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1 Vector Spaces, Subspaces

Notation. Let F be an arbitrary field (e.g. F = R or C)

Definition (F vector space). A F -vector space (a vector space over F ) is an abelian group (V,+)
equipped with a function:

F × V → V, (λ, v) 7→ λv

(λ is a scalar, v is a vector, λv is a vector)
Such that:

• λ(v1 + v2) = λv1 + λv2
• (λ1 + λ2)v = λ1v + λ2v
• λ(µv) = (λµ)v
• 1 · v = v

We know how to:
• sum two vectors
• multiply a vector v ∈ V by a scalar λ ∈ F .

Examples. (i) n ∈ N, Fn: column vectors of length n with entries in F

v ∈ F, v =

x1...
xn

 , xi ∈ F, 1 ≤ i ≤ n

v + w =

v1...
vn

+

w1

...
wn

 =

v1 + w1

...
vn + wn

 , λv =

λv1...
λvn


Fn is an F -vector space.

(ii) RX = {f : X → R} (set of real valued functions on X). We have that RX is a R vector space:
• (f1 + f2)(x) = f1(x) + f2(x)
• (λf)(x) = λf(x), λ ∈ R

(iii) Mn,m(F ) ≡ n×m matrices with entries in F

Remark. The axiom of scalar multiplication implies that: ∀v ∈ V, 0 · v = 0

Definition (Subspace). Let V be a vector space over F . The subset U of V is a vector subspace
of V (noted U ≤ V ) if:

• 0 ∈ U
• (u1, u2) ∈ U × U =⇒ u1 + u2 ∈ U
• (λ, u) ∈ F × U =⇒ λu ∈ U

Equivalently:
• 0 ∈ U
• ∀(λ1, λ2) ∈ F × F, ∀(u1, u2) ∈ U × U, λ1v1 + λ2v2 ∈ U

This property means that U is stable by:
• scalar multiplication
• vector addition
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Examples. (i) V = RR space of functions R→ R; C(R) ≤ V space of continuous functions R→ R;
P(R) ≤ C(R) space of polynomials

(ii)


x1x2
x3

 ∈ R3, x1 + x2 + x3 = t

 (can check that this is a subspace for t = 0 only).

Prop 1.1 (Intersection of two subspaces is a subspace). Let V be an F vector space. Let U,W ≤ V .
Then:

U ∩W ≤ V

Proof.
0 ∈ U, 0 ∈W =⇒ 0 ∈ U ∩W

Stability: given (λ1, λ2) ∈ F 2 and (v1, v2) ∈ (U ∩W )2, we have that

λ1v1 + λ2v2 ∈ U and λ1v1 + λ2v2 ∈W

And so
λ1v1 + λ2v2 ∈ U ∩W

Warning. The union of two subspaces is generally NOT a subspace.
(Typically not stable by addition)

Definition (Sum of subspaces). Let V be an F vector space, let U ≤ V,W ≤ V. The sum of U and
W is the set:

U +W = {u+ w : (u,w) ∈ U ×W}

Prop 1.2 (Sum of two spaces is a subspace). For V a F vector space, (U ≤ V,W ≤ V ) =⇒ U+W ≤
V

Proof.
0 = 0∈U + 0∈W ∈ U +W

Given λ1, λ2 ∈ F and f, g ∈ U +W , we have

f = f1 + f2

g = g1 + g2

with f1, g1 ∈ U and f2, g2 ∈W . Hence

λ1f + λ2g = λ1(f1 + f2) + λ2(g1 + g2) = (λ1f1 + λ2g1) + (λ1f2 + λ2g2) ∈ U +W

(first bracket in U , second bracket in W )

Exercise: Show that U +W is the smallest subspace of V which contains U and W .
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1.1 Subspaces and quotient

Definition (Quotient). Let V be an F vector space. Let U ≤ V . The quotient space V/U is the
abelian group V/U equipped with the scalar multiplication:

F × V/U → V/U, (λ, v + U) 7→ λv + U

Note. We must check that the multiplication operator is well-defined. Indeed,

v1 + U = v2 + U =⇒ v1 − v2 ∈ U
=⇒ λ(v1 − v2) ∈ U
=⇒ λv1 + U = λv2 + U ∈ V/U

Prop 1.3 (Quotient spaces are vector spaces). V/U is an F vector space.

Proof. Exercise.

1.2 Spans, Linear Independence and Steinitz Exchange Lemma

Definition (Span of a family of vectors). Let V be an F vector space. Let S ⊂ V be a subset (so S
is a set of vectors). We define:

〈S〉 = {finite linear combinations of elements of S}

=

{∑
s∈S

λsvs : vs ∈ s, only finitely many λs are non-zero

}

Write 〈S〉 for span S. By convention, 〈∅〉 = {0}

Remark. 〈S〉 = smallest vector subspace of V which contains S.
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Examples. (i) V = R3:

S =


1

0
0

 ,
0

1
2

 ,
 3
−2
−4

 =⇒ 〈S〉 =


 αβ

2β

 , (α, β) ∈ R2


(ii)

V = Rn =


x1...
xn

 , xi ∈ R, 1 ≤ i ≤ n

 , ei =



0
...
0
1
0
...
0


(1 on i-th position) so V = span (ei)1≤i≤n

(iii) X set, V = RX = {f : X → R}

Sx : X → R, y 7→

{
1 if x = y

0 otherwise

Span(Sx)x∈X ≡ {f ∈ RX : f has finite support }
(Supp f = {x : f(x) 6= 0})

Definition. Let V be an F -vector space. Let S be a subset of V . We say that S spans V if 〈S〉 = V

Definition (Finite dimension). Let V be an F -vector space. We say that V is finite dimensional
if it is spanned by a finite set. We say V is infinite dimensional if there is no family S with finitely
many elements which span V .

Example. Let V = P[x], the set of polynomials in R. Let Vn = Pn[x], the set of polynomials in R
with degree ≤ n, n ∈ N. Vn = 〈{1, x, . . . , xn}〉 so Vn is finite dimensional

Claim. V = P[x] is infinite dimensional

Proof. Exercise.

If V is finite dimensional, is there a minimal number of vectors in the family required so that the
family spans V ?
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Definition (Independence). We say that (v1, . . . , vn) elements of V are linearly independent if

n∑
i=1

λivi = 0, λi ∈ F =⇒ λ1 = λ2 = · · · = λn = 0

Equivalently, (v1, . . . , vn) are not linearly independent if one of them is a linear combination of the
(n− 1) reaining ones.
Indeed, ∃(λ1, . . . , λn), j ∈ [1, n] s.t.

∑n
i=1 λivi = 0 and λj 6= 0.

Which implies

vj = − 1

λj

n∑
i 6=j

λivi

Remark. (vi)1≤i≤n linearly independent =⇒ ∀i ∈ [1, n], vi 6= 0

Definition (Basis). A subset S of V is a basis of V if:
(i) 〈S〉 = V
(ii) S linearly independent

Remark. When S spans V , we say that S is a generating family. So a basis is a linearly independent
generating family.

Examples. (i) Let V = Rn and ei as before. Then (ei)1≤i≤n is a basis for V (exercise)
(ii) V = C. C ≡ C(= F ) vector space, {1} a basis but also C ≡ R(= F ) vector space, {1, i} a basis
(iii) For V = P[x] = {P (x) polynomials on R}, S = {xn, n ≥ 0} is a basis of V

Lemma 1.4 (Unique decomposition for everything equivalent to being a basis). Let V be a F vector
space. Then (v1, . . . , vn) is a basis of V if and only if any vector v ∈ V has a unique decomposition:

v =

n∑
i=1

λivi,

Proof.

〈v1, . . . , vn〉 = V =⇒ ∀v ∈ V,∃(λ1, . . . , λn) ∈ Fn s.t. v =

n∑
i=1

λivi

If

v =

n∑
i=1

λivi =

n∑
i=1

λ′ivi

then
n∑
i=1

(λi − λ′)vi = 0

so we must have λi = λ′i, ∀1 ≤ i ≤ n since (vi)1≤i≤n linearly independent

7



Lemma 1.5 (Some subset of a spanning set is a basis). If (v1, . . . , vn) spans V , then some subset of
this family is a basis of V .

Proof. If (v1, . . . , vn) are linearly independent, done. If they are not, then up to changing
indices,

vn ∈ span(v1, . . . , vn−1) =⇒ 〈v1, . . . , vn〉 = 〈v1, . . . , vn−1〉
=⇒ 〈v1, . . . , vn−1〉 = V

Iterate this process

Theorem 1.6 (Steinitz Exchange Lemma). Let V be a finite dimensional vector space over F . Take
(v1, . . . , vm) linearly independent, and (w1, . . . , wn) which spans V . Then:
(i) m ≤ n
(ii) Up to reordering,

(v1, . . . , vm, wm+1, . . . , wn) spans V

Proof (Induction). Suppose that we have replced l(≥ 0) of the wi. Reordering if necessary,
〈v1, . . . , vl, wl+1, . . . , wn〉 = V . If m = l, done. Assume l < m. Then: vl+1 ∈ V .

vl+1 =
∑
i≤l

αivi +
∑
i>l

βiwi

Since the (vi)1≤i≤m (l+ 1 ≤ m) are linearly independent, one of the βi, is non-zero. So, up to
reordering:

wl+1 =
1

βl+1
(vl+1 −

∑
i≤l

αivi −
∑
i>l

βiwi)

=⇒ V is spanned by (v1, . . . , vl+1, wl+2, . . . , wn). And so we are done after m steps thus we
must have replaced m of the wi so m ≤ n

1.3 Bases, dimension, direct sums

Corollary 1.7 (Dimension fixed). V be a finite dimensional vector space over F , then: any two basis
of V have the same number of vectors called the dimension of V , dimF (V ).

Proof. (v1, . . . , vn), (w1, . . . , wm) basis of V over F . Then :
• (vi)1≤i≤n free, (wi)1≤i≤m generating =⇒ n ≤ m
• (wi)1≤i≤m free, (vi)1≤i≤n generating =⇒ m ≤ n

Corollary 1.8 (|Independent| ≤ |basis| ≤ |spanning|). Let V be an F vector space with finite
dimension n. Then:
(i) any independent set of vectors has at most n elements, with equality iff it is a basis
(ii) any spanning set of vectors has at least n elements, with equality iff it is a basis.

Proof. Trivial.
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Prop 1.9 (Dimension of sum of subspaces). Let U,W be subspaces of V . If U and W are finite
dimensional, then so U +W and:

dim(U +W ) = dimU + dimW − dim(U ∩W )

Proof. Pick a basis v1, . . . , vp of U ∩W . Extend to a basis: v1, . . . , vp, u1, . . . , um of U and
v1, . . . , vp, w1, . . . , wn of W

Claim. (v1, . . . , vp, u1, . . . , um, w1, . . . , wn) is a basis of U +W .

Generating family of U +W : obvious.
Free family (linearly independent):

p∑
i=1

αivi +

m∑
i=1

βiui +

n∑
i=1

γiwi = 0

=⇒
p∑
i=1

αivi +

m∑
i=1

βiui = −
n∑
i=1

γiwi

LHS in U , RHS in W

=⇒
n∑
i=1

γiwi ∈ U ∩W =⇒
p∑
i=1

Sivi =

n∑
i=1

γiwi

As v1, . . . , vp basis of U ∩W

=⇒
p∑
i=1

(αi + Si)vi +

m∑
i=1

βiui = 0

=⇒ αi = −Si, βi = 0

=⇒
p∑
i=1

αivi +

n∑
i=1

γiwi = 0

=⇒ αi = γi = 0

As (v1, . . . , vp, w1, . . . , wn) free

=⇒ αi = βi = γi = 0

Prop 1.10 (Dimension of quotient space). If V is a finite dimensional vector space over F and U ≤ V
(subspace), then U and V/U are also finite dimensional and:

dimV = dimU + dimV/U

Proof. Let (u1, . . . , ul) be a basis of U and extend it to a basis (u1, . . . , ul, wl+1, . . . , wn) of
V . We can show that (wl+1 + U, . . . , wn + U) is a basis of V/U
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Remark. For V a vector space over F and U ≤ V , we say that U is a proper subspace if U 6= V .
Then U proper =⇒ dimU < dimV . (V/U 6= {0} =⇒ dimV/U > 0 =⇒ dimU < dimV )

Definition (Direct Sum). V vector space over F and U,W ≤ V (subspaces)
We say that: V = U

⊕
W (“V is the direct sum of U and W ”)

iff every element v ∈ V can be written:

v = u+ w with (u,w) ∈ U ×W and this decomposition is unique.

Equivalently: V = U
⊕
W

⇐⇒ ∀v ∈ V, ∃!(v, w) ∈ U ×W s.t. v = u+ w (uniqueness is important)

Warning. We say that W is a direct complement of U in V . There is no uniqueness of such
a complement.
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Lemma 1.11 (Direct sum ⇐⇒ sum with trivial intersection ⇐⇒ union of bases gives basis). Let
U,W ≤ V , then:
The following are equivalent:
(i) V = U

⊕
W

(ii) V = U +W and U ∩W = {0}
(iii) For any basis B1 of U , B2 of W , the union B = B1 ∪ B2 is a basis of V

Proof. (ii) =⇒ (i): V = U +W =⇒ ∀v ∈ V,∃(u,w) ∈ U ×W s.t. v = u+ w.
Uniqueness: u1 + w1 = u2 + w2 = v
=⇒ u1 − u2 = w2 − w1 (LHS ∈ U , RHS ∈W
=⇒ u1 = u2 and w1 = w2, as U ∩W = {0}

(i) =⇒ (iii): B1 basis of U , B2 basis of W .
Let B = B1 ∪ B2

• generating family of U +W obvious
• B free family:

∑
vi∈B

λivi = 0 = 0U + 0W

∑
u∈B1

λuu+
∑
w∈B2

λww = 0

Thus by uniqueness: ∑
u∈B1

λuu =
∑
w∈B2

λww = 0

=⇒ λu = 0, λw = 0

As B1 basis, B2 basis
=⇒ B free family

(iii) =⇒ (ii) We need to show V = U +W and U ∩W = {0}.
B1 basis of U and B2 basis of W =⇒ B = B1 ∪ B2 basis of V . (from (iii))

∀v ∈ V, v =
∑
u∈B1

λuu+
∑
w∈B2

λww

=⇒ V = U +W

Let v ∈ U ∩W , then:

v =
∑
u∈B1

λuu =
∑
w∈B2

λww

v =
∑
u∈B1

λuu−
∑
w∈B2

λww = 0

=⇒ λu = λw = 0

As B1 ∪ B2 free
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Definition. ForV a vector space over F
v1, . . . , vp ≤ V (subspaces)
(i)

p∑
i=1

Vi = {v1 + · · ·+ vp, vj ∈ Vj , 1 ≤ j ≤ p}

(ii) The sum is direct:
p∑
i=1

Vi =

p⊕
i=1

Vi

iff: v1 + · · ·+ vp = v′1 + · · ·+ v′p
=⇒ v1 = v′1, . . . , vp = v′p

Equivalently:

V =

p⊕
i=1

Vi

⇐⇒ ∀v ∈ V,∃!(v1, . . . , vk) ∈
p∏
i=1

: v =

p∑
i=1

vi

Claim (Generalisation of previous lemma). TFAE:

(i)
p∑
i=1

Vi =
p⊕
i=1

Vi (sum is direct)

(ii)

∀i, Vi ∩

∑
j 6=i

Vi

 = {0}

(iii) For any basis Bi of Vi,B =
p⋃
i=1

Bi is a basis of
p∑
i=1

Vi

Proof. Exercise.

