̈, η〉 = 0 (†)

Expand this:
〈ė cos θ + ḟ sin θ + ηθ̇,−e sin θ + f cos θ〉 = 0

But 〈e, e〉 = 1 = 〈f, f〉, 〈e, f〉 = 0
=⇒ 〈e, ė〉 = 0 = 〈f, ḟ〉

and
〈e, ḟ〉+ 〈ė, f〉 = 0

Then 〈γ̈, η〉 = 0 becomes θ̇ = 〈e, ḟ〉 so

I =

∫
γ

〈e, ḟ〉dt =

∫
γ

θ̇(t) dt

and ∫
γ

θ̇(t) dt = 2π −
∑

external angles of R

this is RHS of local Gauss-Bonnet.
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Remarks.
(i) For surfaces not in R3 need a little more technology
(ii) Green’s theorem suggests one should ask about non-geodesic polygons too

2.2 Back To The Torus

We built a flat metric on
T 2 = R2/Z2 = [0, 1]2/ ∼

The key to getting a smooth atlas s.t. the transition maps preserved geucl - Euclidian metric on R2 is
that we could identify sides by translation. So any parallelogramQ ⊆ R2 deifnes a flat metric gQ on T 2

v1

v2

0 0
v1

v2

Remark. If we make one vertex 0 ∈ R2 and label the edges by their endpoints v1, v2 then

(T 2, gQ) = R2/(Zv1⊕ Zv2)

where Zv1⊕ Zv2 is a subgroup of R2 of translations
Observation: AreagQ(T 2) = AreaEucl(Q)
So if two quadrilaterals Q1 and Q2 have different Euclidean area, then the associated metrics gQ1

and gQ2
on T 2 are not globally isometric
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Lemma.

Q = [0, 1]2

[0, 10]×
[
0, 1

10

]
= Q̂

The metrics gQ and gQ̂ are not isometric (both have total area 1)

Proof. Recall geodesics in flat T 2 are straight lines in a local isometry to R2

geodesic through p lifts to a straight arc

q−1(p)

p ∈ T 2
q

gQ

Picard: there is a unique geodesic through p in each possible direction.
We see in fact all geodescis through p are the images of straight lines in R2 through p̂.
Recall a closed geodesic is one defined on all of R and periodic (γ(t+ T ) = γ(t) ∀t and fixed
T > 0)
A geodesic in R2 through p̂ defines a closed geodesic on T 2 through p exactly if the line passes
through another lift of p, i.e. line has rational slope.
So the shortest closed geodesic on (T 2, gQ) is length 1.

p̂

But in gQ̂ corresponding to rectangle [0, 10]× [0, 1
10 ] ∃ a clearly closed geodesic of length 1/10
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We would like to understand all flat metrics on T 2; up to various notions of equivalence
• global dilation

expand
Q

λQ

λ ∈ R\{0}

• translation, isometries of Q ⊆ R2 lead to essentially the same geometry on (T 2, gQ).
Using this, gien a quadtilateral, we can put vertices at 0 ∈ R2, 1 ∈ R2, τ ∈ h upper-half plane and
final vertex is 1 = +τ

0 ∈ R2 1 ∈ R2

τ 1 + τ

This defines a map
h→ {flat metrics on T 2}/Dilation

“Recall” also one can pull back metrics by diffeomorphisms

f

Σ Σ

p

γ2

γ1

f(p)

f ◦ γ2

f ◦ γ1

Metrics let us measure lengths of curves, by integrating lengths of tangent vectors, so view metirc on
g as an inner product on TpΣ, ∀p ∈ Σ. Pullback metric f∗g was defined s.t.

〈γ̇1, γ̇2〉p,f∗g := 〈( ˙f ◦ γ1), ( ˙f ◦ γ2)〉f(p),g

Note SL(2,Z) acts on R2 preserving Z2 so it acts on R2/Z2 = T 2

Lemma. This is an action by diffeomorphism of the abstract smooth surface T 2

Proof. Clearly A ∈ SL(2,Z) acts smoothly (linearly) on R2 and the charts for our smooth
atlas are s.t. A then acts smoothly with our local charts

Note. Also SL(2,Z) ⊆ SL(2,R) acts on h via Möbius maps
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Theorem. The map h→ {Flat metrics on T 2}/Dilation descends to a map

h/SL(2,Z)→ {Flat metrics on T 2}
Dilation and diffeomorphism

which is a bijection. We say that h/SL(2,Z) is the Moduli space of flat metrics on T 2 (Our
diffeomorphisms here preserve a choice of orientation)

Remark. (i) The LHS is naturally an object of hyperbolic geometry
(ii) The moduli space of hyperbolic metrics on Σg (g ≥ 2) is perhaps the most studied space in all

of geometry

What next?
(i) Algebraic topology: study spaces through algebraic invariants like Euler characteristic, and

covering maps of surfaces like S2 → RP2, R2 → R2

(ii) Differential geometry: we studied det(DN), N : Σ → S2 the Gauss map. The tract is the
mean-curvature, related to soap films

(iii) Riemann surfaces is about the fact that if f : C → C is holomorphic and w ∈ C f(z + w) is
holomorphic. f : D → D is holomorphic and A ∈ Möb(D), f ◦A is holomorphic

(iv) General Relativity is the study of geodesics
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