Markov Chains

Hasan Baig

Michaelmas 2021

Contents

0 Overview

1 Definitions and Basic Properties

Note. We will make the following standing assumptions:

- I is a countable set, the state space; $I = \{1, 2, \dots\}$.
- $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space on which all relevant random vairables are defined.

Definition. A sequence of random vairables $(X_n)_{n=0,1,...}$ is a **Markov Chain** if, for $n \geq 0$ and $i_0, \ldots, i_{n+1} \in I$,

$$
\mathbb{P}[X_{n+1} = i_{n+1} | X_0 = i_0, \dots, X_n = i_n] = \mathbb{P}[X_{n+1} = i_{n+1} | X_n = i_n]
$$

(conditioning if the event $X_0 = i_0, \ldots, X_n = i_n$ has positive probability) It is homogeneous if, for all $i, j \in I$:

$$
\mathbb{P}[X_{n+1} = j | X_n = i] = \mathbb{P}[X_1 = j | X_0 = i]
$$

Note. From now on, all Markov Chains are assumed homogeneous.

Definition. A Markov Chain is characterised by: (i) the **intitial distribution:** $\lambda = (\lambda_i)_{i \in I}$ given by $\lambda_i = \mathbb{P}[X_0 = i]$

(ii) the transition matrix: $P = (p_{ij})_{i,j \in I}$ given by $\mathbb{P}[X_1 = j | X_0 = i]$

Remarks.

- λ is a distribution, i.e. $\lambda_i \geq 0$ for all $i \in I$ and $\sum_{i \in I} \lambda_i = 1$
- P is a stochastic matrix, i.e., $(p_{ij})_j$ is a distribution for every $i \in I$

Definition. (X_n) is a Markov Chain with initial distribution λ and transition matrix P, or (X_n) is Markov (λ, P) , if (i) and (ii) hold.

Theorem. (X_n) is Markov (λ, P) iff for all $n \geq 0$, i_0, \ldots, i_n with $n \in I$,

$$
\mathbb{P}[X_0 = i_0, \dots, X_n = i_n] = \lambda_{i_0} p_{i_0 i_1} \dots p_{i_{n-1} i_n}
$$
\n^(*)

Proof. Suppose (X_n) is Markov (λ, P) . Then

$$
\mathbb{P}[X_0 = i_0, \dots, X_n = i_n] = \mathbb{P}[X_n = i_n | X_0 = i_0, \dots, X_{n-1} = i_{n-1}] \cdot \mathbb{P}[X_0 = i_0, \dots, X_{n-1} = i_{n-1}]
$$

= $p_{i_{n-1}i_n} \cdot \mathbb{P}[X_0 = i_0, \dots, X_{n-1} = i_{n-1}]$ by the Markov property
= $p_{i_{n-1}i_n} p_{i_{n-2}i_{n-1}} \dots p_{i_0i_1} \mathbb{P}[X_0 = i_0]$ by induction
= $p_{i_{n-1}i_n} p_{i_{n-2}i_{n-1}} \dots p_{i_0i_1} \lambda_{i_0}$

Conversely assume (*) holds for all n and i_0, \ldots, i_n . For $n = 0$, $\mathbb{P}[X_0 = i_0] = \lambda_{i_0}$. Also, by $(*)$

$$
\mathbb{P}[X_n = i_n | X_0 = i_0, \dots, X_{n-1} = i_{n-1}] = \frac{\mathbb{P}[X_0 = i_0, \dots, X_n = i_n]}{\mathbb{P}[X_0 = i_0, \dots, X_{n-1} = i_{n-1}]}
$$

$$
= p_{i_{n-1}i_n}
$$

Thus (i) and (ii) hold, i.e. (X_n) is Markov (λ, P) .

Notation. Let $\delta_i = (\delta_{ij} : j = I)$ be the unit mass at $i \in I$:

$$
\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}
$$

Theorem. Let (X_n) be Markov (λ, P) . Then conditional on $X_m = i$, $(X_{m+n})_{n \geq 0}$ is Markov (δ_i, P) and is independent of X_0, \ldots, X_m .

Proof. It suffices to show:

(i)

 $\mathbb{P}[X_m = i_m, \ldots, X_{m+n} = i_{m+n} | X_m = i] = \delta_{i i_m} p_{i_m i_{m+1}} \ldots p_{i_{n+m-1} i_{n+m}}$

(ii) For every event A determined by X_1, \ldots, X_m and every event B determined by X_m, X_{m+1}, \ldots

 $\mathbb{P}[A \cap B | X_m = i] = \mathbb{P}[A | X_m = i] \cdot \mathbb{P}[B | X_m = i]$

The previous theorem implies both for the elements:

$$
A = \{X_0 = i_0, \dots, X_m = i_m\}
$$

$$
B = \{X_m = i_m, \dots, X_{n+m} = I_{n+m}\}\
$$

Indeed, after multiplying by $\mathbb{P}[X_m = i]$ the claim is

$$
\mathbb{P}[X_m = i_m, \dots, X_{m+n} = i_{m+n}] = \delta_{ii_m} p_{i_m i_{m+1}} \dots p_{i_{n+m} = i_{n+m}} \mathbb{P}[X_m = i]
$$

$$
\mathbb{P}[A \cap B] = \mathbb{P}[A] \mathbb{P}[B | X_m = i] = \delta_{ii_m} \mathbb{P}[A] \mathbb{P}[B]
$$

Now, any A and B in (i) and (ii) can be written as a countable union of elementary A and B , and hence the general claim follows by summing over the identities for elementary A and B

Notation. We regard distrbiutions and measures $(\lambda_i)_{i \in I}$ as row vectors. Matrix multiplication:

$$
(\lambda P)_j = \sum_{i \in I} \lambda_i p_{ij}
$$

$$
(P^2)_{ij} = \sum_{k \in I} p_{ik} p_{kj} = p_{ij}^{(2)}, \dots
$$

with $P_0 = 1$ the $I \times I$ identity matrix $1_{ij} = \delta_{ij}$. When $\lambda_i > 0$, write $\mathbb{P}_i[A] = \mathbb{P}[A|X_0 = i]$

Remark. By the Markov property, $(X_n)_{n\geq 0}$ is Markov (δ_i, P) under \mathbb{P}_i . (So the behaviour of (X_n)) under \mathbb{P}_i does not depend on λ)

Theorem. Let (X_n) be Markov (λ, P) . Then for all $n, m \geq 0$: (i)

 $\mathbb{P}[X_n = j] = (\lambda P^n)_j$

(ii)

 $\mathbb{P}_i[X_n = j] = p_{ij}^{(n)}$

Proof. (i)

> $\mathbb{P}[X_n = j] = \sum$ $i_0,...,i_{n-1}$ ∈I $\mathbb{P}[X_0 = i_0, \ldots, X_n = i_n]$ $=$ \sum $i_0,\ldots,i_{n-1}\in I$ $\lambda_{i_0}p_{i_0i_1}\ldots p_{i_{n-2}i_{n-1}}p_{i_{n-1}j}$ $=(\lambda P^n)_j$

(ii) Use the Markov property and $\lambda = \delta_i$ and (i)

Example. The general two state Markov Chain is: 2 1 α β $P = \begin{bmatrix} 1 - \alpha & \alpha \\ 2 & 1 \end{bmatrix}$ β 1 – β 1 some $\alpha, \beta \in [0, 1]$ $P^{n+1} = P^n \cdot P \implies p_{11}^{(n+1)} = p_{12}^{(n)} \beta + p_{11}^{(n)} (1 - \alpha)$ $p_{12}^{(n)} + p_{11}^{(n)} = 1 \implies p_{11}^{(n+1)} = p_{11}^{(n)}(1 - \alpha - \beta) + \beta$ Since $p_{11}^{(0)}$, this recursion relation has unique solution: $p_{11}^{(n)} =$ $\int \frac{\beta}{\alpha+\beta} + \frac{\alpha}{\alpha+\beta} (1-\alpha-\beta)^n \quad \text{if } \alpha+\beta>0$ 1 if $\alpha + \beta = 0$

Method. General method to find $p_{ij}^{(n)}$ for an N state Markov Chain

- Find the eigenvalues $\lambda_1, \ldots, \lambda_N$ of P, i.e., roots of $\det(\lambda P) = 0$
- If all eigenvalues are distinct, then $p_{ij}^{(n)}$ has the form:

 $p_{ij}^{(n)} = a_1 \lambda_1^n + \cdots + a_N \lambda_N^n$ where the a_i are constants

If an eigenvalue λ is repeated once then the general form includes a term $(a + bn)\lambda^n$. Similar formulas hold for eigenvalues with higher multiplicities.