1.4 Linear maps, isomorphisms and the rank-nullity Theorem

Definition (Linear Map). V,W are F -vector spaces. A map α : V →W is linear iff:

∀(λ1, λ2) ∈ F 2, ∀(v1, v2) ∈ V × V,

α(λ1v1 + λ2v2) = λ1α(v1) + λ2α(v2)
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Examples. (i) Matrices Rn → Rm
(ii)

α : C([j, 1])→ C([j, 1]), f 7→ α(f)(x) =

∫ x

∞
f(t) dt

is a linear map

Remark. For U, V,W F vector spaces
(i) IdV : V → V i a linear map
(ii) U → V →W , composition of 2 linear maps is linear.

Lemma 1.12 (Linear maps can be idenfied by where they send basis). For V,W F vector spaces
with B basis for V , if α0 : B → V is any map, then there is a unique linear map α : V →W extending
α0 (i.e. ∀v ∈ B, α0(v) = α(v)

Proof. v ∈ V, v =
n∑
i=1

λivi and B = (v1, . . . , vn).

Necessarily by linearity:

α(v) = α

(
n∑
i=1

λivi

)
=

n∑
i=1

λiα(vi)

Remark. (i) True for ∞ dimensional spaces as well. Often, to define a linear map, we
define its value on a basis and “extend by linearity.”

(ii) α1, α2 : V →W linear. If they agree on a basis B of V , they are equal.

Definition (Isomorphism). For V,W vector spaces over F . A map α : V →W is called an isomor-
phism iff:
(i) α linear
(ii) α bijection

If such an α exists, we note: V ∼= W (V is isomorphic to W )

Remark. α : V →W linear isomorphism =⇒ α−1 : W → V is linear

Lemma 1.13 (‘is isomorphic to’ is an equivalence relation). ∼= is an equivalence relation on the class
of all vector spaces over F .
(i) iV : V → V isomorphism
(ii) α : V →W isomorphism =⇒ α−1 : W → V isomorphism
(iii) If U → V →W (maps β then α isomorphisms)

=⇒ U →W given by α ◦ β is an isomorphism.

Proof. Exercise.
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Theorem 1.14 (Dimension n implies isomorphic to Fn). If V is a vector space over F of dimension
n, then:

V ∼= Fn

Proof. Let B = (v1, . . . , vn) be a basis of V .
Then α : V → Fn

v =
n∑
i=1

λivi 7→

λ1. . .
λn

 is an isomorphism. (Exercise)

Remark. Choosing a basis of V is like choosing an isomorphism from V to Fn

Theorem 1.15 (Isomorphic iff same dimension (for finite dimensions)). Let V,W be F vector spaces
with finite dimension. Then V ∼= W iff they have the same dimension.

Proof. ⇐= : dimV = dimW = n
=⇒ V ∼= Fn,W ∼= Fn so V ∼= W
=⇒ : α : V →W isomorphism, B is a basis for V , then:

Claim. α(V ) basis for W .
• α(B) spans V follows from surjectivity of α
• α(B) free family follows from injectivity of α

Proof. Exercise.

Definition (Kernel and image of a linear map). Let V,W vector spaces over F .
Let α : V →W linear map. We define:
kerα = {v ∈ V : α(v) = 0} (kernel of α) Imα = {w ∈W : ∃v ∈ V, w = α(v)} (image of α)

Lemma 1.16 (kernel and image are vector spaces). kerα and Imα are subspaces respectively V and
W

Proof. (λ1, λ2) ∈ F 2, (v1, v2) ∈ kerα× kerα,
α(λ1v1 + λ2v2) = λ1α(v1) + λ2α(v2) = 0 + 0 = 0
=⇒ λ1v1 + λ2v2 ∈ kerα
(λ1v1 + λ2v2) ∈ F 2, (w1, w2) ∈ (Imα)2,
w1 = α(v1), w2 = α(v2)
=⇒ λ1w1 + λ2w2 = λ1α(w1) + λ2α(v2) = α(λ1v1 + λ2v2) ∈ Imα
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Theorem 1.17 (Quotient by kernel isomorphic to image). Let V,W be F vector spaces. Let α :
V →W linear map. then:

α : V/ kerα 7→ Imα

α(v + kerα) 7→ α(v)

is an isomorphism.

Proof. α well defined: trivial check
α linear: follows immediately from α linear.
α bijection:

• injectivity: α(v + kerα) = 0
=⇒ α(v) = 0 =⇒ v ∈ kerα
v + kerα = 0 + kerα

• surjectivity: follows from the definition fo Imα:

w ∈ Imα, ∃v ∈ V : w = α(v) = α(v)

Definition (Rank and nullity). r(α) = dim Im (α) (rank)
n(α) = dim ker (α) (nullity)

Theorem 1.18 (Rank-nullity Theorem). Let U, V be vector spaces over F , dimF U < +∞
Let α : U → V be a linear map, then:

dimU = r(α) + n(α)

Proof. We have proved that:
U/ kerα ∼= Im (α)
=⇒ dim(U/ kerα) = dim Imα
=⇒ dim(U)− dim kerα = dim Imα
=⇒ dimU = r(α) + n(α)

Lemma 1.19 (Characterization of isomorphism). V,W vector spaces over F of equal finite dimension.
Let α : V →W linear map, then TFAE:
(i) α injective
(ii) α surjective
(iii) α isomorphism

Proof. Exercise. Follows directly from the rank-nullity theorem.

1.5 Linear maps from V to W and matrices

Definition. The space of linear maps from V to W over F is:
L(V,W ) = {α : V →W linear }
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Prop 1.20 (Set of linear maps between V and W is a vector space). L(V,W ) is a vector space over
F under the operations:

(α1 + α2)(v) = α1(v) + α2(v)

(λα)(v) = λα(v)

Moreover if V and W are finite dimensional, then so is L(V,W ) and dimF L(V,W ) =
(dimF V )(dimF W )

Proof. L(V,W ) vector space is an exercise
Dimension statement proved later.

1.5.1 Matrices and linear maps

Definition. An m× n matrix over F is an array with m rows and n columns with entries in F :

(aij) 1≤i≤m
1≤j≤n

=


...

. . . aij . . .
...



aij ∈ F with i row, j column.
Mm,n(F ) = {set of m× n matrices over F}

Prop 1.21 (Set of m × n matrices over a field is a vector space). Mm,n(F ) is an F vector space
under operations:

(aij) + (bij) = (aij + bij)

λ(aij) = (λaij)λ ∈ F

Proof. Exercise.

Prop 1.22 (Dimension of Mm,n). dimF Mm,n(F ) = m× n

Proof. 1 ≤ i ≤ m, 1 ≤ j ≤ n. Define elementary matrix:0
... 0

. . . 1ij . . .

0 ... 0


Then (Eij) 1≤i≤m

1≤j≤n
basis of Mm,n(F )

Spans obvious: M = (aij)) 1≤i≤m
1≤j≤n

=
m∑
i=1

n∑
j=1

aijEij

Free family obvious

16



1.5.2 Representation of linear maps by matrices

• V,W vector spaces over F and α : V →W linear.
• Basis: B = (v1, . . . , vn) of V and C = (w1, . . . , wm) of W

• If v ∈ V, v =
∑n
j=1 λjvj =

λ1...
λn

 ∈ Fn (coordinates of v in the basis B)

λ1...
λn

 = [v]B

• Similarly, for w ∈W , we note:
[w]C = vector of coordinates of w in the basis C.

Definition (Matrix of α in B, C basis). [α]B,C ≡ matrix of α wrt B, C
≡
(
[α(v1)]C , [α(v2)]C , . . . , . . . , [α(vn)]C

)
∈Mm×n(F )

Observation: If we let
[α]B,C = (aij) 1≤i≤m

1≤j≤n

Then, by definition: 1 ≤ j ≤ n

α(vj) =

m∑
i=1

aijwi

Lemma 1.23 (Writing in a vector in a different basis). ∀v ∈ V,

[α(v)]C = [α]B,C [v]B

Proof. Given v ∈ V, v =
n∑
j=1

λjvj

α(v) = α

 n∑
j=1

λjvj


=

n∑
j=1

λjα(vj) =

n∑
j=1

λj

m∑
i=1

aijwi
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Lemma 1.24 (Matrix that is the composition of linear maps). U β−→ V
α−→W linear and U α◦β−−→W

With: A basis of U
B basis of V
C basis of W
=⇒ [α ◦ β]A,C = [α]B,C · [β]A,B

Proof. ul ∈ A

(α ◦ β)(ul) = α(β(ul))

= α

∑
j

bjlvj


=
∑
j

bjlα(vj) =
∑
j

bjl
∑
i

aijwi

=
∑
i

∑
j

aijbjl

wi

With sum in brackets is the (i, l) entry of product of the 2 matrices.

Prop 1.25 (space of linear maps isomorphic to space of matrices from V to W ). Given V and W
vector spaces over F with dimF V = n and dimF W = m

L(V,W ) ∼= Mm,n(F )

Proof. Fix B, C basis of V,W .

Claim. θ : L(V,W )→Mm,n(F )
α 7→ [α]B,C
is an isomorphism.

Proof.
• θ linear: [λ1α1 + λ2α2]B,C = λ[α1]B,C + λ2[α2]B,C
• θ surjective: Indeed, pick A = (aij) 1≤i≤m

1≤j≤n
Consider the map:

α : vj 7→
m∑
i=1

aijwi, 1 ≤ j ≤ n

so α is a map defined on (v1, . . . , vm) ≡ basis of V .
(“extend by linearity”)
=⇒ α linear map, which by definition:

[α]B,C = (aij) 1≤i≤m
1≤j≤n

= A

• θ injective: [α]B,C = 0 =⇒ α = 0

18



Remark. B basis of V
C basis of V
εB : V → Fn εC : W → Fm

v 7→ [v]B w 7→ [w]C

then the following diagram commutes:

V W

Fn Fm

α

eB eC

[α]B,C

Claim (linear map between subspaces induces quotient map). Y ≤ V, α(Y ) = Z ≤W. α induces:

α : V/Y →W/Z

v + Y 7→ α(v) + Z

Proof. • Well-defined: v1 + Y 7→ v2 + Y

=⇒ v1 − v2 ∈ Y

α(v1 − v2) ∈ Z

=⇒ α(v1) + Z = α(v2) + Z

• α linear obvious (α linear)

1.6 Change of basis and equivalent matrices.

• α : V →W
B basis of V , C basis of W
[α(v)]C = [α]B,C [v]B
[α]B,C = (α(v1)| . . . |α(vn)) wrt basis C

• U
β−→ V

α−→W
A,B, C basis U, V,W
=⇒ [α ◦ β]A,C = [α]B,C [β]A,B

1.6.1 Change basis

V
α−→ W

B = {v1, . . . , vn} C = {w1 . . . , wm}
B′ = {v′1 . . . , v′n} C′ = {w′1 . . . , w′m}

Aim: Find equation to relate [α]B,C , [α]B′,C′
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Definition. The change of basis matrix from B′ to B is P = (pij) 1≤i≤n
1≤j≤n

is given by:

P =
(
[v′1]B

∣∣[v′2]B
∣∣ . . . ∣∣[v′n]B

)
( ≡ [Id]B′,B)

Lemma 1.26 (writing vector in different basis).

[v]B = P [v]B′

Proof.
• [α(v)]C = [a]B,C [v]B
• P = [Id]B,B′

[Id(v)]B = [Id]B′,B[v]B′

using (B = C,B′ = B)
=⇒ [v]B = P [v]B′

Remark. P is an n× n invertible matrix, and: P−1 ≡ change of basis matrix from B to B′.

Indeed: [α ◦ β]A,C = [α]B,C [β]A,B

[Id]B,B′ [Id]B′,B = [Id]B′,B′ = In =

1
. . .

1


[Id]B′,B[Id]B,B′ = [Id]B,B = In =

1
. . .

1


=⇒ [Id]B,B′P = P [Id]B,B′ = In

Warning. [v]B, P ([v′1]B, . . . , [v
′
n]B)

[v]B′ = I−1[v]B
=⇒ need to invert P !

• We changed B to B′ in V .
• We can also change basis C to C′ in W
(α : V →W )
V W
B,B′ C, C′

P = [Id]B′,B P = [Id]C′,C
α : V →W

How do [α]B,C and [α]B′,C′ relate
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Prop 1.27 (Writing linear map in different basis). A = [α]B,C , A
′ = αB′,C′ and

P = [Id]B′,B, Q = [Id]C′,C
=⇒ A′ = Q−1AP

Proof. Have:

[α(v)]C = [α]B,C [v]B

[α ◦ β]A,C = [α]B,C [β]A,B

[v]B = P [v]B′

So:

[α(v)]C = Q[α(v)]C′

= Q[α]B′,C′ [v]B′

[α(v)]C = [α]B,C [v]B

= AP [v]B′

=⇒ ∀v ∈ V, QA′[v]B′ = AP [v]B′
=⇒ QA′ = AP
=⇒ A′ = Q−1AP

Definition (Equivalent matrices). Two matrices A,A′ ∈Mm,n(F ) are equivalent if:

A′ = Q−1AP

Where Q ∈Mm×m invertible
P ∈Mn×n invertible

Remark. This defines an equivalence relation on Mm,n(F ).
• A = I−1m AIn
• A′ = Q−1AP =⇒ A = (Q−1)−1A′P−1

• A′ = Q−1AP and A′′ = (Q′)−1A′P ′ =⇒ A′′ = (QQ′)−1A(PP ′)
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Prop 1.28 (Can choose bases such that corresponding matrix diagonal). Let V,W vector spaces over
F and dimF V = n, dimF W = m
Let α : V →W linear map. Then there exists B basis of V and C basis of W , s.t.:

[α]B,C =



1
. . .

1
0

. . .
0


Proof. Choose B and C wisely.
Fix r ∈ N s.t. dim kerα = n− r
N(α) = ker(α) = {x ∈ V : α(x) = 0}
Fix a basis of N(α) : vr+1, . . . , vn
Extend it to a basis of V ≡ B
B = (v1, . . . , vr, vr+1, . . . , vn)

Claim. (α(v1), . . . , α(vr)) basis of Im α

Proof. • Span: v =
n∑
i=1

λivi

=⇒ α(v) =
n∑
i=1

λiα(vi) =
r∑
i=1

λiα(vi)

Let y ∈ Im (α), then: ∃v ∈ V : α(v) = y

=⇒ y = α(v) =
r∑
i=1

λiα(vi) ∈ span {α(v1), . . . , α(vn)}

• Free:
r∑
i=1

λiα(vi) = 0

=⇒ α

(
r∑
i=1

λivi

)
= 0

=⇒
r∑
i=1

λivi ∈ kerα = span {vr+1, . . . , vn}

=⇒
r∑
i=1

λivi =

n∑
r+1

µivi

=⇒
r∑
i=1

λivi −
n∑
r+1

µivi = 0

=⇒ λi = µi = 0 =⇒ free

We have proved that (α(v1), . . . , α(vr)) basis of Im α basis of Im α and vr+1, . . . , vn basis of
ker α
B = (v1, . . . , vr, vr+1, . . . , vn)
C = (α(v1), . . . , α(vr), wr+1, . . . , wn) basis of W
[α]B,C = (α(v1)| . . . |α(vr)|α(vr+1)| . . . |α(vn)) wrt C is the desired matrix.

