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0 Overview




1 Definitions and Basic Properties

Note. We will make the following standing assumptions:
e [ is a countable set, the state space; I = {1,2,...}.
o (Q, F,P) is a probability space on which all relevant random vairables are defined.

Definition. A sequence of random vairables (X,,),=0,1,... is a Markov Chain if, for n > 0 and
20, - -5 tnt+1 € 1,

]P)[Xn—i-l = in+1|X0 = iO; o 7Xn - 'Ln] = ]P[Xn-i-l = in+1|Xn = ln]

(conditioning if the event Xy = 4g,..., X, =i, has positive probability)
It is homogeneous if, for all i, j € I:

Pl X1 = j[Xn = 1] = P[X) = j|Xo = ]

Note. From now on, all Markov Chains are assumed homogeneous.

Definition. A Markov Chain is characterised by:
(i) the intitial distribution: A = ()\;);er given by \; = P[X, = {]
(ii) the transition matrix: P = (p;;); jer given by P[X; = j|Xo = {]

Remarks.
e )\ is a distribution, i.e. A\; > 0 for all i € [ and Zie] N =1
e P is a stochastic matrix, i.e., (p;;); is a distribution for every i € I

Definition. (X,,) is a Markov Chain with initial distribution A and transition matrix P, or (X,) is
Markov(A, P), if (i) and (ii) hold.




Theorem. (X,,) is Markov(A, P) iff for all n > 0, dg,...,4, with n € I,

P[Xo =0, .., Xn = in] = NigDigis - - - Pin_1in

Proof. Suppose (X,,) is Markov(A, P). Then

]P)[XU =10,--- 7Xn = ’Ln] = ]P[Xn = ’Ln|X0 =10,--- 7Xn—1 = in—l] 0 ]P)[XO =10,--- 7Xn—1 = in—l]
=pi,_.i, - P[Xo =1t0,...,Xn—1 = in—1] by the Markov property
= Dip 10 Pin_sin_1 - - Digiy P[Xo = 70| by induction
= Pin1inPin—zin_1 - - - Pigi1 Mg
Conversely assume (*) holds for all n and i, . ..,%,. For n = 0, P[Xy = ig] = ;-
Also, by (*)
P[Xo = i0, . . ., Xn = in]
]P[XO =10, - »Xn—l = in—l]

P[Xn = Zn|)(0 =10, Xp-1= in—l] =
= Pin_vin

Thus (i) and (ii) hold, i.e. (X,,) is Markov(A, P).

Notation. Let d; = (d;; : j = I) be the unit mass at i € I:

1 ifi=j
b5 = .
0 otherwise.




Theorem. Let (X,,) be Markov(\, P). Then conditional on X,,, =4, (Xm4n)n>0 is Markov (d;, P)
and is independent of Xg,..., X,,.

Proof. It suffices to show:
(i) _ _ _
P[Xm = Uiy = o o o S o = Urgpaein) [P, = Z] = 5iimpimim+1 < Pintm—1ingm

(ii) For every event A determined by Xi,...,X,, and every event B determined by
X, X1y - - -
P[A N B| Xy, = 1] = P[A| X, = i] - P[B| X, = 1]

The previous theorem implies both for the elements:
A={Xo =10, -, Xm =im}
B={Xm =im, s Xntm = Inim}
Indeed, after multiplying by P[X,,, = 4] the claim is
P[Xp = imy -, Xinin = Imitn) = i Pimimyr - - - Pintmetinem Bl Xm = 1|
P[A N B] = PIAJP[B|X,,, = i] = 6;;,, P[A|P|B]

Now, any A and B in (i) and (ii) can be written as a countable union of elementary A and B,
and hence the general claim follows by summing over the identities for elementary A and B

Notation. We regard distrbiutions and measures (\;);ec; as row vectors.
Matrix multiplication:

(AP); = Z)\ipij

iel
2
(PQ)ij = Zpikpkj ZPEJ-), 090
kel

with Py = 1 the I x I identity matrix 1;; = d;;.
When A; > 0, write P;[A] = P[A| X, = 1]

Remark. By the Markov property, (X, ),>0 is Markov(d;, P) under P;. (So the behaviour of (X,,)
under P; does not depend on \)




Theorem. Let (X,,) be Markov(A, P). Then for all n,m > 0:
(i)
PIX, = j] = (AP");

P;[ X, = j] = p{}

PX,=jl= Y  PXo=io,...,Xn=in]

0yeeyin—1€1

= E /\iopioil <o Pip_oin_1Pin_1j

io,...,’in7161

= (AP");

(ii) Use the Markov property and A\ = §; and (i)

Example. The general two state Markov Chain is:

o

B
l1-—a «
P =
5 a2
some a, f € [0, 1]
P PP s 3y 54—

p3 +0{0 =1 = PtV =1 -a-p)+5

(0)

. 0 . . . . .
Since p;, , this recursion relation has unique solution:

m_ st asl-a—B)" fat+B>0
Pir =1, fat+B=0




Method. General method to find pl(?) for an N state Markov Chain
e Find the eigenvalues \j,... Ay of P, i.e., roots of det(A\ — P) =0

o If all eigenvalues are distinct, then pgl) has the form:

pz(»?) = a1 Al + - - - + an Ay where the a; are constants
If an eigenvalue A is repeated once then the general form includes a term (a + bn)A™. Similar
formulas hold for eigenvalues with higher multiplicities.
e Asroots of a polynomial with real coefficients, any complex eigenvalues come in conjugate pairs.
These are oftenbest written in terms of sin and cos
Justification: If P has distinct eigenvalues, then it can be diagonalised as

A AT
P:U U*l — Pn:U U71
My AL

— pl(?) is of the desired form.