• As roots of a polynomial with real coefficients, any complex eigenvalues come in conjugate pairs. These are oftenbest written in terms of sin and cos

Justification: If P has distinct eigenvalues, then it can be diagonalised as

$$
P = U \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_N \end{bmatrix} U^{-1} \implies P^n = U \begin{bmatrix} \lambda_1^n & & \\ & \ddots & \\ & & \lambda_N^n \end{bmatrix} U^{-1}
$$

 $\implies p_{ij}^{(n)}$ is of the desired form.

If P has repeated eigenvalues, the more general claim can be seen from the Jordan normal form

Example. 1 3 1/2 1/2 1 2 P = 0 1 0 0 1/2 1/2 1/2 0 1/2 What is p (n) ¹¹ ? Eigenvalues: 0 = det(λ − P) = λ(λ − 1 2) ² − 1 4 = 1 4 (λ − 1)(4λ ² + 1) =⇒ λ = 1. i 2 , − i 2 =⇒ p (n) ¹¹ = a + b i 2 n + c − i 2 n for some constant a, b, c ± i 2 n = 1 2 n e [±]iπn/² = 1 2 ⁿ cos 1 2 πn [±] ⁱsin 1 =⇒ p (n) ¹¹ = α + 1 2 ⁿ ^β cos 1 2 πn ⁺ ^γ sin 1 2 πn for some ocnstant α, β, γ. Note:

$$
1 = p_{11}^{(0)} = \alpha + \beta
$$

\n
$$
0 = p_{11}^{(1)} = \alpha + \frac{1}{2}\beta
$$

\n
$$
0 = p_{11}^{(2)} = \alpha + \frac{1}{4}\beta
$$

 $\frac{1}{2}\pi n\biggr)\biggr)$

and so $\alpha = \frac{1}{5}$, $\beta = \frac{4}{5}$, $\gamma = -\frac{2}{5}$

$$
\implies p_{11}^{(n)} = \frac{1}{5} + \left(\frac{1}{2}\right)^n \left[\left(\frac{4}{5}\right) \cos\left(\frac{1}{2}\pi n\right) - \frac{2}{5} \left(\frac{1}{2}\pi n\right)\right]
$$

2 Class Structure

Definition. For $i, j \in I$,

- *i* leads to j $(i \rightarrow j)$ if $\mathbb{P}_i[X_n = j \text{ for some } n] > 0$
- *i* communicates with j $(i \leftrightarrow j)$ if $i \rightarrow j$ and $j \rightarrow i$

Theorem. For $i \neq j$ the following are equivalent: (i) $i \rightarrow j$ (ii) $p_{i_1 i_2} \dots p_{i_{n-1} i_n} > 0$ for some i_1, \dots, i_n with $i_1 = i$, $i_n = j$ (iii) $p_{ij}^{(n)} > 0$ for some n

Proof. Equivalence of (i) and (iii) follows from

$$
p_{ij}^{(n)} = \mathbb{P}_i[X_n = j] \le \mathbb{P}_i[X_k = j \text{ for some } k] \le \sum_{k=0}^{\infty} p_{ij}^{(k)}
$$

Equivalence of (ii) and (iii) follows from

$$
p_{ij}^{(n)} = \sum_{i_2,\dots,i_{n-1}} p_{ii_2} \dots p_{i_{n-1}j}
$$

Prop. The relation is $i \leftrightarrow j$ is an equivalence relation

Proof. We must show that $i \leftrightarrow j$ is reflexive, symmetric and transitive. That \leftrightarrow is reflexive $(i \leftrightarrow i)$ and symmetric $(i \leftrightarrow j$ implies $j \leftrightarrow i$) are clear from the definition. That \leftrightarrow is transitive $(i \leftrightarrow j)$ and $j \leftrightarrow k$ implies $i \leftrightarrow k$) follows from (ii) of the theorem.

Definition. The equivalence classes of \leftrightarrow are called **communicating classes**. The chain is irreducible
if there is only a single communicating class, i.e.,
 $i \leftrightarrow j$ for all $i,j \in I$

Definition. A subset $C \subseteq I$ is closed if $i \in C$, $i \rightarrow j \implies j \in C$. A state $i \in I$ is absorbing if $\{i\}$ is closed.

3 Hitting and Absorption Probabilities

Definition. Let (X_n) be a Markov Chain.

• The hitting time of a set $A \subseteq I$ is the random variable $H^A : \Omega \to \{0, 1, 2, \dots\} \cup \{+\infty\}$ given by

$$
H^{A}(\omega) = \inf\{n \ge X_n(\omega) \in A\}, \text{ inf } \varnothing = +\infty
$$

• The hitting probability of A is

•

$$
h_i^A = \mathbb{P}_i[H^A < \infty] = \mathbb{P}_i[\text{hit } A]
$$

If A is a closed class, h_i^A is called the **absorption probability**.

• The mean hitting time is the expected time to reach A.

$$
k_i^A = \mathbb{E}_i[H^A] = \mathbb{E}_i[\text{time to hit } A]
$$

Starting from 2, what is the probability of absorption in 4? And how long does it take until the chain is absorbed in 1 or 4?

Let $h_i = \mathbb{P}_i[\text{hit 4}]$ and $k_i = \mathbb{E}_i[\text{time to hit 1 or 4}].$ Note that $h_1 = 0, h_4 = 1$.

$$
h_2 = \frac{1}{2}h_1 + \frac{1}{2}h_3
$$

$$
h_4 = \frac{1}{2}h_2 + \frac{1}{2}h_4
$$

 $k_1 = 0, k_4 = 0$

$$
k_2 = 1 + \frac{1}{2}k_1 + \frac{1}{2}k_3
$$

\n
$$
k_3 = 1 + \frac{1}{2}k_2 + \frac{1}{2}k_4
$$

\n
$$
\implies h_2 = \frac{1}{2} \left(\frac{1}{2}h_2 + \frac{1}{2}\right) = \frac{1}{4}h_2 + \frac{1}{4} = \frac{1}{3}
$$

\n
$$
k_2 = 1 + \frac{1}{2} \left(1 + \frac{1}{2}k_2\right) = \frac{3}{2} + \frac{1}{4}k_2 = 2
$$

Theorem. The vector of hitting probabilities $h^A = (h_i)_{i \in I}^A$ is the minimal nonnegative solution to

$$
(*)\begin{cases}h_i^A = 1 & (i \in A)\\h_i^A = \sum_{j \in I} p_{ij}h_j^A & (i \notin A)\end{cases}
$$

Minimal means that if $x = (x_i)_{i \in A}$ is another solution with $x_i \geq 0$ for all $i \in I$ then $h_i^A \geq x_i$ for all $i \in I$.

Proof.

• Step 1: h^A is a solution to $(*)$. If $X_0 = i \in A$ then clearly $H^A = 0$, so $h_i^A = 1$. If $X_0 = i \in A$, then by the Markov property,

$$
\mathbb{P}_i[H^A < \infty | X_1 = j] = \mathbb{P}_j[H^A < \infty] = h^A_j
$$

$$
\implies h_i^A = \mathbb{P}_i[H^A < \infty] = \sum_{j \in I} \mathbb{P}_i[H^A < \infty, X_1 = j]
$$
\n
$$
= \sum_{j \in I} \mathbb{P}_i[H^A < \infty | X_1 = j] \mathbb{P}_i[X_1 = j]
$$
\n
$$
= \sum_j h_j^A p_{ij}
$$

 $\implies h^A$ is a solution to (*)

• Step 2: h^A is minimal.