22



Remark. This provides another proof of the rank nullity Theorem:

r(α) +N(α) = n

Corollary 1.29 (Equivalence is determined by rank). Any m×n matrix is equivalent to:
[
Ir 0
0 0

]
where r = r(α)

Definition. A ∈Mm,n(F )

• The column rank of A, r(A), is the dimension of the subspace of Fm spanned by the column
vectors of A
A = (c1| . . . |cn), ci ∈ Fm
r(A) = dimF span {c1, . . . , cn}
Similarly, the row rank of A is the column rank of AT

Remark. If α is a linear map represented by A with respect to some basis, then:

r(A) = r(α)

(column rank = rank)

Prop 1.30 (Equivalence is determined by rank). Two matrices are equivalent iff r(A) = r(A′)

Proof. ( =⇒ ) If A,A′ equivalent, they correspond to the same endomorphism α expressed
in two different basis:

r(A) = r(α) = r(A′)

(⇐= )r(A) = r(A′) = r, then A and A′ are both equivalent to:[
Ir 0
0 0

]
=⇒ A and A′ are equivalent.
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Theorem 1.31 (Column rank = row rank). r(A) = r(AT )

Proof. r = r(A)

Q−1AP =

[
Ir 0
0 0

]
m×n

Take the transpose:

(Q−1AP )T = PTAT (Q−1)−1

= PTAT (QT )−1

=⇒ PTAT (QT )−1 =

[
Ir 0
0 0

]T
=

[
Ir 0
0 0

]
n×m

=⇒ r(AT ) = r(A)

1.7 Elementary Operations and Elementary Matrices

Definition. A linear map α : V → V is called an endomorphism

Equation. With P as the change of basis matrix from B′ to B

[α]B′,B′ = P−1[α]B,BP

Definition. For A,A′ (n× n) square matrices. We say that A and A′ are similar (conjugate) iff

A′ = P−1AP

for P (n× n) invertible

Definition. An elementary column operation on a m× n matrix A is one of the following
(i) swap column i and j for i 6= j
(ii) replace column i by λ× (column i), (λ 6= 0, λ ∈ F )
(iii) add λ× (column i) to column j for i 6= j
and elementary row operations are defined analagously. We note that these operations are invertible
and these operations can be relaligned through the action of elementary matrices:
(i) trivial to consider (swap rows in identity matrix). Let Tij be the matrix that swaps row i and

row j
(ii) ni,λ is the identity with ith row replaced by λ
(iii) Ci,j,λ = Id + λEij where Eij just has 1 on the ith row and jth column

Remark. Link between elementary operations and elementary matrices: an elementary column (resp.
row) operation can be performed by multiplying A by the corresponding elementary matrix from the
right (resp. left)
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Example. [
1 2
3 4

] [
0 1
1 0

]
=

[
2 1
4 3

]

Note. This gives a constructive proof that any m× n matrix is equivalent to[
Ir 0
0 0

]

Method. (i) Start with A. If all entries are zero, done
(ii) Pick aij = λ 6= 0:

• swap rows i and 1
• swap columns j and 1

(iii) Multiply column 1 by 1/λ(λ 6= 0)
(iv) Now clear out row 1 and column 1 using elmenetary operations of type (iii)
(v) continue with remaining (n− 1)× (n− 1) matrix until we end the process

Q−1AP = E′l . . . E
′
1AE1 . . . Ek

rows on left, columns on right

Remark. Variations
(i) Gauss’ pivot algorithm. If you use only row operations, you can reach the so called “row-echelon”

form of the matrix by the following
• Assume that aj1 6= 0 for some i
• Swap rows i and 1
• Divide first row by λ = ai1 to get 1 in (1,1)
• Use 1 to clean the rest of the 1st column and similar for 2nd column etc.

Note. This is exactly how we solve systems of linear equations

(ii) Representation of square invertible matrices

Lemma 1.32 (Only need to operate by rows/columns to get In if invertible). If A is a
(n×n) square invertible matrix, then we can obtain In using row elementary operations
only (resp. column operations only)

Proof. We do the proof for column operations. We argue by induction on the number
of rows. Suppose we can reach a form with Ik in the top left, zeros to the left and ’stuff’
below. We want to obtain the form with k + 1 instead.
Easy to prove ∃j > k s.t. ak+1,j = λ > 0 by considering spans. Then, we can swap
column k + 1 and j then divide k + 1 by λ = ak+1,j 6= 0 and, as expected, use this to
clear the rest of the k + 1th row using type (iii) elementary operations

Our outcome is:
AE1 . . . EN = I

=⇒ A−1 = E1 . . . EN
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Prop 1.33 (Can decompose invertible matrix into elementary matrices). Any invertible square matrix
is a product of elementary matrices

Proof. Proved above.

26



2 Dual Spaces and Dual Maps

Definition. Let V be a vector space over F . We say V ∗ is the dual of V which is

V ∗ = L(V, F ) = {α : V → F linear}

Notation. We say α : V → F linear is a linear form

Examples. (i)
Tr : Nn,n → Fn

A = (aij) 7→
n∑
i=1

aii

Tr ∈ N∗n,n
(ii)

f : [0, 1]→ R

x 7→ f(x)

Tf : C([0, 1],R)→ R

f 7→
∫ 1

0

f(x)g(x) dx

Tf = linear form on C∞([0, 1],R)

So you can construct f knowing Tf
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Lemma 2.1 (We have a basis for B∗ by the ‘row vectors’). Let V be a vector space over F with a
finite basis

B = {e1, . . . , en}

Then there exists a basis for V ∗ given by

B∗ = {ε1, . . . , εn}

where

εj(

n∑
i=1

aiei) = aj , 1 ≤ j ≤ n

B∗ ≡ dual basis of B

Proof. • (ε1, . . . , εn) free family
n∑
j=1

λjεj = 0

(

n∑
j=1

λjεj)(ei) = 0 =

n∑
k=1

λjSji = λi, forall1 ≤ i ≤ n

• Span: α ∈ V ∗, x ∈ V

α(x) = α(

n∑
j=1

λjej) =

n∑
j=1

λjα(ej)

On the other hand,
n∑
j=1

α(ej)εj ∈ V

Then

(

n∑
j=1

α(ej)εj)(x) =

n∑
j=1

α(ej)

n∑
k=1

λkεj(ek)

=

n∑
j=1

α(ej)λj = α(x)

We have shown

α =

n∑
j=1

α(ej)εj

Notation. Kronecker symbol:

Sij =

{
1 if i = j

0 otherwise

With this notation, we have:

εj(

n∑
i=1

aiei) = aj ⇐⇒ εj(ei) = Sij
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Corollary 2.2 (Dual same dimension). V finite dimensional

=⇒ dimV ∗ = dimV

Remark. It is sometimes convenient to think of V ∗ as the space of row vectors of length m over F .
(e1, . . . , en) basis of V , x =

∑n
i=1 xiei ∈ V .

(ε1, . . . , εn) dual basis of V ∗, α =
∑n
i=1 xiεi ∈ V ∗.

α(x) = (

n∑
i=1

αiεi)(x)

=

n∑
i=1

αiεi(x)

=

n∑
i=1

αiεi(

n∑
j=1

xjej)

=
∑
i,j

αixiεi(ej) =

n∑
i=1

αixi

Definition. If U ⊂ V (subset only) the annihilator of U is:

U0 = {α ∈ V ∗ : ∀u ∈ U,α(u) = 0}
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Lemma 2.3 (Annihilator is a subspace and finding its dimension). (i) U0 ≤ V ∗ (vector sub-
space)

(ii) If U ≤ V (vector subspace) and dimV < +∞ then

dimV = dimU + dimU0

Proof. (i) 0 ∈ U0 and if α, α′ ∈ U0 then

∀u ∈ U, (α+ α′)(u) = α(u) + α′(i) = 0

=⇒ α+ α′ ∈ U0

∀u ∈ U,∀λ ∈ F, (λα)(u) = λα(u) = 0

=⇒ λα ∈ U0 =⇒ U0 ≤ V ∗

(ii) Let U ≤ V , dimV = n Let (e1, . . . , ek) be a basis of U and complete it to a basis
(e1, . . . , ek, ek+1, . . . , en)︸ ︷︷ ︸

B

of V .

Let (ε1, . . . , εn) = B∗ be the dual basis of B.

Claim.
U0 = 〈εk+1, . . . , εn〉

If i > k, εi(ek) = Sik = 0, then
εi ∈ U0

=⇒ 〈εk+1, . . . , εn〉 ⊂ U0

Conversely, let α ∈ U0. Then

α =

n∑
i=1

αiεi

(B∗ basis of V ∗). For i ≤ k

α(ei) = 0 =⇒ α(ei) =

n∑
j=1

αjεj(ej) = αi

=⇒ ∀1 ≤ i ≤ k, αi = 0

=⇒ α =

n∑
k=1

αiei

so α ∈ 〈εk+1, . . . , εn〉
=⇒ U0 ⊂ 〈εk+1, . . . , εn〉
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Definition. Let V,W be vector spaces over F and let α ∈ L(V,W ). Then the map

α∗ : W ∗ → V ∗

ε 7→ ε ◦ α

is an element of L(W ∗, V ∗). It is called the dual map of α

Proof. ε(α) : V → F linear by linearity of ε, α so ε ◦ α ∈ V ∗.
α∗ is linear as for θ1, θ2 ∈W ∗, then:

α∗(θ1 + θ2) = (θ1 + θ2)(α) = θ1 ◦ α+ θ2 ◦ α = α∗(θ1) + α∗(θ1)

and similarly, ∀λ ∈ F :
α∗(λθ) = λα∗(θ)

thus
α∗ ∈ L(W ∗, V ∗)

Prop 2.4 (Writing dual map in dual basis). Let V,W be finite dimensional vector spaces over F
with basis repsectively B, C. Let B∗, C∗ be the dual basis of V ∗,W ∗. Then

[α∗]C∗,B∗ = [α]TB,C

Proof. It follows from the very definition

2.1 Properties of the Dual Map, Double Dual (Bidual)

Lemma 2.5 (Change of basis matrix for dual). Change of basis matrix from F∗ = (η1, . . . , ηn) to
E∗ = (ε1, . . . , εn) is (P−1)T where

P = [Id]F,E

E = (e1, . . . , en) and F = (f1, . . . , fn) bases of V

Proof.
[Id]F∗,E∗ = [Id]TF,E = (P−1)T
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Lemma 2.6 (Nullity of dual is annihilator of image, image of dual is subspace of nullity of orginal
map). Let V,W be vector spaces over F . Let α ∈ L(V,W ). Let α∗ ∈ L(W ∗, V ∗) be the dual map.
Then
(i)

N(α∗) = (Im α)0

So α∗ injective ⇐⇒ α surjective
(ii)

Im α∗ ≤ (N(α))0

with equality iff V and W are finite dimensional.
(hence in this case, α∗ surjective ⇐⇒ α injective)

Proof. (i) Let ε ∈W ∗. Then

ε ∈ N(α∗) ⇐⇒ α∗(ε) = 0

⇐⇒ α∗(ε) = ε ◦ α = 0

⇐⇒ ∀x ∈ V, ε(α(x)) = 0

⇐⇒ ε ∈ (Im α)0

(ii) Let us first show that:
Im α∗ ≤ (N(α))0

Indeed, let ε ∈ Im α∗, then

=⇒ ε = α∗(ϕ), ϕ ∈W ∗

=⇒ ∀u ∈ N(α)

ε(u) = (α∗(ϕ))(u)

= ϕ ◦ α(u)

= ϕ(α(u)) = 0

=⇒ ε ∈ (N(α))0

=⇒ Im α∗ ≤ (N(α))0

In finite dimension, we can compare the dimension of these two spaces:

dim Im α∗ = r(α∗) = r([α∗]C∗,B∗) = r([α]TB,C) = r([α]B,C)

=⇒ r(α∗) = r(α)

dim Im α∗ = r(α∗)

= dimV − dimN(α)

=∼ [(N(α))0]

=⇒ Imα∗ ≤ (N(α))0

dim Im α∗ = dim(N(α))0

=⇒ Im α∗ = (N(α))0
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Note. In many applications, it is often simpler to understand α∗ than α

2.1.1 Double Dual

Definition. Let V be a vector space over F

V ∗ = L(V, F ) dual of V

We define the bidual (double dual)

V ∗∗ = L(V ∗, F ) = (V ∗)∗

Remark. This is a very important object. In general, there is no obvious relation between V and
V ∗. However, there are two fundamental facts:
(i) there is a CANONICAL embedding from V to V ∗∗

V

V ∗∗

V̂

injection

Indeed, pick v ∈ V and let
v̂ : V ∗ → F

ε 7→ ε(v)

Claim. v̂ ∈ V ∗∗.

ε ∈ V ∗, ε(v) ∈ F and

v̂(λ1ε1 + λ2ε2) = λ1ε1(v) + λ2ε2(v) = λ1v̂(ε1) + λ2v̂(ε2)

(ii) there are examples of infinite dimensional spaces where V ' V ∗∗ (reflexive spaces, LP (Rd))

LP (Rd) = {f : Rd → R,
∫
Rd
|f(x)|p dx < +∞
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Theorem 2.7 (Isomorphism between V and V ∗∗). If V is finite dimensional, then

ˆ: V → V ∗∗

v 7→ v̂

is an isomorphism

Proof. ˆlinear: trivial
ˆinjective: Indeed, let e ∈ V \{0}. By extending e to a basis of V

(e, e2, . . . , en) basis of V

Let (ε, ε2, . . . , εn) be the dual basis of V ∗, then:

ê(ε) = ε(e) = 1

=⇒ ê 6= {0}

=⇒ (̂) = {0},̂ injective

ˆisomorphism: compute dimensions (trivial)

Moral. ˆ: V → V ∗∗ isomorphism. This allows us to “identify” V and V ∗∗

Lemma 2.8 (Annihilator of annihilator can be viewed as Û). Let V be a finite dimensional vector
space over F , and U ≤ V . Then Û = U00, so after identification of V and V ∗∗, U00 = U

Proof. Let us show that U ≤ U00. Indeed, let u ∈ U then

∀ε ∈ U0, ε(u) = 0

=⇒ ∀ε ∈ U0, ε(u) = û(ε) = 0

=⇒ û = U00

=⇒ Û ≤ U00

We compute dimensions
dimÛ = dimU = dimU00

=⇒ Û = U00

Remark. Thanks to identification of V ∗∗ and V , we can define T ≤ V ∗

T 0 = {v ∈ V : θ(v) = 0∀θ ∈ T}
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Lemma 2.9 (Annihilator of sums and intersections). Let V be a finite dimensional vector space over
F . Let U1, U2 ≤ V , then
(i)

(U1 + U2)0 = U0
1 ∩ U0

2

(ii)
(U1 ∩ U2)0 = U0

1 + U0
2

Proof. trivial

Definition. Let U, V be vector spaces over F . Then ϕ : U ×V → F is a bilinear form if it is linear
in both components

ϕ(u, ·), V → F ∈ V ∗ (∀u ∈ U)

ϕ(·, v), U → F ∈ U∗ (∀v ∈ V )

Example. (i)
V × V ∗ → F

(v, θ) 7→ θ(v)

(ii) Canonical model: scalar product on U = V = Rn

ψ : Rn × Rn → R

(x =

x1...
xn

 , y =

y1...
yn

) 7→
n∑
i=1

xiyi

(iii) U = V = C([0, 1],R)

ϕ(f, g) =

∫ 1

0

f(t)g(t) dt

infinite dimensional product (L2)

Definition. B = (e1, . . . , em) basis of U
C = (f1, . . . , fm) basis of V
ϕ : U × V → F bilinear form
The matrix of ϕ wrt B and C is

[ϕ]B,C = (ϕ(ei, fj))1≤i≤m,1≤j≤n
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Lemma 2.10 (Computing bilinear form).