If P has repeated eigenvalues, the more general claim can be seen from the Jordan normal form




Example.

1
1/2 1
3 1/2 2
0 1 0
P=|0 1/2 1/2
1/2 0 1/2
What is p{?)?
Eigenvalues:
1 11
0=detA—P)=AA—2)2—==-(A-1)4r2+1)
2 4 4
) )
=1.-,—=
= A )

for some constant a, b, c

i n_ 1 nj:iﬂ'n/2_ " 1 . 1
(:I:§> = (§> e = (§> (cos <§7m) + 2sin <§ﬂ'n>>
() 1\" 1 . 1

— p; =a+ 3 B cos 2™ N + v sin 3™

for some ocnstant «, 3, .

Note:
1=pY =a+p
0=M?=a+%ﬁ
0=A?=a+iﬂ
andsoa=+, =32 y=-2

~ -3 () (i) 3




Class Structure

Definition. For i,j € I,
e i leads to j (i — j) if P;[X,, = j for some n] > 0
e | communicates with j (i < j) ifi —» jand j — 1

Theorem. For i # j the following are equivalent:
(i) i =
(i) Diyiy - - - Diy,_14, > 0 for some iy, ..., 0, with iy =14, i, = j

(iii) pg;) > 0 for some n

Proof. Equivalence of (i) and (iii) follows from
pz(‘?) =P;[X,, = j] <P;[Xy = j for some k] < sz(,;?)
k=0

Equivalence of (ii) and (iii) follows from

pz(*?)z Z Piiy -« - Pip_1j

12,00 050n—1

Prop. The relation is ¢ <+ j is an equivalence relation

Proof. We must show that i <> j is reflexive, symmetric and transitive. That < is reflexive
(i <> i) and symmetric (¢ > j implies j < 4) are clear from the definition. That < is transitive
(i < j) and j +> k implies ¢ <> k) follows from (ii) of the theorem.

Definition. The equivalence classes of <+ are called communicating classes. The chain is irre-
ducibleif there is only a single communicating class, i.e., ¢ <> j for all 4,5 € T

Definition. A subset C C ['isclosedifi € C, i —»j = j € C.
A state ¢ € I is absorbing if {i} is closed.




Example.

1/2 1/2 0 0 0 0

0 0 1 0 0 0
p_|1/3 0 0 1/3 1/3 0
“l0o o0 o0 1/2 1/2 0
0O 0 0 0 0 1

0 0 0 0 1 0

The communicating classes are {1, 2,3}, {4}, {5,6}.
Only {5,6} is closed.

10




3 Hitting and Absorption Probabilities

Definition. Let (X,,) be a Markov Chain.
e The hitting time of a set A C I is the random variable H4 : Q — {0,1,2,...} U {+oco} given
by
HA(w) = inf{n >: X, (w) € A}, inf & = 400

e The hitting probability of A is
[ ]

h#t = P;[H* < oo] = P;[hit A]

K2

If A is a closed class, hf‘ is called the absorption probability.
e The mean hitting time is the expected time to reach A.

kE# = E;[HA] = E;[time to hit A]

Example.
1/2
1/2 T 1/2
1 2™ 3 4
1/2

Starting from 2, what is the probability of absorption in 47 And how long does it take until the chain

is absorbed in 1 or 47
Let h; = P;[hit 4] and k; = E;[time to hit 1 or 4].

Note that h; =0, hy = 1.
1 1
hy = §h1 + 5’13

1 1

hs = §h2 F §h4

k;l——O,k4——0
ko =1+ k1 + =k
2 21 23

1 1
ks =14 —ky + =k
3 +22+24

=
[\v]
|
| =
7N
| =
=
[ V]
e
| =
N—
|
|
&
[\v]
S
|
Il
| —

11



Theorem. The vector of hitting probabilities h* = (h;)7L; is the minimal nonnegative solution to
) ht =1 (i€ A)
hit = Zjel pijh}4 (i ¢ A)

Minimal means that if = (2;);c is another solution with x; > 0 for all 4 € I then hf‘ > x; for all
1€ 1.
Proof.
e Step 1: h* is a solution to (*).
If Xo =i € A then clearly H4 =0, so h* = 1.
If Xo =i € A, then by the Markov property,

Pi[H* < 00| X1 = j] = P;[H* < o0] = hf

Jel
= P[H* < 00| X1 = j]Pi[X; = j]
JEI

= Z hfpz'j
J

— h? is a solution to (*)

e Step 2: h* is minimal.
Let = be any nonnegative solution to (*). If i € A, clearly h#* = 1 = x;. So suppose

1 ¢ A. Then
Ti = Zpiﬂj = Zpijxj + Zpijl"j
JEI jeA JgA
= Zpij + Zpij ijk + ijkl‘k
JEA JEA keA kgZA
=Pi[X; € A+ Pi[X: € A, Xa € Al + D > pijpjnn

JEAKZA
By repeated substitution,
Z; ZPz[Xl € A] —|—P1[X1 ¢ A, Xs € A] —|—P[X1 € A, Xo ¢ A,Xg S A]+

et P[Xl gA,...,Xn€ A] + Z T Z PijiPjiga - - - Pin—1jnLijn
J1€A  jn€A

>0 as = non-neg.