Let x be any nonnegative solution to (*). If $i \in A$, clearly $h_i^A = 1 = x_i$. So suppose $i \notin A$. Then

$$
x_i = \sum_{j \in I} p_{ij} x_j = \sum_{j \in A} p_{ij} x_j + \sum_{j \notin A} p_{ij} x_j
$$

=
$$
\sum_{j \in A} p_{ij} + \sum_{j \notin A} p_{ij} \left(\sum_{k \in A} p_{jk} + \sum_{k \notin A} p_{jk} x_k \right)
$$

=
$$
\mathbb{P}_i[X_i \in A] + \mathbb{P}_i[X_1 \notin A, X_2 \in A] + \sum_{j \notin A} \sum_{k \notin A} p_{ij} p_{jk} x_k
$$

By repeated substitution,

$$
x_i = \mathbb{P}_i[X_1 \in A] + \mathbb{P}_i[X_1 \notin A, X_2 \in A] + \mathbb{P}[X_1 \notin A, X_2 \notin A, X_3 \in A] + \cdots + \mathbb{P}[X_1 \notin A, \dots, X_n \in A] + \sum_{\substack{j_1 \notin A}} \cdots \sum_{\substack{j_n \notin A}} p_{ij_1} p_{j_1 j_2} \cdots p_{j_{n-1} j_n} x_{j_n}
$$

\n ≥ 0 as x non-neg.
\n $\implies x_i \geq \mathbb{P}_i[H^A \leq n]$ for all n
\n $\implies x_i \geq \lim_{n \to \infty} \mathbb{P}_i[H^A \leq n] = \mathbb{P}_i[H^A < \infty] = h_i^A$

$$
\implies h^A \text{ is minimal}
$$

Example. (continued from previous one) Recall that $h = h^A$

$$
(*)\begin{cases} h_1 = h_1 \\ h_4 = 1 \\ h_2 = \frac{1}{2}h_1 + \frac{1}{2}h_3 \\ h_3 = \frac{1}{2}h_2 + \frac{1}{2}h_4 \end{cases}
$$

The system (*) does not determine h_1 but by the minimality condition, we must choose $h_1 = 0$. So we find the same solution

Example (Gambler's Ruin). 0 1 2 3 q p q p q . . . $p_{00} = 1$ $0 < p = 1 - q < 1$

Starting with a fortune of i£, what is the probability of leaving broke? I.e., what is $h_i = \mathbb{P}_i[\text{hit 0}]$ By the theorem,

$$
\begin{cases} h_0 = 1 \\ h_i = ph_{i+1} + qh_{i-1} \ (i = 1, 2, 3, \dots) \end{cases}
$$

Assume $p \neq q$. The general solution to the recursion is

$$
h_i = A + B\left(\frac{q}{p}\right)^i
$$

If $p < q$ (most casinos): $0 \le h_i \le 1$ for all $i \implies B = 0$, $A = 1$, and so $h_i = 1$ for all i . If $p > q$:

$$
h_0 = 1 : h_0 = 1 \implies B = 1 - A \implies h_i = \left(\frac{q}{p}\right)^i + A \left(1 - \left(\frac{q}{p}\right)^i\right)
$$

 $h_i \geq 0$ for all $i \implies A \geq 0$. And minimality implies

$$
A = 0 \implies h_i = \left(\frac{q}{p}\right)^i
$$

If $p = q$ (fair casino), the general solution to the recursion is

$$
h_i = A + Bi
$$

$$
0 \le h_i \le 1 \implies B = 0
$$

$$
h_0 = 1 \implies A = 1
$$

and so $h_i=1$ for all i

Example (Birth and death chain). 0 1 2 3 q_1 p_1 q_2 p_2 q_3 . . . $h_i = \mathbb{P}_i$ [hit 0] is the extinction probability from i (∗) $h_0 = 1$ $h_i = p_i h_{i+1} + q_i h_{i-1}$ $(i = 1, 2, ...)$ Consider $u_i = h_{i-1} - h_i$. Then $p_i u_{i+1} + q_i u_i = p_i h_i - h_{i+1} - q_i h_{i-1} + q_i h_i$ $=(p_i+q_i-1)h_i=0$ $\implies u_{i+1} = \frac{q_i}{q_i}$ $\frac{q_i}{p_i} u_i = \begin{pmatrix} \frac{q_iq_{i-1}\dots q_1}{p_i p_{i-1}\dots p_1} \end{pmatrix}$ $p_i p_{i-1} \ldots p_1$ \setminus $\overbrace{\gamma_i}$ $= \gamma_i u_i$ $\implies h_i = 1 - (h_0 - h_i)$ $u_1 + \cdots + u_i$ $= 1 - A(\gamma_0 + \cdots + \gamma_{i-1})$ with $A = u_1$ unknown. If $\sum_{i=0}^{\infty} \gamma_i = \infty$: $0 \le h_i \le 1 \implies A = 0 \implies h_i = 1$ for all i If $\sum_{i=0}^{\infty} \gamma_i < \infty$: minimal solution is $A = (\sum_{i=0}^{\infty} \gamma_i)^{-1}$ $\sum_{i=1}^{\infty}$

$$
\implies h_i = \frac{\sum_{j=1}^{\infty} \gamma_j}{\sum_{j=0}^{\infty} \gamma_j}
$$

Since for any i, we have $h_i < q$, the population survives with positive probability.

Theorem. The vector of mean hitting times $k^A = (k_i^A)_{i \in I}$ is the minimal solution to

$$
(\dagger) \begin{cases} k_i^A = 0 & (i \in A) \\ k_i^A = 1 + \sum_{j \notin A} p_{ij} k_j^A & (i \notin A) \end{cases}
$$

Proof.

• Step 1: k^A satisfies (†). If $X_0 = i \in A$, then $H^A = 0$ so clearly $k_i^A = \mathbb{E}_i[H^A] = 0$ If $X_0 = i \notin A$, then $H^A \geq 1$, so by the Markov prop.,

$$
\mathbb{E}[H^A|X_1 = j] = 1 + \mathbb{E}_j[H^A] = 1 + k_j^A
$$

$$
k_i^A = \mathbb{E}_i[H^A] = \sum_{j \in I} \mathbb{E}_i[H^A|X_1 = j] \underbrace{\mathbb{P}_i[X_1 = j]}_{p_{ij}} = 1 + \sum_{j \notin A} p_{ij} k_j^A
$$

• Step 2: k^A is minimal. Suppose x is any nonnegative solution to (†). Then $x_i = k_i^A = 0$ for all $i \in A$. For $i \notin A$,

$$
x_i = 1 + \sum_{j \notin A} p_{ij} x_j = 1 + \sum_{j \notin A} p_{ij} \left(1 + \sum_{k \notin A} p_{jk} x_k \right)
$$

= $\mathbb{P}_i [H^A \ge 1] + \mathbb{P}_i [H^A \ge 2] + \sum_{j \notin A} \sum_{k \notin A} p_{ij} p_{jk} x_k$

Again, by repeated substitution, for any n ,

$$
x_i = \mathbb{P}_i[H^A \ge 1] + \dots + \mathbb{P}_i[H^A \ge n] + \underbrace{\sum_{j_1 \notin A} \dots \sum_{j_n \notin A} p_{ij_1} \dots p_{j_{n-1}j_n} x_{j_n}}_{\ge 0}
$$

$$
\implies x_i \ge \sum_{n=1}^{\infty} \mathbb{P}_i[H^A \ge n] = \mathbb{E}_i[H^A] = k_i^A
$$

Thus k^A is the minimal solution.

4 Strong Markov Property

Definition. A random variable $T : \Omega \to \{0, 1, 2, ...\} \cup \{+\infty\}$ is a stopping time if the event ${T = n}$ only depends on X_0, \ldots, X_n for $n = 0, 1, 2, \ldots$

Examples.

(i) The first passage time

$$
T_j = \inf\{n \ge 1 : X_n = j\}
$$

is a stopping time since $\{T_j = n\} = \{X_1 \neq j, \ldots, X_{n-1} \neq j\}$ (ii) The hitting time H^A of a set A is a stopping time

$$
\{H^A = n\} = \{X_0 \notin A, \dots, X_{n-1} \notin A, X_n \in A\}
$$

(iii) The last exit time of a set A

$$
L^A = \sup\{n \ge 0 : X_n \in A\}
$$

is in general not a stopping time because $\{L^A = n\}$ depends on whether $(X_{n+m})_{m \geq 1}$ visits A or not.