ϕ(u, v) = [u]TB [ϕ]B,C [v]C

Proof.

u =

m∑
i=1

λiei

vi =

n∑
j=1

µjfj

then by linearity

ϕ(u, v) = ϕ(

m∑
i=1

λiei,

n∑
j=1

µjfj)

=

m∑
i=1

n∑
j=1

λiµjϕ(ei, ej)

= [u]TB [ϕ]B,C [v]C

Remark. [ϕ]B,C is the only matrix such that

ϕ(u, v) = [u]TB [ϕ]B,C [v]C

Notation. ϕ : U × V → F bilinear form, then ϕ induces two linear maps:

ϕL : U → V ∗, ϕL(u) : V → F

v 7→ ϕ(u, v)

ϕR : V → U∗, ϕR(v) : U → F

u 7→ ϕ(u, v)

In particular, by the very definition
∀(u, v) ∈ U × V

ϕL(u)(v) = ϕ(u, v) = ϕR(v)(u)
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Lemma 2.11 (Writing left and right maps in terms of bases). B = (e1, . . . , em) basis of U
B∗ = (ε1, . . . , εm) dual basis
C = (f1, . . . , fm) basis of V
C∗ = (η1, . . . , ηm) dual basis
Let A = [ϕ]B,C , then

[ϕR]C,B∗ = A, [ϕL]B,C∗ = AT

Proof.
ϕL(ei)(fj) = ϕ(ei, fj) = Aij

=⇒ ϕL(ei) =
∑

Aijηj

ϕR(fj)(ei) = ϕ(ei, fj) = Aij

=⇒ ϕR(fj) =
∑
i

Aijεi

Definition.
kerϕL ≡ left kernel of ϕ

kerϕR ≡ right kernel of ϕ

Definition. We say that ϕ is non-degenerate if

kerϕL = {0} and kerϕR = {0}

Otherwise, we say that ϕ is degenerate

Lemma 2.12 (non degenerate iff invertible). B basis of U and C basis of V (U, V finite dimensional)

ϕ : U × V → F bilinear form

A = [ϕ]B,C

Then ϕ non degenerate ⇐⇒ A is invertible

Proof. ϕ non degenerate iff both kernels {0} iff

n(AT ) = 0 and n(A) = 0

⇐⇒ r(AT ) = dimU and r(A) = dimV

⇐⇒ A invertible

and this forces dimU = dimV

Corollary 2.13 (non-degenerate forces same dimension). If ϕ is non degenerate then

dimU = dimV
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Remark. Cannonical example of non degenerate bilinear form

Rn × Rn → R

(x, y) 7→
n∑
i=1

xiyi

Corollary 2.14 (choosing non degenerate bilinear form same as choosing isomorphism). When U
and V are finite dimensional with the same dimension, then choosing a non degenerate bilinear form
ϕ : U × U → F is equivalent to choosing an isomorphism ϕL : U → V ∗

Definition. (i) T ⊂ U , we define

T⊥ = {v ∈ V : ϕ(t, v) = 0,∀t ∈ T}

(ii) S ⊂ V
⊥S = {u ∈ U : ϕ(u, s) = 0∀s ∈ S}

“orthogonal” of respectively T and S

Prop 2.15 (Change of basis formula for bilinear forms). B,B′ basis of U , P = [Id]B′,B
C, C′ basis of V , Q = [Id]C′,C

ϕ : U × V → F bilinear form

then:
[ϕ]B′,C′ = PT [ϕ]B,CQ

Proof.

ϕ(u, v) = [u]TB [ϕ]B,C [v]C

= (P [u]B′)
T [ϕ]B,C(Q[v]C′)

= [u]TB′(P
T [ϕ]B,CQ)[v]C′

= [u]TB′ [ϕ]B′,C′ [v]C′

Definition. The rank of ϕ (r(ϕ)) is the rank of any matrix representing ϕ

Remark.
r(ϕ) = r(ϕR) = r(ϕL)

where we used r(A) = r(AT )
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3 Determinant and Traces

3.1 Trace

Definition. Let A = Mn(F ) (square matrix of size n). We definethe trace of A as

tr A =

n∑
i=1

Aii

Remark. Mn(F )→ F , A 7→ tr A is a linear form

Lemma 3.1 (Can cycle around when working out trace).

Tr(AB) = Tr(BA),∀A,B ∈Mn(F )

Proof.

Tr(AB) =

n∑
i=1

 n∑
j=1

aijbji


=

n∑
j=1

n∑
i=1

bjiaij

= Tr(BA)

Corollary 3.2. Similar matrices have the same trace

Proof. trivial

Definition. If α : V → V linear, we can define Tr(α) = Tr([α]B) in any basis B

Lemma 3.3 (Trace of map same as trace of dual). α : V → V linear. α∗ : V ∗ → V ∗ dual map. Then

Tr α = Tr α∗

Proof. Trivial by choosing a basis then trace of transpose same.
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3.2 Determinants
3.2.1 Permutations and Transpositions

Definition. Sn ≡ group of permutations of {1, 2, . . . , n},

σ : {1, . . . , n} → {1, . . . , n} bijection

σ is a permutation

Definition. k 6= l, τkl∈ Sn exchanges k and l, other elements are unchanged

Remark. Recall any permutation σ can be decomposed as a product of transpositions

σ =

nσ∏
i=1

τi

τi transposition

Definition. The signature of a permutation

ε : Sn → {−1, 1}

σ 7→

{
1 if nσ even
0 if nσ odd

ε is a homomorphism:
ε(σ ◦ σ′) = ε(σ)ε(σ′)

Definition (Leibniz Formula). For

A ∈Mn(F ), A = (aij)1≤i≤n,1≤j≤n

we define the determinant of A:

detA =
∑
σ∈Sn

ε(σ)aσ(1)1aσ(2)2 . . . aσ(n)n

has n! summands and one term for each column and each row

Lemma 3.4 (Upper triangular has determinant zero). If A = (aij) is an upper (lower) trianglar
matrix:

aij = 0 for i ≥ j (resp i < j)

then detA = 0

Proof. Some term in the summand is zero (need σ(j) ≤ j)
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Lemma 3.5 (Determinant of transpose is the same).

detA = detAT

Proof. Same proof as in Vectors and Matrices, change sum by summing σ−1 instead

Definition. A volume form d on Fn is a function

Fn × · · · × Fn︸ ︷︷ ︸
n

→ F

such that
(i) d multilinear: for any 1 ≤ i ≤ n, ∀(v1, . . . , vi−1, vi+1, . . . , vn) ∈ Fn × · · · × Fn

Fn → F, v 7→ d(v1, . . . , vi−1, vi, vi+1, . . . , vn)

is linear (∈ (Fn)∗). I.e. d linear with respet to any entry
(ii) d alternate: if v1 = vj for some i 6= j, then

d(v1, . . . , vn) = 0

We want to show that (up ot multiplication by a scalar), there is only one volume form on Fn×· · ·×Fn
and it is given by the determinant.

Lemma 3.6 (Mapping columns to determinant is volume form). Let

A = (aij) =
[
A(1) | . . . | A(n)

]
Then

(A(1), . . . , A(n)) 7→ detA

is a volume form

Proof. (i) True as product only contains one term in each column
(ii) Consider τ which exchanges k and l for k 6= l. Then aij = aiτj and since

Sn = An ∪ τAn

we can compute detA using the disjoin decomponsition and see that σ ∈ An cancels
with σ ∈ τAn
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Lemma 3.7 (Volume forms change sign on swapping two entries). Let d be a volume form. Then
swapping two entries changes the sign:

d(v1, . . . , vi, . . . , vj , . . . , vn) = −d(v1, . . . , vj , . . . , vi, . . . , vn)

Proof. Indeed
d(v1, . . . , vi + vj , . . . , vi + vj , . . . , vn) = 0

Then we apply linearity

Corollary 3.8 (Calculating volume form of permutation of columns). σ ∈ Sn, d volume form

d(vσ(1), . . . , vσ(n)) = ε(σ)d(v1, . . . , nn)

Proof.

σ =

nσ∏
i=1

τi

where τi are transpositions

Theorem 3.9 (Computing volume form on columns of a matrix). Let d be a volume form on Fn.
Let A =

[
A(1) | . . . | A(n)

]
. Then

d(A(1), . . . , A(n)) = (detA)d(e1, . . . , en)

detA is the only volume form such that

d(e1, . . . , en) = 1

Proof. Write out coordinates and keep applying linearity and recognise d is alternate so
require all the ik to be different so rewrite as a permutation and use above corollary

Corollary 3.10 (Significance of det). det is the unique volume form such that d(e1, . . . , en) = 1
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3.3 Some Properties of Determinants

Lemma 3.11 (Det is multiplicative). Let A,B ∈Mn(F ). Then

det(AB) = (detA)(detB)

Proof.
dA : Fn × · · · × Fn → F

(v1, . . . , vn) 7→ det(Av1, . . . , Avn)

dA is multilinear (vi 7→ Avi is linear) as det multilinear.
dA is alternate: (trivial check)
Thus dA is a volume form so ∃CA s.t.

dA(va, . . . , vn) = CA det(v1, . . . , vn)

And letting vi = ei gives us CA = detA.
Then consider dA(B1, . . . , Bn).

Definition. A ∈Mn(F ), we say that:
(i) A is singular if detA = 0
(ii) A is non singular if detA 6= 0

Lemma 3.12 (Invertible implies non-singular). A is invertible =⇒ A is non singular

Proof. A invertible =⇒ ∃A−1 ∈Mn(F ) s.t.

AA−1 = A−1A = In

=⇒ det
(
AA−1

)
= (detA)[det(A)

−1
]

=⇒ detA 6= 0

Remark. We have proved that A ivertible =⇒ detA 6= 0 and

det
(
A−1

)
=

1

detA
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Theorem 3.13 (Invertible ⇐⇒ non-singular ⇐⇒ r(A) = n). Let A ∈Mn(F ). TFAE
(i) A is invertible
(ii) A is non singular
(iii) r(A) = n

Proof. (i) ⇐⇒ (iii) done (rank-nullity Theorem)
(i) =⇒ (ii) is Lemma above. Need to show that (ii) =⇒ (iii). Assume r(A) < n. Let us
show that

detA = 0

r(A) < n =⇒ dim textSpan(A1, . . . , An) < n

=⇒ ∃(λ1, . . . , λn) 6= (0, 0, . . . , 0) s.t.
n∑
i=1

λiAi = 0

Let’s say λj 6= 0, then:

Aj = − 1

λj

∑
i 6=j

λiAi

=⇒ detA = det(A1, . . . , Aj , . . . , An)

= det

A1, . . . ,−
1

λj

∑
i 6=j

λiAi, . . . , An


= − 1

λj

∑
i6=j

det(A1, . . . , Ai, . . . , An)

= 0

Remark. Theorem gives the sharp critereon for invertibility of a set on n linear equations with n
unknowns:

Y ∈ Fn, A ∈Mn(F )

AX = Y with X ∈ Fn has a unique solution X for every Y

⇐⇒ detA 6= 0

Lemma 3.14 (Determinant property of the linear map). Conjugate matrices have the same deter-
minant

Proof. trivial

Definition. α : V → V linear. We define

detα = det[αB]

where B is any basis of V . This number does not depend on the choice of the basis.
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Theorem 3.15 (Reformulation of previous facts in terms of linear maps).

det : L(V, V )→ F

satisfies:
(i)

det Id = 1

(ii)
det(αβ) = (detα)(detβ)

(iii)
detα 6= 0 ⇐⇒ α is invertible

and in this case:
det
(
α−1

)
=

1

detα

Proof. reformulation of above

Lemma 3.16 (Determinant of matrices with corner block of 0s). A ∈ Mk(F ), B = Ml(F ), C ∈
Mk,l(F ). Let

N =

[
A C
0 B

]
∈Mn(F )

for n = k + l, then detN = (detA)(detB)

Proof. I need to compute

detN =
∑
σ∈Sn

ε(σ)

n∏
i=1

aσ(i)i (*)

Observe mσ(i)i = 0 if i ≤ k, σ(i) > k. Thus, in (*), we need only sum over σ ∈ Sn such that
(i)

∀j ∈ [1, k], σ(j) ∈ [1, k]

([1, k] = {1, . . . , k})
(ii)

∀j[k + 1, n], σ(j) ∈ [k + 1, n]

(iii) In other words, in (*), we can consider σ decomposed into σ1 permuting {1, . . . , k} and
σ2 permuting {k + 1, . . . , n}

detN =
∑

σ1∈Sk,σ2∈Sl

ε(σ1)ε(σ2)

k∏
i=1

aσ1(i)i

n∏
i=k+1

bσ(k)k = (detA)(detB)
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Corollary 3.17 (determinant of diagonal blocks with 0s below). A1, . . . , AN are square matricies,
then:

det


A1

A2

. . .
AN

 = (detA1) . . . (detAN )

Proof. Induct on number of blocks

Warning.

det

[
A C
D B

]
6= detA detB − detC detD

for A,B,C,D square

Remark. (i) Reasoning behind name ’volume form’

R3 × R3 × R3 → R

(a, b, c) 7→ (a× b) · c

where

a× b =

a1a2
a3

×
b1b2
b3

 =

a2b3 − a3b2a3b1 − a1b3
a1b2 − a2b1


Considering a parallelopiped with edges vectors a, b, c, we see

d(a, b, c) = signed volume of parallelopiped

(ii)
det(a, b, c) = (a× b) · c

3.4 Adjugate Matrix

Equation. For A ∈ MN (F ), A = (A(1)| . . . |A(n)). We have that swapping two columns in determi-
nant swaps the sign. Since detA = detAT , we similarly see that swapping two rows chances the sign
of the determinant

Remark. We could prove all properties of determinants using the decomposition of A into elementary
matrices.

3.5 Column (row) Expansion and the Adjugate Matrix

Column expansion aims to reduce the computation of n×n determinants to (n−1)×n−1) determinants
to reduce dimension
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Definition. For A ∈Mn(F ), pick i, j ∈ {1, . . . , n}. We define

Aîj ∈Mn−1(F )

obtained by removing the i-th row and the j-th column from A.

Example.