— x; > Pi[HA < n] for all n
= x; > lim P;[HA <n] = P;[H* < o0] = h{*

= h* is minimal

12




Example. (continued from previous one) Recall that h = h*

()

The system (*) does not determine hy but by the minimality condition, we must choose h; = 0. So
we find the same solution

Example (Gambler’s Ruin).

poo =1 0<p=1—-g<1

Starting with a fortune of ¢£, what is the probability of leaving broke? IL.e., what is h; = P;[hit 0]
By the theorem,

ho =1
hi = phit1 +qhi—1 (1 =1,2,3,...)

Assume p # q. The general solution to the recursion is

hi:A+B(g>
p

If p < q (most casinos): 0 < h; <1lforalli = B =0, A=1, and so h; = 1 for all i.

Ifp>gq: ‘ ‘
h():lih():l:}B:]_—A:}hi:(g) +A<1_<g>)
p p

h; >0 for all i = A > 0. And minimality implies
i
A=0 = h; = (9>
p

If p = ¢ (fair casino), the general solution to the recursion is
h; = A+ Bi
0<h;<1l = B=0
hp=1 = A=1

and so h; = 1 for all 4

13




Example (Birth and death chain).

q1 D1 q2 D2 q3

00— O ><+—0—><+—0©
0 1 2 3

h; = IP;[hit 0] is the extinction probability from ¢

ho =1
()9, o
hi = pihit1 + qhi—1 (1=1,2,.. )
Consider u; = h;—1 — h;. Then

Pithit1 + qu; = pihy — hiyr — qihi—1 + qihy
= (on == a5 = iy = (

= Ujt+1 = &uz = <—qiqi_l - q ) = ViU
i bipi—1...P1

Vi
~———
uy -t tug

with A = u; unknown.
IEY2yvi=00: 0<h; <1 = A=0 = h;=1foralli
If $°°°, 7 < 0o : minimal solution is A = (352, 7:) "

Z;i1 Vi
Z;io Vi

Since for any i, we have h; < g, the population survives with positive probability.

14




Theorem. The vector of mean hitting times k&4 = (k!);c; is the minimal solution to

o kA =0 (i€ A)
kf‘ =1+ ngApijkf (Z ¢ A)

Proof.
e Step 1: k4 satisfies ().
If Xo =i € A, then HA = 0 so clearly k{* = E;,[H4] =0
If Xo=1i¢ A, then H* > 1, so by the Markov prop.,

E[HA| X, =j] =1+ E;[HY] =1+k]
A _ Al _ A — 8 — Al — A
ki =E;[H"] = Z]Ez[H | X1 =J]Pi[X1 =4l =1+ Zpijkj
Jjel p1j JEA

e Step 2: k4 is minimal.
Suppose z is any nonnegative solution to (). Then x; = k* = 0 for alli € A. Fori € A,

xi=1+2pij$]’=1+2pij 1+ijk$k

igA jgA kgZA

=P;[HA > 1]+ P;[HA > 2] + Z Zpijpjkik
JEAKZA

Again, by repeated substitution, for any n,
wi=Pi[HA > 1+ +P[H* >0+ > - > pijy - Pju_rjuin

J1€A  jn€A
>0

= 2,2 Y PJH* > n] =E[HY =k
n=1

Thus k4 is the minimal solution.

15




4 Strong Markov Property

Definition. A random variable 7' : Q@ — {0,1,2,...} U {+o0} is a stopping time if the event
{T = n} only depends on Xy,..., X, forn=0,1,2,...

Examples.
(i) The first passage time
T; =inf{n >1: X, =j}

is a stopping time since {T; =n} = {X1 #j,..., Xpn_1 # j}
(i) The hitting time H* of a set A is a stopping time

{HA:n}:{XogAa"'aXn—l €A7Xn GA}

(iii) The last exit time of a set A
LA =sup{n>0:X, € A}

is in general not a stopping time because {L* = n} depends on whether (Xntm)m>1 visits A
or not.

Theorem (Strong Markov Property). Let (X,,)n>0 be Markov(A, P), and let T be a stopping time
for (X,,). Then conditional on T' < oo and Xy =4, (Xp4p)n>0 is Markov(d;, P) and independent of
Xy,..., Xy

Proof. Let B be an event determined by Xy, ..., Xp. Then X N {T = m} is determined by
Xo,- -, Xm- So by (usual) Markov property

P{Xz =jo, ..., Xr4n = jn} N BN{T =m} N {X7 = i}]
= P[Xo = jo,. .., Xn = ju]B[BN{T = m} N {X7 = i}]

Summing over m gives

PUXz = jos -, Xrtn = jn} N BO{T < 00} N {X7 = i}]
=P[Xo = jo, .., Xn = jnJP[BN{T < 00} N {Xr = i}]

Dividing by P[T < oo, X = 4] (if it is positive) gives

]P)[{XT :jO,'~'7XT+n :]n}mB|T < OO,XT = 1]
= ]P[XO :j07~-~7Xn :jn]]P)[B|T = m’XT = Z]

16



Example (Gambler’s ruin continued).

poo =1 0O<p=1—-g<1

We have previously found P;[hit 0]. We now find the distribution of time to hit 0 starting from 1.
Let
H; =inf{n >0: X, =j}

¢(s) = Ea[s™] = Ex[s" 1z, <]

[

M

s"P[Hy = n]

n=0

Clain: Ey[sf°] = ¢(s)?