Theorem (Strong Markov Property). Let $(X_n)_{n\geq 0}$ be Markov (λ, P) , and let T be a stopping time for (X_n) . Then conditional on $T < \infty$ and $X_T = i$, $(X_{T+n})_{n \geq 0}$ is Markov (δ_i, P) and independent of X_1, \ldots, X_T

Proof. Let B be an event determined by X_0, \ldots, X_T . Then $X \cap \{T = m\}$ is determined by X_0, \ldots, X_m . So by (usual) Markov property

$$
\mathbb{P}[\{X_T = j_0, \dots, X_{T+n} = j_n\} \cap B \cap \{T = m\} \cap \{X_T = i\}]
$$

=
$$
\mathbb{P}[X_0 = j_0, \dots, X_n = j_n] \mathbb{P}[B \cap \{T = m\} \cap \{X_T = i\}]
$$

Summing over m gives

$$
\mathbb{P}[\{X_T = j_0, \dots, X_{T+n} = j_n\} \cap B \cap \{T < \infty\} \cap \{X_T = i\}]
$$
\n
$$
= \mathbb{P}[X_0 = j_0, \dots, X_n = j_n] \mathbb{P}[B \cap \{T < \infty\} \cap \{X_T = i\}]
$$

Dividing by $\mathbb{P}[T < \infty, X_T = i]$ (if it is positive) gives

$$
\mathbb{P}[\{X_T = j_0, \dots, X_{T+n} = j_n\} \cap B | T < \infty, X_T = i]
$$

=
$$
\mathbb{P}[X_0 = j_0, \dots, X_n = j_n] \mathbb{P}[B | T = m, X_T = i]
$$

17

Example (continued). Claim:

$$
ps\phi(s)^2 - \phi(s) + qs = 0
$$

Conditional on $X_1 = 2$, we have $H_0 = 1 + \bar{H_0}$ where $\bar{H_0}$ is the time it takes after 1 step to reach 0. By Markov property, H_0 under $\mathbb{P}[\cdot | X_2 = 2]$ has the same distribution as H_0 under \mathbb{P}_2 .

$$
\implies \phi(s) = \mathbb{E}_1[s^{H_0}] = p\mathbb{E}_1[s^{H_0}|X_1 = 2] + q\mathbb{E}_1[s^{H_0}|X_0 = 0]
$$

\n
$$
= p\mathbb{E}[s^{1+\bar{H_0}}|X_1 = 2] + qs
$$

\n
$$
= ps \underbrace{\mathbb{E}_1[s^{\bar{H_0}}|X_1 = 2]}_{\mathbb{P}_2[s^{H_0}] = \phi(s)^2} + qs
$$

\n
$$
= ps\phi(s)^2 + qs
$$

\n
$$
\implies \phi(0) = 0 \text{ and } \phi(s) = \frac{1 \pm \sqrt{1 - 4pqs^2}}{2} \text{ for } s > 0
$$

2ps

Since $\phi(s) \leq 1$ and since $\phi(s)$ is continuous, only then negative root is possible or all $s \in [0,1)$

$$
\implies \phi(s) = \frac{1 - \sqrt{1 - 4pqs^2}}{2ps}
$$

= $\frac{1}{2ps} \left[1 - \left(1 + \frac{1}{2} (-4pqs^2) - \frac{1}{8} (4pqs^2)^2 + \dots \right) \right]$
= $qs + pq^2s^3 + \dots$
= $s\mathbb{P}[H_0 = 1] + s^2 \mathbb{P}[H_0 = 2] + s^2 \mathbb{P}[H_0 = 3] + \dots$
 $\mathbb{P}[H_0 = 1] = q$
 $\mathbb{P}[H_0 = 2] = 0$

etc. As $s\to 1$ from below, we have $\phi(s)\to \mathbb{P}_1[H_0<\infty]$

$$
\implies \mathbb{P}_1[H_0 < \infty] = \frac{1 - \sqrt{1 - 4pq}}{2p} = \begin{cases} 1 & \text{if } p \le q \\ \frac{q}{p} & \text{if } p > q \end{cases}
$$

Also, if $p \leq q$,

$$
\mathbb{E}_1[H_0] = \mathbb{E}_1[H_0 \mathbb{1}_{H_0 < \infty}] = \lim_{\delta \uparrow 1} \phi'(s)
$$

Differentiating the quadratic equation gives

$$
2ps\phi(s)\phi'(s) + p\phi(s)^2 + \phi'(s) + 1 = 0
$$

$$
\implies \phi'(s) = \frac{p\phi(s)^2 + q}{1 - 2ps\phi(s)} \to \frac{1}{1 - 2p} = \frac{1}{q - p}
$$

$$
\mathbb{E}_1[H_0] = \frac{1}{q - p}
$$

as $s \uparrow 1$

5 Recurrence and transcience

Definition. Let (X_n) be a Markov Chain. A state $i \in I$ is • recurrent if $\mathbb{P}_i[X_n = i \text{ for infinitely many } n] = 1$ • transient if $\mathbb{P}_i[X_n = i \text{ for infinitely many } n] = 0$ **First passage time to** $j: T_j = \inf\{n \geq 1 : X_n = j\}$

Theorem. The following dichotomy holds:

(i) If $\mathbb{P}_i[T_i < \infty] = 1$ then *i* is recurrent and

$$
\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty
$$

(ii) If $\mathbb{P}_i[T_i < \infty] < 1$ then *i* is transcient and

$$
\sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty
$$

In particular, every state is either recurrent or transient.

Proof.

I

• Step 1: Inductively, define the r-th passage time to j :

$$
T_j^{(0)} = 0
$$
, $T_j^{(1)} = T_j$, $T_j^{(r+1)} = \inf\{n \ge T_j^{(r)} + 1 : X_n = j\}$

The length of the r -th excursion is defined by

$$
S_i^r = \begin{cases} T_i^{(r)} - T_i^{(r-1)} & \text{ if } T_i^{(r-1)} < \infty \\ 0 & \text{ otherwise } \end{cases}
$$

Lemma. For $r = 2, 3, \ldots$, conditional on $T^{(r-1)} < \infty$, the length of the *r*-th excursion $S_i^{(r)}$ is independent of $\{X_m: m < T_i^{(r-1)}\}$ and

$$
\mathbb{P}[S_i^{(r)} = n | T_i^{(r-1)} < \infty] = \mathbb{P}_i[T_i = n]
$$

Proof.

By the strong Markov property, conditional on $T_i^{(r-1)} < \infty$, $(X_{T_i^{(r-1)}+n})_{n\geq 0}$ is Markov (δ_i, P) and is independent of $X_0, \ldots, X_{T_i^{(r-1)}}$. Now

$$
S_i^{(r)} = \inf\{n \ge 1 : X_{T_i^{(r-1)} + n} = i\}
$$

is the first passage time of $(X_{T_i^{(r-1)}+n})_{n\geq 0}$ to state *i*.

Theorem.

Proof.

• Step 2: Let V_i denote the number of visits to i :

$$
V_i = \sum_{n=0}^{\infty} 1_{X_n = i}
$$

Then

$$
\mathbb{E}_{i}[V_{i}] = \mathbb{E}[\sum_{n=0}^{\infty} 1_{X_{n}=i}] = \sum_{n=0}^{\infty} \mathbb{P}_{i}[X_{n}=i] = \sum_{n=0}^{\infty} p_{ii}^{n}
$$

Let f_i be the return probability to i :

$$
f_i = \mathbb{P}_i[T_i < \infty]
$$

Lemma. For
$$
r = 0, 1, 2, \ldots
$$
, we have $\mathbb{P}_i[V_i > r] = f_i^r$

Proof. Note that $\{V_i > r\} = \{T_i^{(r)} < \infty\}$ if $X_0 = i$. Also note that $\mathbb{P}_i[\hat{V}_i > 0] = 1$. By induction,

$$
\mathbb{P}_{i}[V_{i} > r+1] = \mathbb{P}_{i}[T_{i}^{(r+1)} < \infty]
$$

\n
$$
= \mathbb{P}[T_{i}^{(r)} < \infty, S_{i}^{(r+1)} < \infty]
$$

\n
$$
= \underbrace{\mathbb{P}_{i}[T_{i}^{(r)} < \infty]}_{f_{i}^{r}} \underbrace{\mathbb{P}[S_{i}^{(r+1)} < \infty | T_{i}^{(r)} < \infty]}_{f_{i}} = f_{i}^{r+1}
$$

(i) If $\mathbb{P}_i[T_i < \infty] = 1$, then by the last lemma,

$$
\mathbb{P}_i[V_i = \infty] = \lim_{r \to \infty} \mathbb{P}_i[V_i > r] = 1
$$

So *i* is recurrent and

$$
\sum_{n=0}^{\infty} p_{ii}^{(n)} = \mathbb{E}_i[V_i] = \infty
$$

(ii) If $\mathbb{P}_i[T_i < \infty] < 1$, then

$$
\sum_{n=0}^{\infty} p_{ii}^{(n)} = \mathbb{E}_i[V_i] = \sum_{r=0}^{\infty} \mathbb{P}_i[V_i > r] = \sum_{r=0}^{\infty} f_i^r = \frac{1}{1 - f_i} < \infty
$$

So $\mathbb{P}_i[V_i = \infty] = 0$, so *i* is transient.