A =

 1 2 7
2 1 0
−3 6 1


A3̂2 =

[
1 −7
2 0

]
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Lemma 3.18 (Expansion of the Determinant). Let A ∈Mn(F )
(i) Expansion with respect to the j-th column: pick 1 ≤ j ≤ n, then:

detA =

n∑
i=1

(−1)i+jaij detAîj (*)

(ii) Expansion with respect to the i-th row: pick 1 ≤ i ≤ n, then

detA =

n∑
j=1

(−1)i+jaij detAîj

Proof. Expansion with respect to the j-th column (row expansion formula then follows by
taking transpose). We have result as a direct consequence of the volume form property: pick
1 ≤ j ≤ n

A(j) =

n∑
i=1

aijej , (ei)1≤i≤n

Canonical basis

detA = det

(
A(1), · · ·

n∑
i=1

aijej , . . . , A
(n)

)

=

n∑
i=1

aij det
(
A(1)| . . . |ei| . . . , A(n)

)

det
(
A(1)| . . . |ei| . . . , A(n)

)
= (−1)j−1 det

(
ei|A(2)| . . . |A(n)

)

= (−1)j−1(−1)i−1 det


1 ai1 ai2 . . . ain
0
... Aîj
0


= (−1)i+j detAîj

We have proved

detA =

n∑
i=1

(−1)i+jaij detAîj

Remark. We have proved that

det
(
A(1), . . . , A(j−1), ei, A

(j+1), . . . , A(n)
)

= (−1)i+j det
(
Aîj

)
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Definition (Adjugate matrix). Let A ∈ Mn(F ). The adjugate matrix adj(A) is the n × n matrix
with (i, j) entry given by:

(−1)i+j det
(
Aĵi

)
det
(
A(1), . . . , A(j−1), ei, A

(j+1), . . . , A(n)
)

= (adj(A))ji

Theorem 3.19 (Adjugate key property). Let A ∈Mn(F ), then

adj(A)A = (detA)Id =

detA 0

0
. . .

0 detA


In particular, when A is invertible:

A−1 =
1

detA
adj(A)

Proof. We just proved:

detA =

n∑
i=1

(−1)i+j detAîjaij =

n∑
i=1

(adj(A))jiaij = (adj(A)A)jj

For j 6= k, we have

0 = det
(
A(1), . . . , A(k), . . . , A(k), . . . , A(n)

)
= det

(
A(1), . . . ,

n∑
i=1

aikei, . . . , A
(k), . . . , A(n)

)

=

n∑
i=1

(adj(A))jiaik

= (adj(A)A)jk
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3.6 Cramer Rule

Prop 3.20 (Solving linear equations). Let A ∈ Mn(f) invertible and let b ∈ Fn. Then the unique
solution to Ax = b is given by

xi =
1

detA
det(Aîb), 1 ≤ i ≤ n

where Aîb is the matrix obtained by replacing the ith column of A by b

Proof. A invertible implies ∃!x ∈ Fn : Ax = b. Let x be this solution, then:

det(Aîb) = det
(
A(1), . . . , A(i−1), b, A(i+1). . . . , A(n)

)
= det

(
A(1), . . . , A(i−1), Ax,A(i+1), . . . , A(n)

)
= xi det

(
A(1), . . . , A(i), . . . , A(n)

)
= xi detA
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4 Eigenvectors, Eigenvalues and Trigonal Matrices

Moral. This is the first step twoards diagonalisation of endomorphisms

Let V be a vector space over F with dimV = n < +∞. Let α : V → V be a linear map (endomorphism
of V ). Can we find a basis B of V such that in this basis,

[α]B = αB,B

has a “nice” form?

Equation. Reminder: If B′ is another basis and P is the change of basis matrix,

[α]B′ = P−1[α]BP

Definition. (i) α ∈ L(V ) (α : V → V linear) is diagonalisable if ∃B basis of V such that

[α]B =

λ1 . . .
λn

 (diagonal)

(ii) α is triangulable if ∃B basis of V such that [α]B is triangulat.

[α]B =

λ1 ∗ ∗
. . . ∗

λn



Remark. This can be expressed equivalently in terms of conjugation of matrices

Definition. (i) λ ∈ F is an eigenvalue of α ∈ L(V ) iff:

∃v ∈ V \{0} : α(v) = λv

(ii) v ∈ V is an eigenvector of α iff

v 6= 0 and : ∃λ ∈ F : α(v) = λv

(iii)
Vλ = {v ∈ V : α(v) = λv} ≤ V

is the eigenspace associated to λ
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Lemma 4.1 (Eigenvalue in terms of determinant). α ∈ L(v), λ ∈ F . λ an eigenvalue ⇐⇒
det(a− λ Id) = 0

Proof.

λ eigenvalue ⇐⇒ ∃v ∈ V \{0} : α(v) = λv

⇐⇒ ∃v ∈ V \{0} : (α− λ Id)(v) = 0

⇐⇒ ker(α− λ Id) 6= {0}
⇐⇒ α− λ Id nor injective
⇐⇒ α− λ Id not surjective
⇐⇒ α− λ Id not invertible
⇐⇒ det(α− λ Id) = 0

Remark. If α(vj) = λvjj, vj eigenvector, vj 6= 0. I can complete (v1, . . . , vj , . . . , vn) = B basis of V

4.1 Elementary Facts About Polynomials

For F a field,
• For

f(t) = ant
n + · · ·+ ant+ a0, ai ∈ F

n is the largest exponent such that an 6= 0, n = deg f
• deg{f + g} ≤ max{deg f, deg g}
• deg fg = deg f + deg g
• F [t] = {polynomials with coefficients in F}
• λ root of f ⇐⇒ f(λ) = 0

Lemma 4.2 (root of polynomial gives factor). λ root of f =⇒ (t− λ) divides f

Proof.
f(t) = ant

n + · · ·+ a1t+ a0

f(λ) = anλ
n + · · ·+ a1λ+ a0 = 0

=⇒ f(t) = f(t)− f(λ)

= an(tn − λn) + · · ·+ a1(t− λ)

Remark. We say that λ is a root of multiplicity k if (t− λ)k divides f , but (t− λ)k+1 does not.

f(t) = (t− λ)kg(t), g(λ) 6= 0
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Corollary 4.3 (Bound on number of roots). A non-zero polynomial of degree n (≥ 0) has at most
n roots (counted with multiplicity)

Proof. Induction on the degree

Corollary 4.4 (Agreeing on too many points implies equivalent). For f1, f2 polynomials of degree
< n s.t.

ft(ti) = f2(ti), (ti)1≤i≤n n distinct values

we have f1 ≡ f2

Proof. f1 − f2 has degree < n and n distinct roots so f1 − f2 ≡ 0

Theorem 4.5 (FTA). Any f ∈ C[t] of positive degree has a (complex) root, hence exacty deg f roots
when counted with multiplicity

Note. f ∈ C[t] = c
∏r
i=1(t− λi)αi , c ∈ C, λi ∈ C, αi ∈ N+

Definition. For α ∈ L(v), the characteristic polynomial of α is

χα(λ) = det(α− λ Id)

Remark. The fact that χα is a polynomial in λ follows from the very definition of the determinant

Remark. Conjugate matrices have the same characteristic polynomial: (trivial to show)
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Theorem 4.6 (Triangulable same as being able to write char poly as linear factors). α ∈ L(V ) is
triangulable ⇐⇒ χα(t) can be written as a product of linear factors over F :

χα(t) = c

n∏
i=1

(t− λi)

If F = C, every matrix is triangulable

Proof. =⇒ : suppose α triangulable

[α]B =

a1 − t 0
. . .

0 an − t

 =

n∏
i=1

(ai − t)

⇐= : we argue by induction on n = dimV :
• n = 1 trivial
• n > 1 by assumption, let χα(t) have a root λ. Then:

χα(λ) = 0 ⇐⇒ λ eigenvalue of α

Let U = Vλ ≡ eigenspace associated to λ. Let (v1, . . . , vk) be a basis of U . We complete
it to (vk+1, . . . , vn) basis of V . Span(vk+1, . . . , vn) = W , V = U ⊕W . B = (v1, . . . , vn)

[α]B =

[
λ Id ∗

0 C

]
α induces an endomorphism: α : V/U → V/U , C represents α wrt (vk+1+U, . . . , vn+U).
By induction (since k ≥ 1), we know that we can find a basis (ṽk+1, . . . , ṽn) in which C
has a a triangular form T .

[α]B̃ =

[
λ Id ∗

0 T

]
=⇒ α has a triangular form

Lemma 4.7 (Char poly coefficients). If V is n dimensional over F = R or C and α ∈ L(V ). Then:

χα(t) = (−1)ntn + cn−1t
n−1 + · · ·+ c1t+ c0

with cn−1 = Trα and c0 = detα

Proof.
χα(t) = det(α− t Id)

χα(0) = detα = c0

F = R,C, we know that α is triangulable over C:

χα(t) =

a1 − t . . .
an − t

 =

n∏
i=1

(ai − t)

which gives us the form as desired once we expand

54



5 Diagonalisation Critereon and Minimal Polynomial

Notation. For p(t) polynomial over F and p(t) = ant
n + · · · + a1t + a0, ai ∈ F . For A ∈ Mn(F ),

we define
p(A) = anA

n + · · ·+ a1A+ a0 Id ∈Mn(F )

α ∈ L(V ), (α : V → V linear)

p(α) = anα
n + · · ·+ a1α+ a0 Id ∈ L(V )

αn = α ◦ · · · ◦ α︸ ︷︷ ︸
n
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Theorem 5.1 (Sharp Criterion of Diagonalisability). If V is a vector space over F with dimV =
n < +∞, α ∈ L(V ), then α is diagonalisable ⇐⇒ ∃ a polynomial p which is a product of distinct
linear factors such p(α) = 0

Proof. α diagonalisable ⇐⇒ ∃(λ1, . . . , λk) distinct such that

p(t) =

k∏
i=1

(t− λi) =⇒ p(α) = 0

=⇒ : Suppose that α is diagonalisable, with (λ1, . . . , λk) the k distinct eigenvalues. Let

p(t) =

k∏
i=1

(t− λi)

Let B be a basis of V formed of eigenvectors. Let v ∈ B s.t. α(v) = λiv for some i. Then

(α− λi Id)(v) = 0 =⇒ p(α)(v) =

k∏
i=1

(α− λi Id)︸ ︷︷ ︸
commute

(v) = 0

=⇒ ∀v ∈ B, [p(α)](v) = 0

=⇒ p(α) = 0

⇐= : Suppose p(α) = 0 for some p(t) =
∏k
i=1(t− λi) with λi 6= λj for i 6= j.

Let Vλi = ker(α− λi Id). We claim:

V =

k⊕
i=1

Vλi (*)

Indeed, let us consider the polynomials:

qj(t) =

k∏
i=1,i6=j

(t− λi)
(λj − λi)

, 1 ≤ j ≤ k

By definition:

qj(λi) =

{
1 for i = j

0 for i 6= j
= Sij

Let us define the polynomial
q(t) = q1(t) + · · ·+ qk(t)

this has degree at most k − 1. On the other hand: for 1 ≤ i ≤ k

q(λi) = 1 =⇒ q(t) = 1 ∀t

=⇒ ∀t, q1(t) + · · ·+ . . . qk(t) = 1 (**)
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Proof (continued). Let us consider (projection factor),

Πj = qj(α) ∈ L(V )

for 1 ≤ j ≤ k. Then by construction, for (**)

k∑
j=1

Πj =

k∑
j=1

qj(α) = Id

k∑
j=1

qj(t) = 1 =⇒
k∑
j=1

qj(α) = Id

=⇒ ∀v ∈ V, Id(v) = v =

k∑
j=1

Πj(v) ⇐⇒ v =

k∑
j=1

qj(α)(v)

Observe

(α− λj Id)qj(α)(v) =
1∏

i 6=j(λj − λi)
(α− λj Id)[

k∏
i=1,i6=j

(t− λi)](α)(v)

=
1∏

i 6=j(λj − λi)

k∏
i=1

(α− λi Id)(v) = 0 ∀v ∈ V

This means
(α− λj Id)qj(α)(v) = 0 ∀v ∈ V

=⇒ (α− λj Id)Πj(v) = 0

=⇒ Πj(v) ∈ ker(α− λj Id) = Vj ∀v ∈ V
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Proof (continued). We have proved ∀v ∈ V

v =

k∑
j=1

Πj(v)︸ ︷︷ ︸
∈Vj

V = +k
j=1Vj

It remains to show that the sum is direct: indeed for v ∈ Vλj ∩ (
∑
i6=j Vλi), we need to show that

v = 0. Let us apply Πj to v ∈ Vλj ∩ (
∑
i 6=j Vλi). For v ∈ Vλj :

Πj(v) = qj(α)(v) =

k∏
i=1,i6=j

(α− λi Id)(v)

(λj − λi)
=

k∏
i=1,i6=j

(λi − λi)
(λj − λi)

v = v

(Πj is the projector onto Vλj ). For v ∈
∑
i 6=j Vλi =

∑
i6=j ωi, ωi ∈ Vλi :

Πj(ωi) = Πk
m=1,m 6=j

(α− λj Id)(ωi)

(λm − λj)
= 0

=⇒ Πj(v) =
∑
i6=j

Πj(ωi) = 0

=⇒ Πj(v) = 0

But v = Πj(v) =⇒ v = 0 so

+k
i=1Vλi =

k⊕
i=1

Vλi

We have proved

V =

k⊕
i=1

Vλi

B = (B1, . . . ,Bk) with Bi basis of Vλi has B basis of V and so [α]B is diagonal

Remark. We have shown something more general: if λ1, . . . , αj are k distinct eigenvalues of α, then
the sum

k∑
i=1

Vλi =

k⊕
i=1

Vλi

The only way diagonalisation fails is if
k∑
i=1

Vλi < V

Example. Many applications of the diagonalisation critereon, F = C, A ∈Mn(F ) such: A has finite
order ⇐⇒ ∃m ∈M s.t.Am = Id =⇒ A is diagonalisable

tm − 1 = p(t) =

m−1∏
j=0

(t− ξjm)

where ξm = eαiπ/m has p(A) = 0
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Theorem 5.2 (Simultaneous Diagonalisation). Let α, β ∈ L(V ) diagonalisable. Then α, β are si-
multaneously diagonalisable (i.e. there exists a basis in which α, β have a diagonal matrix) iff α and
β commute

Proof. =⇒ : ∃B s.t [α]B = D1 and [β]B = D2 with D − 1, D2 diagonal, then

D1D2 = D2D1 =⇒ αβ = βα

⇐= : Suppose α, β diagonalisable

V = Vλ1 ⊕ · · · ⊕ Vλk

λ1, . . . , λk are the k distinct eigenvalues of α

Claim.
β(Vλj ) ≤ Vλj

(Vλj is stable by β)

Indeed: for v ∈ Vλj ,

αβ(v) = βα(v) = β(λjv) = λjβ(v) =⇒ α(β(v)) = λjβ(v)

=⇒ β(v) ∈ Vλj
By assumption, β is diagonalisable so ∃p with distinct linear factors such that p(β) = 0. Now

β(Vλj ) ≤ Vλj =⇒ B|Vλj ∈ L(Vλj )

I can compute p(β|Vλj ) = 0 so β|Vλj is diagonalisable. Now I take the Bi basis of Vλi in which
β|Vλi is diagonal

Reminder: Euclidean algorithm for polynomials: given a, b polynomials over F with b 6= 0, there exist
polynomials q, r over F with

deg r < deg b

a = qb+ r

Definition. For V vector space over F , α ∈ L(V ), dim(V ) < +∞, the minimal polynomial mα

of α is the non-zero polynomial with smallest degree such that

mα(α) = 0

Remark. For dimF V = n < +∞ α ∈ L(V ), have dimF L(V ) = n2 hence {Id , α, . . . , αn2} cannot
be free