Conditional on H; < oo under P, we can write Hy = Hy + I;TO where I;TO is the time it takes after H;
to reach state 0. Since H; is a stopping time, by the strong Markov property at Hy, Hy is independent
of Hy (as it only depends on (X, +n)n>0)

= E,[s0) = Eo[s™ |H; < oo]Ea[s™°|Hy < oo|P[H; < o0
= Ea[s™ 111, <oo] Ea[s™ | Hy < 00] = ¢(s)?

]El[SHO] ]El[SHO]

as Hy is conditionally independent from H;

17




Example (continued). Claim:
psg(s)? — ¢(s) +qs =0

Conditional on X; = 2, we have Hy = 1 + Ho where Hy is the time it takes after 1 step to reach 0.
By Markov property, Hy under P[ - | X5 = 2| has the same distribution as Hy under Ps.

— #(s) = Eq[s7°] = pE;[sH0| X, = 2] + g, [s5°| X = 0]
= pE[s'"" 0| X; = 2] +¢s
= psEq[s"°| X1 = 2] +qs
= ps¢(s)® +gs

= $(0) =0 and $(s) = 1+ 1 —dpgs?

ops for s >0

Since ¢(s) < 1 and since ¢(s) is continuous, only then negative root is possiblefor all s € [0, 1)]

1—+/1— 4pgs?

= ¢(s) = ops
1 1 1
= — |1— (14 =(—4pgs®) — =(4pgs®)®> + . ..
2ps[ <+2( pqs”) 8(pq5)+ )]
:qs—|—pq253—|—...

= sP[Hy = 1] + s’P[Hy = 2] + s*P[Hy = 3] + ...
PlHo=1]=g¢
P[Hy =2] =0
etc. As s — 1 from below, we have ¢(s) — P1[Hy < o<

1—«/71—4}7(]_{1 if p<gq

— P1[Hy < =
1[Ho < oo} 2p ;1) if p>q

Also, if p < ¢,
El[HO] = El[HO]'H()<OO] = %1%111 ¢/(5)

Differentiating the quadratic equation gives
2ps6(s)¢ (5) + pd(s)* + ¢'(s) +1 =0

oy PP(s)>+g 11
:>¢(s)_1—2p5¢(8)_>1—2p_q—p

By [Ho] = ——

as s T1

18




Recurrence and transcience

Definition. Let (X,,) be a Markov Chain. A state ¢ € I is
e recurrent if P;[X,, = ¢ for infinitely many n] = 1
e transient if P;[X,, = ¢ for infinitely many n| =0
First passage time to j: T; =inf{n >1: X,, =j}

19




Theorem. The following dichotomy holds:
(i) If P;[T; < oo] =1 then i is recurrent and

ipz(-?) = o0
n=0

(i) If P;[T; < oo] < 1 then 4 is transcient and

ipﬁ?) <00
n=0

In particular, every state is either recurrent or transient.

Proof.
e Step 1: Inductively, define the r-th passage time to j:

T =0, TV =13, T =inf{n > TV +1: X, = 5}

The length of the r-th excursion is defined by

or Tz(r) _ Ti(rfl) if Ti(T*D < 00
o otherwise
1
7 7 7@ 73 7@  time
— P t———Prt— P t— >
Lemma. For r = 2,3,..., conditional on T("~1) < oo, the length of the r-th

excursion SZ-(T) is independent of {X,, : m < Ti(rfl)} and

PS™ =TV < 0o] = By[T; = n]

Proof.
By the strong Markov property, conditional on Ti(r_l) < 00, (XT;T_1>+n)nZO is
Markov(d;, P) and is independent of Xo, ..., X 1. Now

Si(r) =inf{n >1: XTi(T_1)+n =i}

is the first passage time of (X

=1 4, Jn>0 to state i.




Theorem.

Proof.
e Step 2: Let V; denote the number of visits to ::

o0
Vi=) 1x,=
n=0

Then - - -
E;[Vi] = E[Z 1x,=i] = Z Pi[X, =i] = ZPZ’
n=0 n=0 n=0

Let f; be the return probability to i:

Lemma. For r=0,1,2,..., we have B;[V; > r] = fT

Proof. Note that {V; > r} = {T\") < oo} if Xo = i.
Also note that P;[V; > 0] = 1. By induction,
Pi[V; > r+1] = PT" Y < o]
= [P’[Ti(r) < oo,Si(TH) < 0]

= B[T" < 0o] P[SU Y < oo|T{V ] = frt

7

fi fi

(i) If P;[T; < oo] = 1, then by the last lemma,
P;[Vi =o00] = lim P;[V; >r] =1
7—00
So i is recurrent and -
Y oY = EifVi] = o0
n=0

(i) If P;[T; < oo] < 1, then

Yopl =EVi =Y PilVi>r] =) fi = 1_1f‘ < o9
n=0 r=0 r=0 !

So P;[V; = oo] = 0, so i is transient.