Theorem. Recurrence and transience are class properties: for any communicating class, either all states $i \in C$ are recurrent or all are transient

Proof. Let $i, j \in C$ and assume that i is transient. Since i and j communicatem there exist n, m s.t.

$$
p_{ij}^{(n)} > 0
$$
 and $p_{ji}^{(m)} > 0$

For all $r \geq 0$, then

$$
p_{ii}^{(n+m+r)} \ge p_{ij}^{(n)} p_{jj}^{(r)} p_{ji}^{(m)}
$$

\n
$$
\implies \sum_{r=0}^{\infty} p_{jj}^{(r)} \le \frac{1}{p_{ij}^{(n)} p_{ji}^{(m)}} \sum_{r=0}^{\infty} p_{ii}^{(n+m+r)} < \infty
$$

So *j* is transcient aswell.

Theorem. Every recurrent class is closed.

Proof. Let C be a class that is not closed, i.e., there is $i \in C, j \notin C$ and $m \ge 1$ s.t.

$$
\mathbb{P}_i[X_m = j] > 0
$$

Since C is a communicating class and $j \notin C$,

$$
\mathbb{P}_{i}[\{X_{m}=j\}\cap\{X_{n}=i\text{ for infinitely many }n\}]=0
$$

 $\implies \mathbb{P}_i[X_n = i \text{ for infinitely many } n] = \sum$ j∈I $\mathbb{P}_i[X_n = i \text{ for infinitely many } n, X_m = j]$ $\langle \sum$ j∈I $\mathbb{P}_i[X_m = j] = 1$

Thus i is not recurrent and since recurrence is a class property, this means that C is not recurrent (i.e. transient).

Theorem. Every finite closed class is recurrent.

Warning. Infinite closed classes may be transient

Proof. Let C be a finite closed class and suppose $X_0 \in C$

 $\implies 0 < \mathbb{P}[X_n = i \text{ for infinitely many } n]$ for some $i \in C$ $=\mathbb{P}[X_n = i \text{ for some } n] \mathbb{P}_i[X_n = i \text{ for infinitely many } i]$ by the strong Markov prop.

 $\implies \mathbb{P}_i[X_n = i \text{ for infinitely many } n] > 0$

$$
\implies i
$$
 is not transient $\implies i$ is recurrent

Corollary. Finite classes are recurrent iff closed.

Theorem. Suppose P is irreducible and recurrent. Then for all $j \in I$,

 $\mathbb{P}[T_j < \infty] = 1$

Proof. It suffices to show that $\mathbb{P}_i[T_j < \infty] = 1$ for all $i \in I$ since then

$$
\mathbb{P}[T_j < \infty] = \sum_i \mathbb{P}[X_0 = i] \mathbb{P}_i[T_j < \infty] = 1
$$

Since P is irreducible, there is m s.t. $p_{ji}^{(m)} > 0$. Since P is recurrent,

$$
1 = \mathbb{P}_j[X_n = j \text{ for infinitely many } n]
$$

\n
$$
= \mathbb{P}_j[X_n = j \text{ for some } n \ge m + 1]
$$

\n
$$
= \sum_{k \in I} \mathbb{P}_j[X_n = j \text{ for some } n \ge m + 1 | X_m = k] \mathbb{P}_j[X_m = k]
$$

\n
$$
= \sum_{k \in I} \mathbb{P}_k[X_n = j \text{ for some } n \ge 1] p_{jk}^{(m)}
$$

\n
$$
= \sum_{k \in I} \mathbb{P}_k[T_j < \infty] p_{jk}^{(m)}
$$

\n
$$
\implies \mathbb{P}_i[T_j < \infty] = 1 \text{ since } \sum_k p_{jk}^{(m)} = 1 \text{ and } p_{ji}^{(m)} > 0
$$

6 Recurrence and Transience of Random Walks

Suppose $X_0 = 0$ and write X_n^{\pm} for the orthogonal projections onto the lnes $y = \pm x$

Observation: X_n^{\pm} are independent simple symmetric random walks on $\frac{1}{\sqrt{2}}$ $\frac{1}{2}\mathbb{Z}$ and $X_0 = 0$ iff $X_0^{\pm} = 0$

$$
\implies p_{00}^{(2n)} = \left(\binom{2n}{n} \left(\frac{1}{2} \right)^{2n} \right)^2 \sim \frac{C}{n}
$$

since both X^+ and X^- must take 2n steps if X does and ust return to 0

$$
\implies \sum_{n=0}^{\infty} p_{00}^{(2n)} = \infty \implies \text{ The random walk is recurrent}
$$

Example (Simple Random Walk on \mathbb{Z}^3).

$$
p_{ij} = \begin{cases} \frac{1}{6} & \text{if } |i - j| = 1\\ 0 & \text{otherwise} \end{cases}
$$

We will show the random walk is transient.

Again $p_{00}^{(2n+1)} = 0$.

All walks from 0 to 0 must take the same number of steps in direction $(1,0,0)$ as in direction $(-1,0,0)$, and analogously for the other two coordinates.

$$
\implies p_{00}^{(2n)} = \sum_{i,j,k \ge 0, i+j+k=n} \frac{(2n)!}{i!i!j!j!k!k!} \left(\frac{1}{6}\right)^{2n}
$$

$$
= {2n \choose n} \left(\frac{1}{2}\right)^{2n} \sum_{i,j,k \ge 0, i+j+k=n} \left(\frac{n!}{i!j!k!}\right)^2 \left(\frac{1}{3}\right)^{2n}
$$

Fact 1. If $n = 3m$ then $\binom{n}{i j k} \leq \binom{n}{m m m}$ for i, j, k . (suppose the maximal $\binom{n}{i j k}$ has $i > j + 1$ t. Then $i!j! > (i-1)!(j+1)!$ thus $\binom{n}{i j k} < \binom{n}{i-1}$ if $j \neq j$ so $\binom{n}{i\ j\ k}$ wasn't max.) Fact 2.

$$
\sum_{i,j,k \ge 0, i+j+k=n} \frac{n!}{i!j!k!} \left(\frac{1}{3}\right)^n = 1
$$

(The LHS is the total prob. of distribution of three balls in three bins.)

$$
\implies p_{00}^{(2n)} \le {2n \choose n} {3m \choose m m m} \left(\frac{1}{3}\right)^{3m} \sim C \frac{\sqrt{n}}{\sqrt{n}^2} \cdot \frac{\sqrt{n}}{\sqrt{n}^3} = Cn^{-3/2}
$$

Since $p_{00}^{(2n)} \geq \left(\frac{1}{6}\right)^2 p_{00}^{(2n-2)}$ up to changing C,

$$
p_{00}^{(2n)} \le Cn^{-3/2} \text{ for all } n
$$

$$
\implies \sum_{n} p_{00}^{(2n)} \le C \sum_{n} n^{-3/2} < \infty
$$

$$
\implies
$$
 The random walk is transient

7 Invariant Measures

Definition. A measure $\lambda = (\lambda_i)_{i \in I}$ with $\lambda_i \geq 0$ for al $i \in I$ is **invariant** (or stationary or in equilibrium) if

 $\lambda P = \lambda$

Theorem. Let $(X_n)_{n\geq 0}$ be Markov (λ, P) and suppose that λ is invariant for P. Then $(X_{n+m})_{n\geq 0}$ is also Markov (λ, P) .

Proof.

$$
\mathbb{P}[X_m = i] = (\lambda P^m)_i = \lambda_i \text{ for all } i \in I
$$

so the intitial distribution of $(X_{n+m})_{n\geq 0}$ is λ

Also, conditional on $X_{n+m} = i$, by the Markov property for (X_n) , X_{n+m+1} is independent X_m , X_{m+1}, \ldots, X_{n+m} and it has distrbution $(p_{ij})_{j\in I}$.

Theorem. Suppose *I* is finite. For some $i \in I$, suppose $p_{ij}^{(n)} \to \pi_j$ as $n \to \infty$, for all $j \in I$. Then $(\pi_j)_j$ is an invariant distribution

Proof. (π) is a distribution:

$$
\sum_{j \in I} \pi_j = \sum_{j \in I} \lim_{n \to \infty} p_{ij}^{(n)} = \lim_{n \to \infty} \sum_{j \in I} p_{ij}^{(n)} = 1
$$

noting we can swap sum and limit as I finite. (π) is invariant:

$$
\pi_j = \lim_{n \to \infty} p_{ij}^{(n+1)} = \lim_{n \to \infty} \sum_{k \in I} p_{ik}^{(n)} p_{kj} = \sum_{k \in I} \lim_{n \to \infty} p_{ik}^{(n)} p_{kj} = (\pi P)_j
$$

Remark. For the simple symmetric random walk on \mathbb{Z}^d , we have $p_{ij}^{(n)} \to 0$ as $n \to \infty$, for all $i, j \in \mathbb{Z}^d$. The limit 0 is invariant, but not a distribution.