=⇒ ∃(a0, . . . , an) 6= (0, . . . , 0)

s.t.
a0 Id + a1α+ · · ·+ an2αn

2︸ ︷︷ ︸
p(α)

= 0
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Lemma 5.3 (minimal polynomial indeed minimal). For α ∈ L(V ), p ∈ F [t], we have p(α) = 0 ⇐⇒
mα is a factor of p (mα divides p). (in particular, mα is well defined)

Proof. degmα < deg p by minimality so Euclidean algorithm gives p = mαq+ r with deg r <
degmα so

p(α) = 0 = mα(α)q(α) + r(α)

=⇒ r(α) = 0

so r ≡ 0 =⇒ mαq
In particular, if m1,m2 are both minimal polynomials that kill α, then m2 divides m1 and
vice versa so m2 = cm1, c ∈ F

Examples. V = F 2

A =

[
1 0
0 1

]
, B =

[
1 1
0 1

]
p(t) = (t− 1)2 =⇒ p(A) = p(B) = 0
minimal polynomial (of A or B) has to be either t− 1 or (t− 1)2. We can check mA = t− 1, mB =
(t− 1)2. Thus A is diagonalisable but B is not diagonalisable

5.1 Cayley-Hamilton Theorem and Multiplicity of Eigenvectors

Theorem 5.4 (Cayley Hamilton). Let V be a F vector space, dimF V < +∞. Let α ∈ L(V ) with
characteristic polynomial

χα = det(α− t Id)

then
χα(α) = 0

Proof. For F = C,B = {v1, . . . , vn} and n = dimF V

[α]B =

a1 ∗
. . .
0 an


Let Uj = span{v1, . . . , vj}

χ)α(t) =

n∏
i=1

(ai − t)

χα(α) = (α− a1 Id) . . . (α− an−1 Id)(α− an Id)

for v ∈ V = Un

χα(α)(v) = (α− a1 Id) . . . (α− an−1 Id) (α− an Id)(v)︸ ︷︷ ︸
∈Un−1

= (α− a1 Id)(v)

= 0

60



Proof (alternative). For any field F . A ∈Mn(F )

det(t Id−A) = (−1)nχA(t)

= tn + an−1t
n−1 + · · ·+ a0

For any matrix B, we have proved

B · adj(B) = (detB) Id (*)

Applying (*) to B = t Id−A. Let

adj(B) = Bn−1t
n−1 + · · ·+B1t+B0

(*) gives us

(t Id−A)[Bn−1t
n−1 + · · ·+B1t+B0] = (tn + an−1t

n−1 + · · ·+ a1t+ a0)I

Equating coefficients of tk, we get:

Id = Bn−1

an−1 Id = Bn−2 −ABn−1
...

a0 Id = −ABn

Multiplying the top by An, second by An−1 etc. and summing both sides yields

An + an−1A
n−1 + · · ·+ a0 Id = 0 (**)

Definition. For dimF V = n < +∞, α ∈ L(V ) where λ an eigenvalue of α, χα(t) = (t−λ)aλq(t) for
q ∈ F [t], (t − λ) - q has aλ is the algebraic multiplicity of λ. We define gλ = dim ker(α − λ Id) is
the geometric multiplicity of λ (it is the dimension of the eigenspace associated to λ)

Remark. λ eigenvalue ⇐⇒ χα(λ) = 0

Lemma 5.5 (A.M ≥ G.M.). λ eigenvalue of α(V ) implies 1 ≤ gλ ≤ aλ

Proof.
gλ = dim ker(α− λ Id)

λ eigenvalue =⇒ ∃v 6= 0 : v ∈ ker(α−λ Id). So gλ = dim ker(α−λ Id) ≥ 1. Let (v1, . . . , vgλ)
be a basis of Vλ = ker(α− λ Id). Complete it to a basis B = (v1, . . . , vgλ , vgλ+1, . . . , vn) then

[α]B =

[
λ Idgλ ∗

0 A1

]
for some A1 and so

det(a− t Id) = (λ− t)gλ det(A1 − t Id)︸ ︷︷ ︸
polynomial

=⇒ gλ ≤ aλ
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Lemma 5.6 (Minimal multiplicity ≤ algebraic multiplicity). Let λ be an eigenvlaue of α. Let cλ be
the multiplicity of λ as a root of the minimal polynomial mα. Then 1 ≤ cλ ≤ aλ

Proof. Caycley-Hamilton:
χα(α) = 0 =⇒ mα | χα

=⇒ cλ ≤ aλ
cλ ≥ 1 as if λ an eigenvalue then ∃v 6= 0 : α(v) = λv and so αpv = λpv

Example.

A =

1 0 −2
0 2 2
0 0 2


χA(t) = (t− 1)2(t− 2)

mA is either
• (t− 1)2(t− 2)
• (t− 1)(t− 2)

we have (ii) hods so A is diagonalisable

Lemma 5.7 (Characterization of diagonalisable endomorphisms for F = C). Have F = C. V an F
vector space with dimF <∞, α ∈ L(V ). TFAE:
(i) α is diagonalisable
(ii) ∀λ eigenvalue of α, aλ = gλ
(iii) ∀λ eigenvalue of α, cλ = 1

Proof. (i) ⇐⇒ (iii): already done.
(i) ⇐⇒ (ii): let (λ1, . . . , λk) be the distinct eigenvalues of α. We showed: α diagonalisable
⇐⇒ V =

⊕k
i=1 Vλi

dimV = n =

k∑
i=1

aλi

dim

k⊕
i=1

Vλi =

k∑
i=1

dimVλi = gλi

and since ∀1 ≤ i ≤ k, gλi ≤ aλi , we have equality iff ∀1 ≤ i ≤ k, gλi = aλi
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6 Jordan Normal Form

Remark. In this chapter, F = C

Definition. Let A ∈ Mn(C), we say that A is in Jordan Normal Form (JNF) if it is a block
diagonal matrix:

A =


Jn1(λ1)

Jn2(λ2)
. . .

Jnk(λk)


where k ≥ 1 nad n1, . . . , nk integers satisfying

k∑
i=1

ni = n

(need not be distinct). For m ≥ 1, λ ∈ C, define Jm(λ)

J1(λ) =
[
λ
]

Jm(λ) =


λ 1 0

. . . . . .

0
. . . 1

λ


(Jm(λ) is a Jordan Block)

Remark. for n = 3

A =

λ 0
0 λ 0

λ


is in jordan normal form as we have J1(λ) on diagonal

Theorem 6.1 (Can write in JNF in C). Every matrix A ∈ Mn(C) is similar to a matrix in JNF,
which is unique up to reordering of the Jordan block

Proof. Non examinable

Example. for n = 2, the possible JNF in this case[
λ1 0
0 λ2

]
,

[
λ 0
0 λ

]
,

[
λ 1
0 λ

]
Characterised by minimal polynomials

63



Theorem 6.2 (Generalised eigenspace decomposition). For V a C vector space, dimC V = n < +∞,
α ∈ L(V ), and mα(t) = (t− λ)c1 . . . (t− λ2)ck where (λi) are the distinct eigenvalues of α then:

V =

k⊕
j=1

Vj

where
Vj = ker[(α− λj Id)cj ]

Proof. The key is that projectors onto Vj are “explicit”.
Indeed

mα(t) =

k∏
j=1

(t− λcjj )

We introduce
pj(t) =

∏
i 6=j

(t− λi)ci

Then the pj polynomials have no common factor, so by Euclid’s algorithm, we can find poly-
nomials q1, . . . , qk

k∑
i=1

qipi = 1

define the projectors
Πj = qjpj(α)

(i) by construction

k∑
j=1

Πj(v) = (

k∑
j=1

qjpj)(α(v))

= Id (v)

= v

=⇒ ∀v ∈ V, v =

k∑
j=1

Πj(v)

(ii) Πj(v) ∈ Vj (trivial check) we have shown

V =

k∑
j=1

Πj(v) = +k
j=1Vj

(iii) We need to show that the sum is direct. We have ΠiΠj = 0 if i 6= j

Πi = Πi(

k∑
j=1

Πj) = Π2
i

=⇒ Πi|Vj =

{
Id if i = j

0 if i 6= j

This immediately implies the direct sum property (trivial)
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Remark. Vj is stable by α: α(Vj) ≤ Vj .
Let (α− λj Id)|Vj = uj . Then uj is a nilpotent endomorphism i.e.:

u
cj
j = 0

thus the JNF decomposition is now a statement about nilpotent matrices

Notation. Vj = ker[(α− λj Id)] ≡ generalized eigenspace associated to λj

Remark. When α is diagonalisable, cj = 1 and hence theorem holds

Remark. We can compute on the JNF the quantities aλ, gλ, cλ.
• Indeed, let m ≥ 2, Considering (Jm − λ Id)2, we get

(Jm − λ Id)k =

[
0 Im−k
0 0

]
for k < m and 0 for k = m. Thus (Jm − λ Id) is nilpotent of order exactly m.

• aλ = sum of sizes of blocks with eigenvalue λ
• gλ = number of blocks with eigenvlaue λ
• cλ = size of the largest block with eigenvalue λ

Example.

A =

[
0 −1
1 2

]
To find a basis where A is JNF:
(i)

χA(t) = (t− a)2

so have one eigneigenvalue λ = 1 so our JNF is[
1 1
1 0

]
(ii) Eigenvectors:

ker(A− Id) = 〈v1〉, v1 =

[
1
−1

]
Look for v2 s.t.

(A− Id)v2 = v1

and v2 =

[
−1
0

]
works.

P−1 =

[
1 −1
−1 0

]
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7 Bilinear Forms

Have ϕ : V ×V → F a bilinear form in this section, n = dimF V <∞, B basis of V , B = (e1, . . . , en).
[ϕ]B = [ϕ]B,B = (ϕ(ei, ej))1≤i,j≤n

Lemma 7.1 (Change of basis for bilinear forms). For ϕ : V × V → F a bilinear form with B,B′
bases for V and with P = [ Id]B′,B. We have

[ϕ]B′ = PT [ϕ]BP

Proof. Special case of general formula

Definition. We say A,B ∈Mn(F ) are congruent if ∃P ∈Mn(F ) invertible s.t.:

A = PTBPT

Remark. This defines an equivalence relation

Definition. A bilinear form ϕ on V is symmetric if:

ϕ(u, v) = ϕ(v, u), ∀u, v ∈ V

Remark. For A ∈Mn(F ), we say that A is symmetric if AT if

AT = A

or equivalently
A = (aij)1≤i,j≤n, aij = aji

ϕ is symmetric ⇐⇒ [ϕ]B is symmetric in any basis B. To be able to represent ϕ by a diagonal
matrix in some basis B, it is necessary that ϕ is symmetric:

PTAP = D =⇒ DT = PTATP

which implies AT = A, so ϕ is symmetric

Definition. A map Q : V → F is a quadratic form if: there exists a bilinear form ϕ : V × V → F
such that

∀u ∈ V, Q(u) = ϕ(u, u)
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Remark. With B and A defined as above, let u =
∑n
i=1 λiei, then

Q(u) = ϕ(u, u)

= ϕ(

n∑
i=1

xiei,

n∑
j=1

xjej)

=

n∑
i,j=1

xixjϕ(ei, ej)

=

n∑
i,j=1

aijxixj

= xTAx

where x = [u]B and A = [ϕ]B

Note.

xTAx =

n∑
i,j=1

aijxixj

=
∑

i, j = 1n
(
aij + aji

2

)
xixj

= xT
(
A+AT

2

)
x
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Prop 7.2 (Quadratic form ↔ symmetric bilinear form). If Q : V → F is a quadratic form, then
there exists a unique symmetric bilinear form ϕ : V × V → F such that

Q(u) = ϕ(u, u) ∀u ∈ V

Proof. Let ψ be a bilinear form on V s.t. ∀u ∈ V , Q(u) = ψ(u, u). Let

ϕ(u, v) =
1

2
(ψ(u, v) + ψ(v, u))

Then ψ is a symmetric bilinear form

ϕ(u, u) = ψ(u, u) = Q(u)

Thus ∃ϕ bilinear symmetric such that

ϕ(u, u) = Q(u)

A→ 1

2
(AT +A)

Uniqueness: let ϕ be a symmetric bilinear form such that

∀u ∈ V, ϕ(u, u) = Q(u)

Then

Q(u+ v) = ϕ(u+ v, u+ v)

= ϕ(u, u) + 2ϕ(u, v) + ϕ(v, v)

= Q(u) + 2ϕ(u, v) +Q(v)

=⇒ ϕ(u, v) =
1

2
[Q(u+ v)−Q(u)−Q(v)]
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Theorem 7.3 (Diagonalisation of symmetric bilinear forms). Let ϕ : V × V → F be a symmetric
bilinear form with dimF V = n < +∞. Then there exists a basis B of V such that [ϕ]B is diagonal

Proof. We induct on dimension. n = 1 trivial. Suppose Theorem holds for all dimensions
< n. If ϕ(u, u) = 0 ∀u ∈ V , then ϕ ≡ 0, done.
If ϕ 6≡ 0, then ∃u ∈ V \{0} s.t. ϕ(u, u) 6= 0. Let us call u = e1

U = (〈e1〉)⊥ = {v ∈ V : ϕ(er, v) = 0} = ker{ϕ(e1, ·) : V → F}

Rank nullity on ϕ(e1, ·) gives
dimV = n = dimU + 1

=⇒ dimU = n− 1

We claim U + 〈e1〉 = U ⊕ 〈e1〉. Indeed, for v = 〈e1〉 ∩ U so v = λe1 for λ ∈ F

=⇒ 0 = ϕ(e1, v) = ϕ(e1, λe1) = λϕ(e1, e1)

=⇒ λ = 0 =⇒ v = 0

=⇒ V = U ⊕ 〈e1〉

Pick (e2, . . . , en) basis of U , B = (e1, e2, . . . , en) basis of V , then

[ϕ]B = (ϕ(ei, ej))1≤i,j≤n =

[
ϕ(e1, e1) 0

0 A′

]
as for j ≥ 2, ϕ(e1, ej) = ϕ(ej , e1) = 0, with A′ = [ϕ|U ]B′ defined as expected and define
induction hypothersis
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Example. V = R3, (e1, e2, e3) a basis

Q(x1, x2, x3) = x21 + x22 + 2x3 + 2x1x2 + 2x1x3 + 2x2x3 = xTAx

where

A =

1 1 1
1 1 −1
1 −1 2


(i) Diagonalise using the proof algortithm
(ii) Complete the square

Q(x1, x2, x3) = x21 + x22 + 2x3 + 2x1x2 + 2x1x3 + 2x2x3

= (x1 + x2 + x3)2 + x33 − 4x2x3

= (x1 + x2 + x3︸ ︷︷ ︸
x′1

)2 + (x3 − 2x2︸ ︷︷ ︸
x′2

)2 − ( 2x2︸︷︷︸
x′3

)2

=⇒ PTAP =

1
1
−1


To fine P note that x′1x′2

x′3

 =

1 1 1
0 −2 1
0 −2 0


︸ ︷︷ ︸

P−1

x1x2
x3



7.1 Sylvester’s Law and Sesquelinear Forms

Theorem 7.4 (Can diagonalise symmetric bilinear forms). For dimF V < ∞, ϕ : V × V → F a
symmetric bilinear form, ∃B basis of V w.r.t. [ϕ]B is diagonal
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Corollary 7.5 (Can choose ‘nice’ basis for symmetric bilinear forms on C). For F = C, dimC V =
n < +∞, ϕ symmetric bilinear form on V × V , ∃B basis of V s.t.:

[ϕ]B =

[
Ir 0
0 0

]
r = r(ϕ)

Proof. Pick E = (e1, . . . , en) such that

[ϕ]E =

a1 . . .
an


Order ai such that ai 6= 0 for 1 ≤ i ≤ r and ai = 0 for i > r. Then, for i ≤ r, let

√
ai be a

choice of complex root for ai. Let

vi =
ei√
ai

for 1 ≤ i ≤ r

vi = ei for i > r

Then B = (v1, . . . , vr, vr+1, . . . , vn) basis of V and we can check

[ϕ]B =

[
Ir 0
0 0

]

Corollary 7.6 (Congruence of symmetric matrices in C determined by rank). Every symmetric
matrix of Mn(C) is congruent to a unique matrix of the form[

Ir 0
0 0

]
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Corollary 7.7 (Can choose ‘nice’ basis for symmetric bilinear forms on R). For F = R, dimR V =
n <∞ and ϕ symmetric bilinear form of V × V , we have ∃B = (v1, . . . , vn) basis of V such that

[ϕ]B =

Ip Iq
0


for some p− q ≥ 0 and p+ q = r(ϕ)

Proof. E = (a1, . . . , en) s.t.