Theorem. Recurrence and transience are class properties: for any communicating class, either all
states ¢ € C are recurrent or all are transient

Proof. Let i,j € C' and assume that ¢ is transient. Since i and j communicatem there exist
n,m s.t.

pgl) > (0 and pS-’in) >0

For all » > 0, then
(n+m+r) Zp(n) (r), (m)

Pii ij Pjj Pji
o~ (1) I o )
i n+m-—+r
= D_P S <o 2P =0
r=0 Pij " Pji " r=0

So j is transcient aswell.

Theorem. Every recurrent class is closed.

Proof. Let C be a class that is not closed, i.e., there is i € C,j ¢ C and m > 1 s.t.

Since C' is a communicating class and j € C,

P;{ X = j} N {X,, =i for infinitely many n}] =0

= P;[X,, = for infinitely many n] = Z]P’i [X,, = ¢ for infinitely many n, X,, = j]
jel
<) P Xy =j]=1
jeI
Thus 4 is not recurrent and since recurrence is a class property, this means that C' is not
recurrent (i.e. transient).

Theorem. Every finite closed class is recurrent.

Warning. Infinite closed classes may be transient

 ———————————————————————————————————————————————————————————————————————

Proof. Let C be a finite closed class and suppose X, € C'

= 0 < P[X,, =i for infinitely many n] for some ¢ € C
= P[X,, = i for some n|P;[X,, =i for infinitely many 4| by the strong Markov prop.
= P;[X,, =i for infinitely many n] > 0

— ¢ is not transient = ¢ is recurrent

Corollary. Finite classes are recurrent iff closed.




Theorem. Suppose P is irreducible and recurrent. Then for all j € I,

P[T; <oo] =1

Proof. It suffices to show that P;[T; < oo] =1 for all i € I since then

P[T; < oo] = Y P[Xo = iJP;[T; < o0] =1

Since P is irreducible, there is m s.t. p%")

Since P is recurrent,

> 0.

1 =P;[X,, = j for infinitely many n]
=P;[X,, = j for some n > m + 1]
= P;[X,, = j for some n > m + 1|Xp, = k|P;[ Xy, = K]

kel
= Z]Pk[Xn = j for some n > 1]p§.ZL)
kel
=Y BTy < oolp
kel

= P;[T; < o0] =1 since Zpy:) =1 and pg-T) >0
&

23




6 Recurrence and Transience of Random Walks

Example (Simple Random Walk on Z).

q D q P q D
< o ——><——0 >0

Y

i—1 i 141
= 0 since the walk cannot return to 0 after an odd number of steps.

(2n) _ (2n (2n)!
pOO — (n)pnqn - ( )2p qn

Stirling’s formula: n! ~ v/2wne~"n" where A,, ~ B,, if lim,, .o % =1

(2n+1)
Poo

ony  V4mn (2n)* C
= pig") ~ Ww(pqyl T(4PQ)
Case p=q = %
C
P ~ I po” > 2\/— for n > ng
— S> TS S i o
n=ngo n=ng
— Random walk is recurrent
Case p # q:

r=4pg <1 — p(%)gr”fornZno

N Z P2

Random walk is transcient

24



Example (Simple Random Walk on Z?2).

--@------ o ----- ®--

I A I

I I

I I

I 1/4 I

1 1

| 1/4 |
o ® >® - -

| 1/4 |

1 1

l 1/4 l

I I

| v |
SRR e o --

o — 3 ifli—jl=1
Y 0 otherwise

Suppose Xy = 0 and write X.© for the orthogonal projections onto the Ines y = +x

Ya

. /

Observation: X are independent simple symmetric random walks on \/LEZ and Xy = 0 iff th =0

on\ 2
(2n) 2n 1 C
— =] = ~ —
=) 6)) -5
since both X+ and X~ must take 2n steps if X does and ust return to 0

o0
= Z p(()%") = oo = The random walk is recurrent
n=0
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Example (Simple Random Walk on Z3).

o — : ifli—jl=1
Y 0 otherwise

We will show the random walk is transient.
Again p(()%""’l) =0.
All walks from 0 to 0 must take the same number of steps in direction (1,0,0) as in direction (-1,0,0),

and analogously for the other two coordinates.

2n
(2n) (2n)! 1
= w0 = 2. i s
P v T gl k! \ 6

_ (2n> (1>2" Z ( l )2(1>2n
- 2 ~' ,' ' —
! : ,3,k>0,i4+j+k=n i171k! 3

Fact 1. If n.=3m then (; 7,) < (,, 1 ,,) for i,j, k.

i3 m m m

(suppose the maximal (; j"k) has i > j+ 1 t. Then ilj! > (i — 1)!(j + 1)! thus (; 7k) < (;_, A .) SO
(; ?k) wasn’t max.)

Fact 2.

n! 1\"
> k! <§) =1

6,5,k>0,i+j+k=n

(The LHS is the total prob. of distribution of three balls in three bins.)
3m
— W < (2n>< 3m ) (1) ~C \/772 i \/773 — On-3/2
n mmm 3 NN
Since pf]%n) > (%)2 p(()%n_2) up to changing C,

pé%") < Cn™%? for all n

= Zpg%”) SCZn_3/2 < 00

— The random walk is transient
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7 Invariant Measures

Definition. A measure A = (\;);er) with A; > 0 for al i € I is invariant (or stationary or in
equilibrium) if
AP =)\

Theorem. Let (X,),>0 be Markov(\, P) and suppose that A is invariant for P. Then (X, {m)n>0
is also Markov(, P).