Example.

$$
P = \begin{bmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{bmatrix}
$$

We found earlier that

$$
p_{11}^{(n)} = \begin{cases} \frac{\beta}{\alpha+\beta} + \frac{\alpha}{\alpha+\beta}(1-\alpha-\beta)^n & \text{if } \alpha+\beta > 0\\ 1 & \text{otherwise} \end{cases}
$$

So if $\alpha + \beta \notin \{0, 1\}$, we have $p_{11}^{(n)} \to \frac{\beta}{\alpha + \beta}$. Similarly,

$$
P^n \to \begin{bmatrix} \frac{\beta}{\alpha+\beta} & \frac{\beta}{\alpha+\beta} \\ \frac{\beta}{\alpha+\beta} & \frac{\beta}{\alpha+\beta} \end{bmatrix}
$$

So by the theorem, $(\beta/(\alpha + \beta), \alpha/(\alpha + \beta))$ is an invariant distribution.

Definition. For each state $k \in I$, let γ_i^k be the expected time spent in the state i between two visits to k :

$$
\gamma_i^k = \mathbb{E}_k \sum_{n=0}^{T_k - 1} 1_{X_n = i}
$$

$$
= \mathbb{E}_k \sum_{n=0}^{T_k} 1_{X_n = i} \text{ if } k \neq i
$$

Theorem. Let P be irreducible and recurrent. Then (i) $\gamma_k^k = 1$ (ii) $\gamma^k = (\gamma_i^k)_{i \in I}$ is an invariant measure (iii) $\gamma^k P = \gamma^k$ (iv) $0 < \gamma_i^k < \infty$ for all $i \in I$ Proof. (i) obvious from definition. (ii) Since P is recurrent, (iii) $\mathbb{P}_{k}[T_{k} < \infty, X_{0} = X_{T_{k}} = k] = 1$ $\gamma_j^k = \mathbb{E}_k \sum^{T_k}$ $n=1$ $1_{X_n=j}=j$ $= \mathbb{E}_k \sum_{k=1}^{\infty}$ $n=1$ $1_{X_n=j}$ and $n \leq T_k$ $=\sum_{n=1}^{\infty}$ $n=1$ $\mathbb{P}_k[X_n = j, n \leq T_k]$ $=$ \sum i∈I \sum^{∞} $n=1$ $\mathbb{P}_k[X_{n-1} = i, X_n = j, n \leq T_k]$ $\mathbb{P}_k[X_{n-1}=i,n\leq T_k]\mathbb{P}[X_n=j|X_{n-1}=i]$ $=$ \sum i∈I $p_{ij} \sum_{i=1}^{\infty}$ $n-1$ $\mathbb{P}_k[X_{n-1} = i, n \leq T_k]$ $=$ \sum i∈I p_{ij} \mathbb{E}_{k} $[$ $\sum_{k=1}^{T_k-1}$ $n-1$ $1_{X_n=i}$ γ_i^k $=$ \sum i∈I $p_{ij}\gamma_i^k=(\gamma^k P)_j$ (iv) P irreducible $\implies \exists n, m \geq 0 \text{ s.t. } p_{ik}^{(n)} > 0, p_{ki}^{(m)} > 0$ $\implies \gamma_i^k \geq \gamma_k^k p_{ki}^{(m)} = p_{ki}^{(m)} > 0$ $1 = \gamma_k^k \geq \gamma_i^k p_{ik}^{(n)} \implies \gamma_i^k \leq \frac{1}{\gamma_i^n}$ $p^{(n)}_{ik}$ ik $< \infty$

Theorem. Let P be irreducible and λ be an invariant measure for P with $\lambda_k = 1$. Then $\lambda_i \geq \gamma_i^k$ for all *i*. If in addition P is recurrent, then $\lambda = \gamma^k$

Proof. Since λ is invariant,

 λ_j

$$
= \sum_{i_1 \in I} \lambda_{i_1} p_{i_1 j} = \sum_{i_1 \neq k} \lambda_{i_1} p_{i_1 j} + p_{k j}
$$

\n
$$
= \sum_{i_1 \neq k} \left(\sum_{i_2 \neq k} \lambda_{i_2} p_{i_2 i_1} + p_{k i_1} \right) p_{i_1 j} + p_{k j}
$$

\n
$$
= \dots
$$

\n
$$
= \sum_{i_1, ..., i_n \neq k} \lambda_{i_n} p_{i_n i_{n-1}} \dots p_{i_1 j}
$$

\n
$$
\geq 0
$$

\n
$$
+ \left(p_{k j} + \sum_{i_1 \neq k} p_{k i_1} p_{i_1 k} + \dots + \sum_{i_1, ..., i_{n-1} \neq k} p_{k i_{n-1}} \dots p_{i_2 i_1} p_{i_1 j} \right)
$$

 \setminus \vert

 \implies for $j \neq k$,

$$
\lambda_j \ge \mathbb{P}_k[X_1 = j, T_k \ge 1] + \mathbb{P}_k[X_2 = j, T_k \ge 2] + \dots + \mathbb{P}_k[X_n = j, T_k \ge n]
$$

$$
= \mathbb{E}_k \left[\sum_{m=1}^{\min(n, T_k)} 1_{X_m = j} \right] = \mathbb{E}_k \left[\sum_{m=0}^{\min(n, T_k - 1)} 1_{X_m = j} \right]
$$

$$
\rightarrow \gamma_j^k \text{ as } n \rightarrow \infty
$$

$$
\implies \lambda_j \ge \gamma_j^k
$$

If P is recurrent, γ^k is invariant, so $\mu = \lambda - \gamma^k \geq 0$ is invariant. P is irreductible \implies $\forall i \exists n \text{ s.t. } p_{ik}^{(n)} > 0.$

$$
\implies 0 = \mu_k = \sum_{j \in I} \mu_j p_{jk}^{(n)} \ge \mu_i p_{ik}^{(n)} \implies \mu_i = 0
$$

$$
\implies \mu = 0 \implies \lambda = \gamma^k
$$

Example. The simple symmetric random walk on $\mathbb Z$ is irreducible and we have also seen that it is recurrent. The measure $\pi = (\pi_i)$ where $\pi_i = 1$ for all $i \in \mathbb{Z}$ is invariant:

$$
\pi = \pi P \iff \pi_i = \frac{1}{2}\pi_{i-1} + \frac{1}{2}\pi_{i+1}\checkmark
$$

By the theorem, every invariant is a multiple of of π . Since $\sum_{i\in\mathbb{Z}}\pi_i = +\infty$, there is no invariant distribution.

Example. The simple symmetric random walk on \mathbb{Z}^3 has an invariant measure, but it is not recurrent.

Note. Recall that i is recurrent if $\mathbb{P}_i[X_n = i \text{ for inf.} \text{ many } n] = 1$, or equivalently $\mathbb{P}_i[T_i < \infty] = 1$ This does not imply that the expected return time $m_i = \mathbb{E}_i[T_i]$ is finite.

Definition. • *i* is positive recurrent if $m_i < \infty$ • *i* is null recurrent if *i* is recurrent but $m_i = \infty$

Theorem. Let P be irreducible. Then the following are equivalent:

- (i) Every state is positive recurrent
- (ii) Some state is positive recurrent
- (iii) P has an invariant distribution

Moreover, when (iii) holds, then $m_i = 1/\pi_i$

Proof. (i) \implies (ii): clear. (ii) \implies (iii): If i is positive recurrent, it is recurrent in particular. Therefore γ^i is invariant. Since

$$
\sum_{j\in I}\gamma^i_j=m_i<\infty]
$$

Thus $\pi_j = \frac{\gamma_j^i}{m_i}$ defines an invariant distribution. (iii) \implies (i): first note that, for every $k \in I, \pi_k > 0$. Indeed, since π is invariant and P irreducible,

$$
\pi_k = \sum_{i \in I} \pi_i p_{ik}^{(n)} > 0
$$
 for some *n*

Now set $\lambda_i = \frac{\pi_i}{\pi_k}$. Then λ is an invariant measure with $\lambda_k = 1$. Therefore $\lambda \geq \gamma^k$.

$$
\implies m_k = \sum_{i \in I} \gamma_i^k \le \sum_{i \in I} \frac{\pi_i}{\pi_k} = \frac{1}{\pi_k} < \infty \tag{*}
$$

Thus k is positive recurrent.