[ϕ]E =

a1 . . .
an


Reorder indices such that ai > 0, 1 ≤ i ≤ p, ai < 0, p+ 1 ≤ i ≤ q and ai = 0, i ≥ p+ q + 1.
Define

vi =


ei√
ai

for 1 ≤ i ≤ p
ei√
−ai

for p+ 1 ≤ i ≤ p+ q

ei for i ≥ p+ q + 1

=⇒ B = (c1, . . . , vn)

works

Definition. For F = R, s(ϕ) = p− q ≡ signature of ϕ (or the signature of the associated quadratic
form Q)

Remark. Need to show that s(ϕ) is intrinsic to ϕ: does not change if the basis B changes

Definition. For ϕ symmetric bilinear form on a real vector space V . We say that
(i) ϕ is positive definite ⇐⇒ ϕ(u, u) > 0 ∀u ∈ V \{0}
(ii) ϕ is positive semi definite ⇐⇒ ϕ(u, u) ≥ 0 ∀u ∈ V \{0}
(iii) ϕ is negative definite ⇐⇒ ϕ(u, u) < 0 ∀u ∈ V \{0}
(iv) ϕ is negative semi definite ⇐⇒ ϕ(u, u) ≤ 0 ∀u ∈ V \{0}

Example. [
Ip 0
0 0

]
is positive definite for p = n, positive semi definite for 1 ≤ p < n
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Theorem 7.8 (Sylvester’s law of inertia). F = R, dimF V = n < ∞. If a real symmetric bilinear
form is represented by Ip −Iq

0


in B basis of V and Ip′ −Iq′

0


in B′ basis of V

=⇒ p = p′, q = q′

Proof. In order to prove uniqueness of p, it is enough to show that p is the largest dimension
of a subspace of V on which ϕ is definite positive. Say B = (v1, . . . , vn)

[ϕ]B =

Ip −Iq
0


Let X = 〈v1, . . . , vp〉. Then ϕ is positive definite on X:

u ∈ X, u =

p∑
i=1

λivi

Q(u) = ϕ(u, u)

= ϕ(

p∑
i=1

λivi,

p∑
i=1

λivi)

=

p∑
i=1

λ2i

> 0 as long as v 6= 0

Suppose that ϕ is definite positive on another subspace X ′. Let

X = 〈v1, . . . , vp〉

Y = 〈vp+1, . . . , vn〉

Then arguing verbating as above, we know ϕ is negative semidefinite on Y . This implies that
Y ∩X ′ = {0}. Indeed if y ∈ ϕ ∩X ′, then

Q(y) ≤ 0 ≤ Q(y) =⇒ y = 0

=⇒ Y +X ′ = Y ⊕X ′

n = dimR V ≥ dim(Y +X ′) = dimY + dimX ′

=⇒ n ≥ n− p+ dimX ′

=⇒ dimX ′ ≤ p

Similarly, we show that q is the largest subspace on which ϕ is definite negative and so we
have a geometric characterisation of p, q

73



Definition.
K = v ∈ V : ∀u ∈ V, ϕ(u, v) = 0

is the kernel of the bilinear form

Remark.
dimK + r(ϕ) = n

One can show using the above notation that there si a subspace T of dimension:

n− (p+ q) + min p, q

such that ϕ|T = 0 (just consider ‘cancellations’ in matrix)

T = 〈v1 + vp+1, . . . , vq + vp+q, vp+q+1, . . . , vn〉

Moreover, one can show that the dimension of T is the largest possible dimension of a subspace T
such that ϕ|T = 0

7.1.1 Sesquilinear Forms

We have standard inner product on Cn given by

〈x, y〉 =

n∑
i=1

xiyi

Warning.

(x, y) 7→ 〈x, y〉 =

n∑
i=1

xiyi

is NOT a bilinear form on C.

Definition. If V,W are vector spaces over C. A sesquilinear form on V ×W is a function

ϕ : V ×W → C

such that:
(i)

ϕ(λ1v1 + λ2v2, w) = λ1ϕ(v1, w) + λ2ϕ(v2, w)

(∀λ1, λ2 ∈ C, ∀v1, v2 ∈ V,∀w ∈W )
(ii)

ϕ(v, λ1w1 + λ2w2) = λ1ϕ(v, w1) + λ2ϕ(v, w2)

(antilinear with respect to the second coordinate)

Lemma 7.9 (Evaluating sesquilinear form w.r.t. bases). If B = (v1, . . . , vm) is a basis of V and
C = (w1, . . . , wn) basis of W and [ϕ]V,C = (ϕ(vi, wj))1≤i≤m,1≤j≤n then

ϕ(v, w) = [v]TB [ϕ]B,C [w]C
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Lemma 7.10 (Writing matrix for sesquilinear form). If B,B′ bases for V with P = [Id]B,B′ and C, C′
bases for W with Q = [ Id]C,C′

[ϕ]B′,C′ = PT [ϕ]B,CQ

7.2 Hermitian Forms and Skew Symmetric Forms

Definition. A sesquilinear form ϕ : V × V → C is Hermitian if

∀(u, v) ∈ V × V ϕ(u, v) = ϕ(v, u)

Remark. ϕ Hermitian =⇒ ϕ(u, u) ∈ R
Moreover,

ϕ(λu, λu) = |λ|2ϕ(u, u)

This allows us to talk about positive or negative definite Hermitian forms

Lemma 7.11 (Hermitian iff matrix same as conjugate transpose for any basis). A sesquilinear form
ϕ : V × V → C is Hermitian iff: for any basis B of V

[ϕ]B = [ϕ]TB

Proof. Let A = [ϕ]B = (aij)1≤i,j≤n and it is trivial. Conversely, write u and v in terms of B
and apply linearity to show equality

Claim (Polarization Identity). A Hermitian form ϕ on a complex vector space V is entirely deter-
mined by

Q : V → R v 7→ ϕ(v, v)

via the formula
ϕ(u, v) =

1

4
[Q(u+ v)−Q(u− v) + iQ(u+ iv)− iQ(u− iv)]

Proof. Trivial check, similar to symmetric bilinear forms
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Theorem 7.12 (Hermitian formulation of Sylvester’s Law). Let n = dimC V < +∞. Let ϕ : V ×V →
C be a Hermitian form on V . Then ∃B = (v1, . . . , vn) of V s.t.

[ϕ]B =

Ip −Iq
0


where p, q depend only on ϕ

Proof. Mainly identical to the case of real symmetric bilinear forms
Existence ϕ = 0 done. Otherwise, using the polarization identity, there exists e1 6= 0 s.t.
ϕ(e1, e1) 6= 0. Then rescale e1 to get ϕ(v1, v1) = ±1 Consider the orthogonal:

W = {w ∈ V : ϕ(v1, w) = 0}

then can check
V = 〈v1〉 ⊕W

and we argue by induction on dimension to diagonalise.
Uniqueness of p: p is the maximal dimension of a subspace on which ϕ is definite positive.

Definition (Skew symmetric bilinear forms). A bilinear form ϕ : V ×V → R is skew symmetric if

∀(u, v) ∈ V × V ϕ(u, v) = −ϕ(v, u)

Remark. (i)
ϕ(u, u) = −ϕ(u, u) =⇒ ϕ(u, u) = 0

(ii) ∀B basis of V ,
[ϕ]B = −[ϕ]TB

(iii) ∀A ∈Mn(R)

A =
1

2
(A+AT ) +

1

2
(A−AT )

symmetric + skew symmetric
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Theorem 7.13 (Sylvester form of skew symmetric matrices). Let ϕ be a skew symmetric bilinear
form over V (vector space over R), then ∃ a basis B of V

B = (v1, w1, v2, w2, . . . , vm, wm, v2m+1, v2m+2, . . . , vn)

s.t.

[ϕ]B =


J

J
. . .

J
0


J =

[
0 1
−1 0

]

Proof. Induction on dimension of V . ϕ ≡ 0 done. ϕ 6= 0 =⇒ ∃(v1, w1) : ϕ(v1, w1) 6= 0.
After scaling say w1, we can assume

ϕ(v1, w1) = 1 =⇒ ϕ(w1, v1) = −1

Observe (v1, w1) are linearly independent.
Let U = 〈v1, w1〉

W = {v ∈ V : ϕ(v1, v) = ϕ(w1, v) = 0}

then we can show V = U ⊕W by induction

Corollary 7.14. Skew symmetric matrices have an even rank
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8 Inner Product Spaces

Have for definite positive bilinear forms a scalar product and a norm. We have an infinite dimensional
counterpart – Hilbert Spaces.

Definition (Inner product, scalar product). Let V be a vector space over R (resp C). An inner
product on V is a positive definite symmetric (resp Hermitian) symmetric form ϕ on V

Notation. ϕ(u, v) = 〈u, v〉. V is called a real (resp complex) inner product space

Examples. (i)

Rn, x =

x1...
xn

 , y =

y1...
yn


〈x, y〉 =

n∑
i=1

xiyi

(ii) Cn

〈x, y〉 =

n∑
i=1

xiyi

(iii) V = C0([0, 1],C)

〈f, g〉 =

∫ 1

0

f(t)g(t) dt

(iv) We can fix a wright w : [0, 1]→ R∗+ and define on V = C0([0, 1],C):

〈f, g〉 =

∫ 1

0

f(t)g(t)w(t) dt

Note. One can checkthat all the examples are inner product

Remark. The study of L2 spaces is the heart of the definitian of a new integral: Lebesgue Integral

Definition (norm/ length).
‖v‖ = (〈v, v〉)1/2

Remark. 〈v, v〉 ∈ R+ and
‖v‖ = 0 ⇐⇒ v = 0
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Lemma 8.1 (Cauchy-Schwarz).
|〈u, v〉| ≤ ‖u‖‖v‖

Proof. With F = R or C. Let t ∈ F , then

0 ≤ ‖tu− v‖2 = 〈tu− v, tu− v〉
= tt〈v, u〉 − t〈v, u〉 − t〈v, u〉+ ‖v‖2

= |t|2‖u‖2 − 2 Re(t〈v, u〉) + ‖v‖2

Choose explicitly

t =
〈v, u〉
‖u‖2

which gives result and we can also show that if there is equality in Cauchy-Schwarz, then the
two vectors are colinear

Corollary 8.2 (Triangle inequality).

‖u+ v‖ ≤ ‖u‖+ ‖v‖

Proof. trivial

Remark. ‖ · ‖ is a norm

Definition (Orthogonal/ orthonormal families). A set (e1, . . . , ek) of vectors of V is
(i) Orthogonal if

〈ei, ej〉 = 0 if i 6= j

(ii) Orthonormal if

〈ei, ej〉 = Sij =

{
0 for i 6= j

1 for i = j

Lemma 8.3 (Orthogonal non-zero set is linearly independent). If (e1, . . . , ek) are orthogonal (all non
zero) vectors, then they are linearly independent

v =

k∑
j=1

λjej

λj =
〈v, ej〉
‖ej‖2

Proof. Just take inner products

79



Lemma 8.4 (Parseval’s identity). If V is a finite dimensional inner product space and (e1, . . . , en)
is an orthonormal basis, then

〈u, v〉 =

n∑
i=1

〈u, ei〉〈v, ei〉

‖u‖ =

n∑
i=1

|〈u, ei〉|2

Proof. Just write u and v using the previous lemma and take scalar products

Theorem 8.5 (Gram-Schmidt orthogonalization process). Given V an inner product space. Let
(vi)i∈I be such that I countable (or finite) and vi ∈ V, (vi)i∈I are linearly independent. Then there
exists a family (ei)i∈I of orthonormal vectors such that

∀k ≥ 1, span〈v1, . . . , vk〉 = span〈e1, . . . , ek〉

Proof. We give an explicity algorithm to compute the family (ei)i∈N. Induction on k:
• k = 1, e1 = v1/‖v1‖ since v1 6= 0
• Say we have found (e1, . . . , ek) orthonormal with

span{v1, . . . , vk} = span{e1, . . . , ek}

• Let us compute ek+1. We define:

e′k+1 = vk+1 −
k∑
i=1

〈vk+1, ei〉ei

(notice we can interpret this as projection)
• e′k+1 6= 0: otherwise,

vk+1 ∈ span{e1, . . . , ek} = span{v1, . . . , vk}

by induction on k
• For j ∈ {1, . . . , k}:

〈e′k+1, ej〉 = 〈vk+1 −
k∑
i=1

〈vk+1, ei〉ei, ej〉

= 〈vk+1, ej〉 −
k∑
i=1

〈vk+1, ej〉〈ei, ej〉

= 〈vk+1, ej〉 − 〈vk+1, ej〉 = 0

=⇒ ∀1 ≤ j ≤ k e′j+1⊥ej
• span{v1, . . . , vk} = span{e1, . . . , ek, e′k+1} (follows from formula for e′k+1)
• e′k+1 6= 0 so ek+1 = e′k+1/‖ek+1‖ does the job

80



Corollary 8.6 (Can extend any orthogonal set to orthonormal basis). If V is a finite dimensional
inner product space, then any orthogonal set of vectors can be extended to an orthonormal basis of
V

Proof. Pick (e1, . . . , ek) orthonormal. Then they are linearly independent and we can extend
to (e1, . . . , ek, vk+1, . . . , vn) basis of V . We apply the Gram-Schmidt algorithm to this set to
get (e1, . . . , en) orthonormal with

span{e1, . . . , en} = span{e1, . . . , ek, vk+1, . . . , vn} = V

=⇒ (e1, . . . , en) is an orthonormal basis

Remark. For A ∈Mn(R) or (Mn(C)), then the column vectors of A are orthogonal iff AT = A = Id
in R case or ATA = Id in C case

Definition. A ∈Mn(R) (Mn(C)) is:
• R orthogonal if:

ATA = Id(⇐⇒ A−1 = AT )