Proof.
PX,, =i =AP™); =X foralliel

so the intitial distribution of (X, 4m)n>0 is A
Also, conditional on X, 1, = 4, by the Markov property for (X,), Xpt+m+1 is independent
Xms Xm+1s---, Xntm and it has distrbution (pi;);er-

Theorem. Suppose [ is finite. For some i € I, suppose pl(-;l)

Then (7;); is an invariant distribution

— mj as n — oo, for all j € I.

Proof. (r) is a distribution:
Somp =Y dim p{ = lim Y p =1
? n—>oop” n— oo Pij
JeT jel jel

noting we can swap sum and limit as [ finite.
(m) is invariant:

m =l e = i ) e = ) fim e = (nP),

(n)

Remark. For the simple symmetric random walk on Z¢, we have p;j° — 0asn— oo, for all

i,j € Z%. The limit 0 is invariant, but not a distribution.

Example.

|1-« o
P‘{ﬁ 1—5]

We found earlier that
w_ s ta50-a—B)" ifatB>0
P11 = .
1 otherwise

Soif a+ A ¢ {0,1}, we have p{}) — —£-. Similarly,

ﬁﬁ 'Bﬁ

n + +

P" — |5 B
a+pf a+pf

So by the theorem, (8/(a + 8),a/(a+ £)) is an invariant distribution.
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Theorem Let P be irreducible and recurrent. Then

(i) v =1
(ii) v* = (7¥)ier is an invariant measure

(i)
Y*P =v

(iv) 0 <yF <ooforalliel

Proof.
(i) obvious from definition.
(ii) Since P is recurrent,

(ii)
Pk[Tk < 00,Xp = XTk = ]{1] =1

Tk
V=B Y lx,— =
n=1

o0
= E E 1x,—j and n<Ty

n=1

]P’k[X =j,n < Tj]

(o]
Z Xn-1 =i, Xy =jn < T
"= [X 1 =0, n<TWP[ X =5 Xn—1=i]

=Z Z [(Xn—1=14,n < Tj]
el —

Tr—1
= Dij Ek[ Z 1X —z sz]%
el n—1 el
vF

(n)

(iv) P irreducible = 3n,m >0 s.t. p,; (m)

>0, p,;, >0

= o =k =p >0

1
1=7/’§Z%kp52) = %k_(—n)<00
ik
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Theorem. Let P be irreducible and X be an invariant measure for P with A\, = 1. Then \; > 'yf for
all . If in addition P is recurrent, then A = ¥

Proof. Since ) is invariant,

X= D AaPij = Y XuPij +Pis

ilel ilyék

Z Z )‘izpizil T Dkiy | Pinj T Pkj
Sl \ G

E Ainpininfl - Digg
ila-“:in?ék

>0

+ | Prs t+ Z PkiPirk + -+ Z Pkin_1 -+ Piriy Pirj
117k il geoonip—ilgals

= for j #k,

Aj 2 Pu[Xy =5, Tk 2 1]+ Pp[Xo = 5, Tk > 2] + - + Pp[ Xy, = j, T > 1]

min(n,Tk) min(n,Tx—1)
=Ey Z Ix,,=j| = Ex Z Ix,,=j
m=1 m=0

%'yj’? as n — 0o

= X\ >F
If P is recurrent, v* is invariant, so g = A — ¥ > 0 is invariant.

P is irreductible = Vi dn s.t. pl(.z) > 0.

= 0= = Zujpﬁz) > piply) = pi =0
JEI

Example. The simple symmetric random walk on Z is irreducible and we have also seen that it is
recurrent. The measure m = (7;) where m; = 1 for all ¢ € Z is invariant:

1 1
T=nP <— mw; = 571'1‘_1 +§7Ti+1\/

By the theorem, every invariant is a multiple of of 7. Since Y ._, m; = 400, there is no invariant

distribution.

i€EL

Example. The simple symmetric random walk on Z? has an invariant measure, but it is not recurrent.
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Note. Recall that ¢ is recurrent if P;[X,, = ¢ for inf. many n] = 1, or equivalently P;[T; < co] =1
This does not imply that the expected return time m; = E;[T;] is finite.

Definition. e | is positive recurrent if m; < co
e ¢ is null recurrent if 7 is recurrent but m; = oo

Theorem. Let P be irreducible. Then the following are equivalent:
(i) Every state is positive recurrent
(ii) Some state is positive recurrent
(iii) P has an invariant distribution
Moreover, when (iii) holds, then m; = 1/m;

Proof. (i) = (ii): clear.
(ii) = (iii): If ¢ is positive recurrent, it is recurrent in particular. Therefore 4" is invariant.

Since 4

Z v; = m; < o]

JEI
Thus 7; = ZTJ@ defines an invariant distribution. (iii) = (i): first note that, for every
k € I, 7, > 0. Indeed, since 7 is invariant and P irreducible,

T = Z ﬂ'ipl(-Z) > 0 for some n
i€l

Now set \; = :—; Then ) is an invariant measure with A\, = 1. Therefore A > ~*.

5 1
— m=Y sy L o *)
iel i€l

Thus k is positive recurrent.
Finally, knowing that P is recurrent, we have previously seen that every invariant measure A
with A, = 1 must satisfy A = 4*. Thus, we have equiality in (*)
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Example.