Finally, knowing that P is recurrent, we have previously seen that every invariant measure λ with $\lambda_k = 1$ must satisfy $\lambda = \gamma^k$. Thus, we have equiality in (*)

$$
\pi_i = A + B\left(\frac{p}{q}\right)^i
$$

So there is a two-parameter family of invariant measures. Uniqueness up to multiples does not hold.

8 Convergence to Equilibrium

Example.

$$
P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$

$$
P^2 = I \implies P^{2n} = I \text{ and } P^{2n+1}
$$

 $= P$

 $\implies P^n$ does not converge

But note that P has invariant distribution $\pi = \left(\frac{1}{2}, \frac{1}{2}\right)$

 \implies

Definition. A state $i \in I$ is aperiodic if $p_{ii}^{(n)} > 0$ for n sufficiently large. P is aperiodic if all states are aperiodic.

Lemma. Let P be irreducible and have an aperiodic state i. Then for all $j, k \in I$,

$$
p_{jk}^{(n)} > 0 \text{ for } n \text{ sufficiently large}
$$

In particular, all states are aperiodic.

Proof. P irreducible $\implies \exists r, s \text{ s.t. } p_{ji}^{(r)}, p_{ik}^{(s)} > 0$

$$
\implies p_{jk}^{(r+n+s)} \ge p_{ji}^{(r)} p_{ii}^{(n)} p_{ik}^{(s)} > 0
$$
 for *n* sufficiently large

since i is aperiodic.

Theorem. Let P be irreducible and aperiodic and suppose π is an invariant distribution for P. Let λ be any distribution, and suppose that (X_n) is Markov (λ, P) . Then for all $j \in I$,

$$
\mathbb{P}[X_n = j] \to \pi_j \text{ as } n \to \infty
$$

In particular,

$$
p_{ij}^{(n)} \to \pi_j \text{ as } n \to \infty \text{ for all } i, j
$$

Proof. The proof is by coupling.

Let (Y_n) be Markov (π, P) and independent of (X_n) . Fix a reference state $b \in I$ and set

 $T = \inf\{n > 1 : X_n = Y_n = b\}$

Claim: $\mathbb{P}[T < \infty] = 1$.

 $W_n = (X_n, Y_n)$ is a Markov Chain on state space $I \times I$ and

- transition probabilities $\tilde{p}_{(i,k)(j,l)} = p_{ij}p_{kl}$
- initial distribution $\tilde{\lambda}_{(i,k)} = \lambda_i \pi_k$

Since P is aperiodic, the lemma implies that for all $i, j, k, l \in I$,

 $\tilde{p}_{(i,k)(j,l)}^{(n)} > 0$ for n sufficiently large

 $\implies \tilde{P}$ is irreducible

P has invariant distribution $\tilde{\pi}_{(i,k)} = \pi_i \pi_k$

 $\implies \tilde{P}$ is positive recurrent

T is the first passage time of (W_n) to (b, b) . Since P is irreductible and recurrent,

 $\mathbb{P}[T < \infty] = 1.$

From the claim, it follows that

$$
\mathbb{P}[X_n = i] = \mathbb{P}[X_n = i, n < T] + \mathbb{P}[X_n = i, n \ge T]
$$
\n
$$
= \mathbb{P}[X_n = i, n < T] + \mathbb{P}[Y_n = i, n \ge T] \text{ by strong Markov property}
$$
\n
$$
= \mathbb{P}[X_n = i, n < T] + \underbrace{\mathbb{P}[Y_n = i]}_{\pi_i} - \mathbb{P}[Y_n = i, n < T]
$$
\n
$$
\implies |\mathbb{P}[X_n = i] - \pi_i| = |\mathbb{P}[X_n = i, n < T] - \mathbb{P}[Y_n = i, n < T]| \le \mathbb{P}[n < T] \to 0
$$

Example (continued).

$$
P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \pi = \left(\frac{1}{2}, \frac{1}{2}\right)
$$

If X is Markov (δ_0, P) and Y is Markov (π, P) then with probability $\frac{1}{2}$ one has $Y_0 = 1$ but $X_0 = 0$ and X and Y will never meet

Remark. What happens when (X_n) is periodic?

Lemma. Let P be irreducible. There exists an integer $d \geq 1$ (the period) and a partition

$$
I = C_0 \cup \dots \cup C_{d-1}
$$

such that, setting $C_{nd+r} = C_r$, (i) $p_{ij}^{(n)} > 0$ only if $i \in C_r$ and $j \in C_{r+n}$ for some r (ii) $p_{ij}^{(nd)} > 0$ for sufficiently large n, for all $i, j \in C_r$, for all r.

Proof. (In Norris' book)

Theorem. Let P be irreducible of period d with the corresponding C_0, \ldots, C_{d-1} as in the lemma. Let λ be a distribution with $\sum_{i \in C_0} \lambda_i = 1$. Suppose (X_n) is Markov (λ, P) . Then for $r = 0, \ldots, d - 1, j \in C_r$,

$$
\mathbb{P}[X_{nd+r} = j] \to \frac{d}{m_j} \ (n \to \infty)
$$

where m_j is the expected return time to j

Proof. (In Norris' book)

9 Time Reversal

Theorem. Let P be irreducible and have invariant distribution π . Suppose $(X_n)_{0 \leq n \leq N}$ is Markov(π , P), and set $Y_n = X_{N-n}$. Then $(Y_n)_{0 \leq n \leq N}$ is Markov(π , \hat{P}) where

$$
\pi_j \hat{p}_{ji} = \pi_i p_{ij} \tag{*}
$$

and \hat{P} is irreducible with invariant distribution π

Proof. \hat{P} is well-defined by $(*)$ and is a stochastic matrix since

$$
\sum_{i \in I} \hat{p}_{ji} = \frac{1}{\pi_j} \sum_{i \in I} \pi_i p_{ij} = \frac{\pi_j}{\pi_j} = 1
$$

(have $\pi_j > 0$ since P is irreducible and π invariant). π is invariant for \hat{P} :

$$
\sum_{j \in I} \pi_j \hat{p}_{ji} = \sum_{j \in I} \pi_i p_{ij} = \pi_i
$$

 (Y_n) is Markov (π, \hat{P}) :

$$
P[Y_0 = i_0, ..., Y_N = i_N] = \mathbb{P}[X_0 = i_N, ..., X_N = i_0]
$$

= $\pi_{i_N} p_{i_N i_{N-1}} ... p_{i_1 i_0}$
= $\pi_{i_{N-1}} p_{i_N - i} i_N p_{i_{N-1} i_{N-2}} ... p_{i_1 i_0}$
= $\pi_{i_0} \hat{p}_{i_0 i_1} ... \hat{p}_{i_{N-1} i_N}$

 \hat{P} is irreducible since by irreducibility of P, for all $i, j \in I$

$$
p_{i_0i_1} \ldots p_{i_{n-1}i_n} > 0
$$
 for some i_0, \ldots, i_n with $i_0 = i, i_n = j$

$$
\implies \hat{p}_{i_1 i_0} \dots \hat{p}_{i_n i_{n-1}} = \frac{\pi_0}{\pi_1} p_{i_0 i_1} \dots p_{i_{n-1} i_n} > 0
$$

Definition. A stochastic matrix P and a measure λ are in detailed balance if

 $\lambda_i p_{ij} = \lambda_j p_{ji}$ for all $i, j \in I$

Lemma. If P and λ are in detailed balance then λ is invariant for P

Proof.

$$
(\lambda P)_i = \sum_{j \in I} \lambda_j p_{ji} = \sum_{j \in I} \lambda_i p_{ij} = \lambda_i
$$

Definition. Let P be irreducible and (X_n) be Markov (λ, P) . Then (X_n) is reversible if, for all N, $(X_{N-n})_{0\leq n\leq N}$ is also Markov (λ, P)

Theorem. Let P be irreducible and let λ be a distribution. Suppose (X_n) is Markov (λ, P) . Then the following are equivalent:

- (i) (X_n) is reversible
- (ii) P and λ are in detailed balance

Proof. Both (i) and (ii) imply that λ is invariant. By the previous theorem, thus both are equivalent to $P = \hat{P}$

 λ and P are in detailed balance

$$
\iff \lambda_i p_{i,i+1} = \lambda_{i+1} p_{i+1,i} \text{ for } i = 0, \dots, M-1
$$

$$
\iff \lambda_i p = \lambda_{i+1} q
$$

$$
\iff \lambda_i = C\left(\frac{p}{q}\right)^i \text{ for some constant } C
$$

Thus

$$
\pi_i = \frac{\lambda_j}{\sum_j \lambda_j} = \tilde{C} \left(\frac{p}{q}\right)^i
$$

for some suitable \tilde{C} is also invariant distribution. Hence the chain started from π is reversible

Example (Random walk on a graph).