• C unitary if:
ATA = Id(⇐⇒ A−1 = A

T
)

Prop 8.7 (Decomposing into upper triangular and orthogonal). If A ∈Mn(R) is non-singular, then
A can be written as

A = RT

where T is upper triangular and R is orthogonal (unitary)

Proof. Exercise (apply Gram Schmidt to the column vectors of A)

8.1 Orthogonal Complement and Projection

Definition. Let V be an inner product space with V1, V2 ≤ V . We say that V is the orthogonal
direct sum of V1 and V2 if
(i) V = V1 ⊕ V2
(ii) ∀(v1, v2) ∈ V1 × V2

〈v1, v2〉 = 0

Notation. V = V1 ⊕⊥ V2

Remark. ∀(v1, v2) ∈ V1 × V2, 〈v1, v2〉 = 0 so Vn ∩ V2 = {0}

Definition. For V an inner product space with W ≤ V , we define

W⊥ = {v ∈ V : ∀w ∈W, 〈v, w〉 = 0}
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Lemma 8.8 (Subspace and orthogonal complement form direct sum). For V an inner product space
with dimV < +∞, and W ≤ V , we have

V = W ⊕⊥W⊥

Proof. For ω ∈W,ω ∈W⊥
‖ω2‖ = 〈ω, ω〉 = 0

=⇒ ω = 0

Need to show V = W + W⊥. Let (e1, . . . , ek) be an orthonormal basis of W . Extend it to
(e1, . . . , ek, ek+1, . . . , en) orthonormal basis of W . Observe that (ek+1, . . . , en) ∈W⊥

=⇒ V = W +W⊥

Remark.
V = W ⊕W⊥

Definition (Projection map). Suppose V = U ⊕W (U is a complement of W in V ). We define
Π : V →W v = u+ w 7→ w

• Π is well defined
• Π is linear
• Π2 = Π

We say that Π is the projection operator onto W

Remark. Id −Π ≡ projection onto U . We can make the projection map very explicit when U = W⊥

(U is the orthogonal complement of W in V )
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Lemma 8.9 (Evaluating projection map in terms of inner products). Let V be an inner product
space. Let W ≤ V , with W finite dimensional. Let (e1, . . . , ek) be an orthonormal basis of W . Then
(i)

Π(v) =

k∑
i=1

〈v, ei〉ei, ∀v ∈ V

(ii) ∀v ∈ V,∀w ∈W
‖v −Π(v)‖ ≤ ‖v − w‖

with equality iff w = Π(v)

Proof. (i) We define: for v ∈ V

Π(v) =

k∑
i=1

〈v, ei〉ei

W = span{e1, . . . , ek} so Π(v) ∈W . We write

v = v −Π(v) + Π(v)

And we claim v−Π(v) ∈W⊥. Indeed, we need to show ∀w ∈W, 〈v−Π(v), w〉 = 0. We
compute

〈v −Π(v), ej〉 = 〈v, ej〉 − 〈
k∑
i=1

〈v, ei〉ei, ej〉

= 〈v, ej〉 − 〈v, ej〉
= 0

v −Π(v) ∈W⊥

thus
V = W ⊕⊥W⊥

(ii) Let v ∈ V , w ∈W , let us compute:

‖v − w‖2 = ‖ v −Π(v)︸ ︷︷ ︸
∈W⊥

+ Π(v)− w︸ ︷︷ ︸
∈W

‖2

= ‖v −Π(v)‖2 + ‖Π(v)− w‖2

≥ ‖v −Π(v)‖2

with equality iff w = Π(v). We have shows: ∀w ∈W ,

‖v − w‖2 ≥ ‖v −Π(v)‖2

8.2 Adjoint Maps

This is a fundamental object with deep infinite dimensional generalisations
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Definition. Let V,W be finite dimensional inner product spaces, α ∈ L(V,W ). Then there is a
unique linear map α∗ : W → V such that ∀(v, w) ∈ V ×W ,

〈α(v), w〉 = 〈v, α∗(w)〉

Claim (Writing adjoint map). If B orthonormal basis of V and C orthonormal basis of W then
[α∗]C,B = ([α]B,C)

T

Proof. Brute force computation

B = {v1, . . . , vn}
C = {w1, . . . , wn}

A = [α]B,C = (aij)

Existence: let [α∗]C,B = (cij) we can compute

〈α(
∑

λivi),
∑

µjwj〉 = 〈
∑
i,k

λiakiwk
∑

µjwj〉

=
∑
i,j

λiajiµj (*)

〈
∑
i

λivi, α
∗(
∑
j

µjwj)〉 = 〈
∑
i

λivi, ,
∑
j.k

µjckjvk〉

=
∑
i,j

λicijµj (**)

and so
cij = aji

and uniquely defined as (∗) = (∗∗) for any vector iff cij = aji

Notation.
A
T

= A†

Remark. We are using the same notation α∗ for the adjoint (as just defined) and the dual map. If
V,W are real product inner spaces, and α ∈ L(V,W )

ψR,V : V → V ∗ v 7→ 〈·, v〉

ψR,W : W →W ∗ w 7→ 〈·, w〉

then the adjoint of α is given by:
W →W ∗ → V ∗ → V

by ψR,W , dual of α and ψ−1R,V
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8.3 Self Adjoint Maps and Isometries

Definition. For V an inner product space, α ∈ L(V ) and α∗ ∈ L(V ) the adjoint map, we have the
following:

Condition Equivalent Name
〈αv,w〉 = 〈v, αw〉 α = α∗ Self Adjoint: R Symmetric C Hermitian
〈αv, αw〉 = 〈v, w〉 α∗ = α−1 Isometry: R Orthogonal, C Unitary

Proof. We check equivalence for isometries Have 〈α(v), α(v)〉 = 〈v, w〉 so ‖α(v)‖2 = ‖v‖2 so
the kernel is trivial and thus α is a bijection so α−1 well defined

〈v, α∗(w)〉 = 〈αv,w〉 = 〈αv, α(α−1w)〉 = 〈v, α−1w〉

So we have shown ∀v∀w
〈v, (α∗ − α−1)w〉 = 0

Choose v = (α∗ − α−1)(w) to get ∀w

‖(α∗ − α−1)(w)‖2 = 0

=⇒ ∀w, (α∗ − α−1)(w) = 0

=⇒ α∗ = α−1

And for the reverse
〈αv, αw〉 = 〈v, α∗αw〉 = 〈v, w〉

from the definition of α∗ and that α∗ = α−1

Remark. Using the polarization identity, one can show α isometry ⇐⇒ ∀v ∈ V, ‖α(v)‖ = ‖v‖ ⇐⇒
∀(v, w) ∈ V ×W, 〈α(v), α(w)〉 = 〈v, w〉

Lemma 8.10 (Classifying self adjoint maps and isometries). For V a finite dimensional real (complex)
inner product space, we have α ∈ L(V ) is:
(i) self adjoint iff for any orthonormal basis B of V , [α]B is symmetric (Hermitian)
(ii) an isometry iff for any orthonormal basis of V , [α]B is orthogonal (unitary)

Proof. Let B be an orthnormal basis:

[α∗]B = [α]TB

(i) Self adjoint: [α]TB = [α]B

(ii) Isometry: [α]TB = [α]−1B

Definition. For V a finite dimensional inner product space with:
• F = R, O(V ) = {α ∈ L(V ) : α is an isometry} ≡ orthogonal group of V
• F = C, U(V ) = {α ∈ L(V ) : α is an isometry} ≡ unitary group of V

85



9 Spectral Theory for Self Adjoint Maps

Spectral theory is the study of the spectrum of operators

Lemma 9.1 (Self adjoint operators have real eigenvalues and an orthogonal set of eigenvectors). Let
V be a finite dimensional inner product space. Let α ∈ L(V ) be self adjoint: α = α∗. Then
(i) α has real eigenvalues
(ii) Eigenvectors of α with respect to different eigenvalues are orthogonal

Proof. (i) Take λ ∈ C, v ∈ V \{0} s.t. α(v) = λv. Then

〈v, v〉 = λ‖v‖2

〈αv, v〉 = 〈v, αv〉 = 〈v, λv〉
= λ‖v‖2

=⇒ (λ− λ)‖v‖2 = 0

=⇒ λ = λ, λ ∈ R

(ii) Let us consider two eigenvectors for different eigenvalues

αv = λv αw = µw

with λ, µ ∈ R non-zero. Then

λ〈v, w〉 = 〈λv,w〉
= 〈α(v), w)〉
= 〈v, α(w)〉
= 〈v, µw〉
= µ〈v, w〉 = µ〈v, w〉

=⇒ (λ− µ)〈v, w〉 = 0

=⇒ 〈v, w〉 = 0

86



Theorem 9.2 (Adjoint operators are diagonalisable). Let V be a finite dimensional inner product
space and let α ∈ L(V ) be self adjoint. Then V has an orthonormal basis of eigenvectors of α (so α
is diagonalisable)

Proof. F = R or C. We argue by induction on the dimension of V
• n = 1 : V
• Say A = [α]B wrt fundamentabl basis B. By the fundamental theorem of algebra, we

know that χA(λ) has a root. This root is a n eigenvalue of α so the root is real. Let us
call this real eigenvalue λ ∈ R. Pick v1 ∈ V \{0} s.t.

α(v1) = λv1 ‖v1‖ = 1

Let U = 〈v1〉⊥ ≤ V . Then U is stable by α. Indeed, let u ∈ U , then

〈α(u), v〉 = 〈u, α∗(v1)〉
= 〈u, α(v1)〉
= 〈u, λv1〉
= λ〈u, v1〉 = 0

=⇒ α(u)⊥v1 =⇒ α(u) ∈ U

• Hence we may consider α|U ∈ L(U) which is self adjoint, and

n = dimV = dimU + 1

=⇒ dimU = n− 1

=⇒ ∃(v1, . . . , vn−1) orthonormal basis of U of eigenvectors of α|U so (v1, . . . , vn) is an
orthonormal basis of V of eigenvectors of α

V = 〈v1〉 ⊕⊥ U

Corollary 9.3 (Decompose V into orthogonal direct sum of eigenspaces). V finite dimensional inner
product space. If α ∈ L(V ) is self adjoint, then V is the orthogonal direct sum of all the eigenspaces
of α
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9.1 Spectral Theory for Unitary Maps

Lemma 9.4 (Unitary maps have unit modulus eigenvectors which are orthogonal). Let V be a
complex inner product space (Hermitian sesquilinear structure). Let α ∈ L(V ) be unitary (α∗ = α−1)
then
(i) All eigenvalues of α lie on the unit circle
(ii) Eigenvectors corresponding to different eigenvalues are orthogonal

Proof. (i) Let λ ∈ C, v ∈ L\{0} s.t. α(v) = λv
• λ 6= 0: α isometry =⇒ α invertible so kerα = {0}
• We compute

λ〈v, v〉 = 〈v, α−1v〉

and α(v) = λv =⇒ v = λα−1v and so

λ〈v, v〉 =
1

λ
〈v, v〉

=⇒ (|λ|2 − 1)‖v‖2 = 0

=⇒ |λ| = 1

(ii) Let v, w be two eigenvectors for two distnct eigenvalues

α(v) = λv α(w) = µw

Then
λ〈v, w〉 = µ〈v, w〉

=⇒ 〈v, w〉 = 0
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Theorem 9.5 (Spectral Theorem for unitary maps). Let V be a finite dimensional complex inner
product space. Let α ∈ L(V ) be unitary. Then V has an orthonormal basis consisting of eigenvectors
of α

Note. Equivalently, α is diagonalisable in an orthonormal basis of V

Proof. A = [α]B, B orthonormal basis. Fix v1 ∈ V \{0} s.t.

α(v1) = λv1 ‖v1‖ = 1

Let U = 〈v1〉⊥, we claim: α(U) ≤ U . Indeed, for u ∈ U

〈α(u), v1〉 =
1

λ
〈u, v1〉 = 0

=⇒ α(u) ∈ U

Hence α|U ∈ L(U) which is unitary and dimU = n − 1, n = dimC V . By induction, get
(v2, . . . , vn) orthonormal basis of U made up of eigenvectors of α|U .

V = 〈v1〉 ⊕⊥ U

So (v1, . . . , vn) orthonormal basis of V made of eigenvectors of α.

Warning. We used the complex structure. In general a real orthonormal matrix A s.t. AAT = Id
CANNOT be diagonalised over R e.g. rotation in R2

9.2 Application to Bilinear Forms

Corollary 9.6 (Can diagonalise symmetric matrices with P−1 = PT ). Let A ∈Mn(R) (respMn(C))
be a symmetric (resp Hermitian) matrix. Then there is an orthonormal (resp unitary) matrix P such
that PTAP (resp P †AP ) is diagonal with real valued entries

Proof. F = R (C). Let 〈 〉 be the standard inner product over Rn (resp Cn). Then A ∈ L(Fn)
is self adjoint hence we can fnd an orthonormal basis Fn such that A is diagonal in this basis,
say B = (v1, . . . , vn). Let P = (v1| . . . |vn) with (v1| . . . |vn) orthonormal basis. Have this iff P
unitary ⇐⇒ PTP = Id. I know P−1AP = D diagonal with real diagonal.
Then, as P−1 = PT , PTAP = D
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Corollary 9.7 (Can diagonalise symmetric forms). Let V be a finite dimensional real (complex)
inner product space. Let

ϕ : V × V → F

by a symmetric (resp Hermitian) form. Then there exists an orthnormal basis of V such that ϕ in
this basis is represented by a diagonal matrix

Proof. B = (v1, . . . , vn) orthonormal basis of V . Let:

A = [ϕ]B

=⇒ AT = A

and hence there is an orthogonal (unitary) matrix P such that: PTAP (P †AP ) is diagonal,
say D.
Let (vi) be the ith row of PT (P †), then (v1, . . . , vn) is an orthonormal basis B′ of V and

[ϕ]B′ = D

Remark. The diagonal entries of PTAP are the eigenvalues of A. Moreover

s(ϕ) = number positive eigenvalues of A - number negative eigenvalues of A

Corollary 9.8 (Simultaneous diagonalization). Let V be a finite dimensional real (complex) vector
space. Let

ϕ,ψ : V × V → F

be symmetric (Hermitian) bilinear forms. Assume ϕ is definite positive. Then ∃(v1, . . . , vn) basis of
V with respect to which both forms are respected by a diagonal matrix

Proof. Key point: ϕ is definite positive so V equipped with ϕ is a finite dimensional inner
product space

〈u, v〉 = ϕ(u, v)

Hence there exists an orthonormal (for the ϕ induced scalar product) basis of V in whihc ψ is
respresented by a diagonal matrix. Observe that ϕ in this basis is represented by the identity
matrix. (ϕ(vi, vj) = 〈vi, vj〉 = Sij )

Corollary 9.9 (Simultaneous diagonalization for matrices). A,B ∈Mn(R) (resp Mn(C)) symmetric
(Hermitian). Assume

∀x 6= 0, xTAx > 0 (*)

. Then there exists Q ∈Mn(R) invertible such that: both matrices QTAQ, QTBQ are diagonal

Proof. The condition (*) just expresses the fact that A induces ϕ definite positive..
Similarly Q̃(x) = xTBx, Q(x) = ψ(x, x) symmetric so we just apply the previous simultaneous
diagonalization Theorem to ϕ,ψ. We use change of basis formula for quadratic forms.
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