A
Y

1—1 () 1+ 1
q<p

Invariant measure equation:
T = E TjPji
J

=M;i—1p + Tit+1q

This recurrence relation has the following general solution:

q

So there is a two-parameter family of invariant measures. Uniqueness up to multiples does not hold.
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8 Convergence to Equilibrium

Example.
0 1
p=[1 )
= P*=] = P =Jand P""'=P
=—> P" does not converge

But note that P has invariant distribution = = (%7 %)

(n)

i

Definition. A state i € [ is aperiodic if p
are aperiodic.

> 0 for n sufficiently large. P is aperiodic if all states

Lemma. Let P be irreducible and have an aperiodic state i. Then for all j,k € I,
pgz) > 0 for n sufficiently large

In particular, all states are aperiodic.

Proof. P irreducible = Ir, s s.t. pg-z), pgz) >0/

— p§2+n+s) > p§:) pgf) pgz) > 0 for n sufficiently large

since ¢ is aperiodic.
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Theorem. Let P be irreducible and aperiodic and suppose 7 is an invariant distribution for P. Let
A be any distribution, and suppose that (X,,) is Markov(A, P). Then for all j € I,

PX, =j] > mj asn — o0

In particular,

pgl) — mj as n — oo for all i, j

Proof. The proof is by coupling.
Let (Y,,) be Markov (7, P) and independent of (X,,). Fix a reference state b € I and set

T=inf{n>1:X,=Y, =0b}

Claim: P[T < oo] = 1.
W, = (X,,Ys) is a Markov Chain on state space I x I and
e transition probabilities p¢; xy(j,1) = PijPki
e initial distribution A; x) = A7k
Since P is aperiodic, the lemma implies that for all 4, j, k,[ € I,

ﬁEZL)(j)l) > 0 for n sufficiently large

— P is irreducible
P has invariant distribution T(ik) = TiTk
— Pis positive recurrent

T is the first passage time of (W,,) to (b, b).
Since P is irreductible and recurrent,

PT < 0] = 1.

From the claim, it follows that

PIX, =i =P[X, =i,n <T]+P|
(X, =i,n<T)+PY, =i
+P[

P
P[X, = i,n < T

>
,n > T| by strong Markov property
Y, =i] -P[Y, =i,n < T|

— |P[X, =] — | = |P[X, = i,n < T] = P[Y, = i,n < T]| < Pln < T] = 0

Example (continued).

0 1 11
P—[l o]’”—(i’i)

If X is Markov(do, P) and Y is Markov (m, P) then with probability 3 one has Y5 = 1 but Xo = 0
and X and Y will never meet

Remark. What happens when (X,,) is periodic?
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Lemma. Let P be irreducible. There exists an integer d > 1 (the period) and a partition
I=CyU---UCy_q

such that, setting Cpq4r = C;,

(i) p > 0 only if i € C, and j € Gy, for some 7
(n

(ii) Dyj 4D > 0 for sufficiently large n, for all ¢, j € C,., for all .

Proof. (In Norris’ book)

Theorem. Let P be irreducible of period d with the corresponding Cj,...,Cy_1 as in the lemma.
Let A be a distribution with » ;.- A; = 1. Suppose (X,,) is Markov(}, P).
Then for r =0,...,d—1, j € C,,

P Xpitr =j] — mij (n — o0)

where m; is the expected return time to j

Proof. (In Norris’ book)
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Time Reversal

Theorem. Let P be irreducible and have invariant distribution 7. Suppose (X, )o<n<n IS
Markov(r, P), and set Y,, = Xn_p,. Then (Y},)o<n<n is Markov(w, P) where

TjPji = TiDij (*)

and P is irreducible with invariant distribution 7

Proof. P is well-defined by (*) and is a stochastic matrix since
“ 1 Uy
iji = ;jzﬂipij = 7?] =1
el i€l

(have 7; > 0 since P is irreducible and 7 invariant). = is invariant for P:

> b= mipi; =

JeT jeI
(Y,,) is Markov(m, P):

P[Yo =1o,..., YN =in] =P[Xo =in,..., Xy =]
= TinPinin_1 ---DPirig
= Tiny_1Pin_1inPin_1in—2 - - - Pirig

= TigDigiy « - - Din_1in
P is irreducible since by irreducibility of P, for all i,j € I

Digir - - - Pip_1in = 0 for some 10y ---50n with ig = Tyip =]

~ " 0
= DPivio - - - Pinin_1 = ;pioil oo Pip_gin > 0
1

Definition. A stochastic matrix P and a measure \ are in detailed balance if

)\ipij = )\jpji foralli,j el

Lemma. If P and )\ are in detailed balance then ) is invariant for P

Proof.

(Ap)i = Z )‘jpji = Z Aipij =\

Jel jeI

Definition. Let P be irreducible and (X,,) be Markov(\, P). Then (X,,) is reversible if, for all N,
(XN—n)OgnﬁN is also Markov()\, P)
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Theorem. Let P be irreducible and let A be a distribution. Suppose (X,,) is Markov(\, P). Then
the following are equivalent:

(i) (X,,) is reversible

(ii) P and A are in detailed balance

Proof. Both (i) and (ii) imply that A is invariant. By the previous theorem, thus both are
equivalent to P = P

Examples.

p q p q p q q
O —><¢——@ H><¢+—0—><+—90 < ]
0 1 2 3 M

O<p=1—g<1

A and P are in detailed balance

< AiDiji+1 = Aiy1Pit1, for i =0,...,. M — 1
<~ Aip = Ait1q

i
— \=C <£> for some constanct C'
q

Thus i
o)
Zj Aj q

for some suitable C is also invariant distribution. Hence the chain started from 7 is reversible

Example (Random walk on a graph).