Let v_i be the valency (or degree) of vertex i, i.e., the number of edges incident to i

$$
p_{ij} = \begin{cases} 1/v_i & \text{if } (i,j) \text{ is an edge} \\ 0 & \text{otherwise} \end{cases}
$$

G connected $\implies P$ irreducible. P is in detailed balance with $v = (v_i)_{i \in I}$:

$$
v_i p_{ij} = 1 = v_j p_{ji}
$$

10 Ergodic Theorem

Theorem (Strong Law of Large Numbers). Let $(Y_i)_{i=0,\ldots}$ be a sequence of i.i.d non-negative random variables with $\mathbb{E}[Y_i] = \mu \in [0, \infty]$. Then

$$
\mathbb{P}[\frac{Y_1 + \dots + Y_{n-1}}{n} \to \mu \text{ as } n \to \infty] = 1
$$

Notation. Let $V_i(n) = \sum_{k=1}^{n-1} 1_{X_k} = i$ = number of visits to *i* before *n*.

Theorem (Ergodic Theorem). Let P be irreducible andlet λ be any distribution. If (X_n) is Markov (λ, P) then

$$
\mathbb{P}[\frac{V_i(n)}{n} \to \frac{1}{m_i} \text{ as } n \to \infty] = 1
$$

In particular, if P is positive recurrent (with invariant distribution $\pi_i = 1/m_i$) then

$$
\mathbb{P}[\frac{V_i(n)}{n} \to \pi_i \text{ as } n \to \infty] = 1
$$

Proof. (i) Case 1: P is transient. In this case, $\mathbb{P}[V_i < \infty] = 1$, $V_i = \sum_{k=0}^{\infty} 1_{X_n} = i$ is the total number of visits

$$
\implies \mathbb{P}[\frac{V_i(n)}{n} \le \frac{V_i}{n} \to 0 = \frac{1}{m_i}] = 1
$$

as claimed

(ii) P is recurrent and $\lambda = \delta_i$, i.e.,

$$
\mathbb{P}_i[\frac{n}{V_i(n)} \to m_i \text{ as } n \to \infty] = 1
$$

Let $S_i^{(r)}$ be the rth excursion length between visits to *i*. We have seen that:

- the $S_i^{(1)}, S_i^{(2)}, \ldots$ are independent
- the $S_i^{(r)}$ are identically distributed with $\mathbb{E}[S_i^{(r)}] = m_i$

$$
\implies \mathbb{P}_i[\frac{S_i^{(1)} + \dots + S_i^{(n)}}{n} \to m_i \text{ as } n \to \infty] = 1
$$

To get the claim, note:

$$
S_i^{(1)} + \dots + S_i^{(V_i(n))} \ge n
$$

\n
$$
S_i^{(1)} + \dots + S_i^{V_i(n)-1} \le n - 1
$$

\n
$$
\implies \frac{S_i^{(1)} + \dots + S_i^{(V_i(n))}}{V_i(n)} \ge \frac{n}{V_i(n)}
$$

\n
$$
\implies \frac{S_i^{(1)} + \dots + S_i^{(V_i(n))}}{V_i(n-1)} \le \frac{n}{V_i(n)}
$$

Since $\mathbb{P}[V_i(n) \to \infty] = 1$ by (*), thus

$$
\mathbb{P}[\frac{n}{V_i(n)} \to m_i] = 1
$$

(iii) P is recrurrent with a general initial distribution λ . By recurrence, $\mathbb{P}[T_i < \infty] =$ 1. By the strong Markov property $(X_{T_1+n})_{n\geq 0}$ is Markov (δ_i, P) and independent of X_0, \ldots, X_{T_i} . The general claim now follows since $\lim_n \frac{V_i(n)}{n}$ remains the same if $(X_n)_{n \geq 0}$ is replaces by $(X_{T_i+n})_{n\geq 0}$

Corollary. In the positive recurrent case, for any bounded function $f: I \to \mathbb{R}$,

$$
\mathbb{P}[\frac{1}{n}\sum_{k=0}^{n-1}f(X_k)\to \bar{f} \text{ as } n \to \infty]=1
$$

where

$$
\bar{f} = \sum_{i \in I} \pi_i f_i
$$

Proof. WLOG, $|f| \leq 1$. Then for any $J \subset I$,

$$
\left|\frac{1}{n}\sum_{k=1}^{n-1}f(X_k) - \bar{f}\right| = \left|\sum_{i\in I}\left(\frac{V_i(n)}{n} - \pi_i\right)f_i\right|
$$

$$
\leq \sum_{i\in J}\left|\frac{V_i(n)}{n} - \pi_i\right| + \sum_{i\not\in J}\left(\frac{V_i(n)}{n} + \pi_i\right)
$$

$$
\leq 2\sum_{i\in J}\left|\frac{V_i(n)}{n} - \pi_i\right| + 2\sum_{i\not\in J}\pi_i
$$

Choose $J \subset I$ finite such that $\sum_{i \notin J} \pi_i < \varepsilon$. Choose $N = N(\omega)$ large enough such that

$$
\mathbb{P}\left[\sum_{i\in J} \left|\frac{V_i(n)}{n} - \pi_i\right| < \varepsilon \text{ for } n \ge N\right] = 1
$$

Therefore

$$
\mathbb{P}[\left|\frac{1}{n}\sum_{k=0}^{n-1}f(X_k) - \bar{f}\right| < 4\varepsilon \text{ for } n \ge N] = 1
$$

Question: From the observations of a Markov Chain, how can you estimate the transition matrix? Suppose $(X_i)_{i=0,\ldots,n}$ is given (observations). For any $\tilde{P} = (\tilde{p}_{ij})$, define

$$
l(\tilde{p}) = \log(\tilde{p}_{x_0x_1}\tilde{p}_{x_1x_2}\dots\tilde{p}_{x_{n-1}x_n})
$$

=
$$
\sum_{i,j\in I} N_{ij}(n)\tilde{p}_{ij}
$$

where

$$
N_{ij}(n) = \sum_{m=0}^{m-1} 1_{\{X_m = i, X_{m+1} = j\}} = \text{number transitions from } i \text{ to } j
$$

The maximum likelihood estimator $\hat{P} = \hat{P}(n)$ is the maximiser of $l = l_n$. We can show (using Lagrange multipliers)

$$
\hat{p}_{ij}(n) = \frac{N_{ij}(n)}{V_i(n)}
$$

where $V_i(n) = \sum_{k=0}^{n-1} 1_{X_k = i}$

Claim. If P is positive recrurrent, then

$$
\mathbb{P}[\hat{p}_{ij}(n) \to p_{ij} \text{ as } n \to \infty] = 1
$$

Proof. $N_{ij} = \sum_{m=1}^{V_i} Y_m$ where $Y_m = 1$ if the m-th transition is from i is to j and $Y_m = 0$ otherwise. By the strong Markov property, the Y_i are i.i.d with mean p_{ij} and independent from $V_i(n)$. MArkov Chain is positive recurrent so

$$
\mathbb{P}[V_i(n) \to \infty \text{ as } n \to \infty] = 1
$$

Strong law of large numbers gives

$$
\mathbb{P}[\hat{p}_{ij}(n) = \frac{\sum_{k=1}^{V_i(n)} Y_k}{V_i(n)} \to p_{ij} \text{ as } n \to \infty] = 1
$$

Outlook: for an aperiodic irreducible finite state Markov Chain, we have seen that

$$
\mathbb{P}[X_n = i] \to \pi_i \quad (n \to \infty)
$$

Thus, conversely, to sample from a given distribution π (on say N states), one may try to find a Markov Chain as above with π as its invariant distribution, and then run it for a long time (Markov Chain Monte Carlo - MCMC) - Metropolis and Ulam.

There are different ways to find such a Markov Chain. The most famous is the Metropolis algorithm. (Metropolis, Rosenbluth, Teller & Teller (1953))

Question of theoretical and practical relevance: how fast is " $n \to \infty$ "? E.g.

$$
\min\{n:\sum_{i}|\mathbb{P}[X_n=i]-\pi_i|<\varepsilon\}=?
$$

Depends very much on the particular structure of the Markov Chain. It is a subject of current reearch interest