1 2
G:

4 3
Let v; be the valency (or degree) of vertex 4, i.e., the number of edges incident to i

_ J Y/ i (i,4) is an edge
Yo otherwise

G connected = P irreducible. P is in detailed balance with v = (v;);er:

vipi; = 1 = vjpj;
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10 Ergodic Theorem

Theorem (Strong Law of Large Numbers). Let (Y;);=o,... be a sequence of i.i.d non-negative random
variables with E[Y;] = p € [0, 00]. Then

Vit Yo

P -

—pasn— ool =1

Notation. Let V;(n) = Z;ll 1x, =i = number of visits to ¢ before n.
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Theorem (Ergodic Theorem). Let P be irreducible andlet A be any distribution. If (X,,) is
Markov(\, P) then

Vi(n 1
]P’[L—)—asn%oo]zl
n m;
In particular, if P is positive recurrent (with invariant distribution 7; = 1/m;) then

Vi(n)

P —masn— ool =1

Proof. (i) Case 1: P is transient. In this case, P[V; < oo] =1, V; = Y 72 (1x, =i is the
total number of visits

3 Vi 1
—op Y o1y
n n m;
as claimed
(ii) P is recurrent and A = 4y, i.e.,
P»[L—Hn asm— oo =1
7 V;(Tl) i =

Let Si(r) be the rth excursion length between visits to 7. We have seen that:
e the SZ-(l), SZ.(z), ... are independent
e the SZ-(T) are identically distributed with E[Sl-(r)] =m;
s ... 4 g™
n

— Py —m;asn— oo =1

To get the claim, note:
S 4.4 gVim) 5

Sy p gl g

SO 4. 45 g

— Vin) =

S 4 s g
2 2 <
Vi(n—1) ~ Vi(n)
Since P[V;(n) — oo] =1 by (*), thus

—

(iii) P is recrurrent with a general initial distribution A. By recurrence, P[T; < oo] =

1. By the strong Markov property (Xr,4n)n>0 is Markov(d;, P) and independent of
Xo, ..., X7,. The general claim now follows since lim,, % remains the same if (X, ), >0

is replaces by (X1, 4n)n>0
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Corollary. In the positive recurrent case, for any bounded function f: I — R,

n—1

P[EZf(Xk)—)fasn—)oo]zl

k=0

where

f: Zﬂ'ifi

i€l

Proof. WLOG, |f| < 1. Then for any J C I,

Y fa - A= g

k=1 iel n
Vi(n) Vi(n)
<> p —mil+ Y ( o i)
icJd id]
Vi(n)
<2 _m -
<2y [= = -ml+2) m
ict i

Choose J C [ finite such that },,; m; <e. Choose N = N(w) large enough such that

P[Z‘@*m|<€forn2N]:1
i€J

Therefore
1 n—1

IP’[|EZf(Xk) —fl<4eforn>N]=1
k=0

Question: From the observations of a Markov Chain, how can you estimate the transition matrix?
Suppose (X;)i=o,...,n is given (observations). For any P = (p;;), define

l(ﬁ) = 10g(ﬁ$oﬁl)1ﬁ$1.’£2 . -ﬁxn_lwn)

=) Ni;(n)pi

ijel
where
m—1
N;i(n) = E 1{X,,=i,Xns1—;j = Dumber transitions from i to j
m=0

The maximum likelihood estimator P = P(n) is the maximiser of [ = [,. We can show (using
Lagrange multipliers)

R _ Nii(n)

pl] (n) - ‘/z(n)

where V;(n) = Z;& 1x,—i
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Claim. If P is positive recrurrent, then

P[pij(n) — pij asn — oo] =1

Proof. N;; = Zx;:l Y,, where Y,,, = 1 if the m-th transition is from ¢ is to j and Y,,, = 0

otherwise. By the strong Markov property, the Y; are i.i.d with mean p;; and independent
from V;(n). MArkov Chain is positive recurrent so

P[Vi(n) = co as n — oo] =1
Strong law of large numbers gives

Vi(n) Y,

R 0 Y
P[pij(n) = —f/_(ln) — pij asn — oo] =1

Outlook: for an aperiodic irreducible finite state Markov Chain, we have seen that
PX, =i —m (n— o0)

Thus, conversely, to sample from a given distribution 7 (on say N states), one may try to find a
Markov Chain as above with 7 as its invariant distribution, and then run it for a long time (Markov
Chain Monte Carlo - MCMC) - Metropolis and Ulam.

There are different ways to find such a Markov Chain. The most famous is the Metropolis algorithm.
(Metropolis, Rosenbluth, Teller & Teller (1953))

Question of theoretical and practical relevance: how fast is “n — o0”? E.g.

min{n : Z |P[X,, =i] — m| < e} =?

Depends very much on the particular structure of the Markov Chain. It is a subject of current reearch
interest
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