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0 Overview

Example. I = {1, 2, 3}

1

2
3

1/2

1/2

1

1/3

2/3

P =

 0 1 0
0 2/3 1/3

1/2 1/2 0


We call P the ‘transition matrix’.
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1 Definitions and Basic Properties

Note. We will make the following standing assumptions:
• I is a countable set, the state space; I = {1, 2, . . . }.
• (Ω,F ,P) is a probability space on which all relevant random vairables are defined.

Definition. A sequence of random vairables (Xn)n=0,1,... is a Markov Chain if, for n ≥ 0 and
i0, . . . , in+1 ∈ I,

P[Xn+1 = in+1|X0 = i0, . . . , Xn = in] = P[Xn+1 = in+1|Xn = in]

(conditioning if the event X0 = i0, . . . , Xn = in has positive probability)
It is homogeneous if, for all i, j ∈ I:

P[Xn+1 = j|Xn = i] = P[X1 = j|X0 = i]

Note. From now on, all Markov Chains are assumed homogeneous.

Definition. A Markov Chain is characterised by:
(i) the intitial distribution: λ = (λi)i∈I given by λi = P[X0 = i]
(ii) the transition matrix: P = (pij)i,j∈I given by P[X1 = j|X0 = i]

Remarks.
• λ is a distribution, i.e. λi ≥ 0 for all i ∈ I and

∑
i∈I λi = 1

• P is a stochastic matrix, i.e., (pij)j is a distribution for every i ∈ I

Definition. (Xn) is a Markov Chain with initial distribution λ and transition matrix P , or (Xn) is
Markov(λ, P ), if (i) and (ii) hold.
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Theorem. (Xn) is Markov(λ, P ) iff for all n ≥ 0, i0, . . . , in with n ∈ I,

P[X0 = i0, . . . , Xn = in] = λi0pi0i1 . . . pin−1in (*)

Proof. Suppose (Xn) is Markov(λ, P ). Then

P[X0 = i0, . . . , Xn = in] = P[Xn = in|X0 = i0, . . . , Xn−1 = in−1] · P[X0 = i0, . . . , Xn−1 = in−1]

= pin−1in · P[X0 = i0, . . . , Xn−1 = in−1] by the Markov property
= pin−1inpin−2in−1 . . . pi0i1P[X0 = i0] by induction
= pin−1inpin−2in−1 . . . pi0i1λi0

Conversely assume (*) holds for all n and i0, . . . , in. For n = 0, P[X0 = i0] = λi0 .
Also, by (*)

P[Xn = in|X0 = i0, . . . , Xn−1 = in−1] =
P[X0 = i0, . . . , Xn = in]

P[X0 = i0, . . . , Xn−1 = in−1]

= pin−1in

Thus (i) and (ii) hold, i.e. (Xn) is Markov(λ, P ).

Notation. Let δi = (δij : j = I) be the unit mass at i ∈ I:

δij =

{
1 if i = j

0 otherwise.
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Theorem. Let (Xn) be Markov(λ, P ). Then conditional on Xm = i, (Xm+n)n≥0 is Markov (δi, P )
and is independent of X0, . . . , Xm.

Proof. It suffices to show:
(i)

P[Xm = im, . . . , Xm+n = im+n|Xm = i] = δiimpimim+1 . . . pin+m−1in+m

(ii) For every event A determined by X1, . . . , Xm and every event B determined by
Xm, Xm+1, . . .

P[A ∩B|Xm = i] = P[A|Xm = i] · P[B|Xm = i]

The previous theorem implies both for the elements:

A = {X0 = i0, . . . , Xm = im}

B = {Xm = im, . . . , Xn+m = In+m}

Indeed, after multiplying by P[Xm = i] the claim is

P[Xm = im, . . . , Xm+n = im+n] = δiimpimim+1 . . . pin+m=1in+mP[Xm = i]

P[A ∩B] = P[A]P[B|Xm = i] = δiimP[A]P[B]

Now, any A and B in (i) and (ii) can be written as a countable union of elementary A and B,
and hence the general claim follows by summing over the identities for elementary A and B

Notation. We regard distrbiutions and measures (λi)i∈I as row vectors.
Matrix multiplication:

(λP )j =
∑
i∈I

λipij

(P 2)ij =
∑
k∈I

pikpkj = p
(2)
ij , . . .

with P0 = 1 the I × I identity matrix 1ij = δij .
When λi > 0, write Pi[A] = P[A|X0 = i]

Remark. By the Markov property, (Xn)n≥0 is Markov(δi, P ) under Pi. (So the behaviour of (Xn)
under Pi does not depend on λ)
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Theorem. Let (Xn) be Markov(λ, P ). Then for all n,m ≥ 0:
(i)

P[Xn = j] = (λPn)j

(ii)
Pi[Xn = j] = p

(n)
ij

Proof.
(i)

P[Xn = j] =
∑

i0,...,in−1∈I
P[X0 = i0, . . . , Xn = in]

=
∑

i0,...,in−1∈I
λi0pi0i1 . . . pin−2in−1

pin−1j

= (λPn)j

(ii) Use the Markov property and λ = δi and (i)

Example. The general two state Markov Chain is:

2
1

α

β

P =

[
1− α α
β 1− β

]
some α, β ∈ [0, 1]

Pn+1 = Pn · P =⇒ p
(n+1)
11 = p

(n)
12 β + p

(n)
11 (1− α)

p
(n)
12 + p

(n)
11 = 1 =⇒ p

(n+1)
11 = p

(n)
11 (1− α− β) + β

Since p(0)
11 , this recursion relation has unique solution:

p
(n)
11 =

{
β

α+β + α
α+β (1− α− β)n if α+ β > 0

1 if α+ β = 0
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Method. General method to find p(n)
ij for an N state Markov Chain

• Find the eigenvalues λ1, . . . λN of P , i.e., roots of det(λ− P ) = 0

• If all eigenvalues are distinct, then p(n)
ij has the form:

p
(n)
ij = a1λ

n
1 + · · ·+ aNλ

n
N where the ai are constants

If an eigenvalue λ is repeated once then the general form includes a term (a + bn)λn. Similar
formulas hold for eigenvalues with higher multiplicities.

• As roots of a polynomial with real coefficients, any complex eigenvalues come in conjugate pairs.
These are oftenbest written in terms of sin and cos

Justification: If P has distinct eigenvalues, then it can be diagonalised as

P = U

λ1

. . .
λN

U−1 =⇒ Pn = U

λ
n
1

. . .
λnN

U−1

=⇒ p
(n)
ij is of the desired form.

If P has repeated eigenvalues, the more general claim can be seen from the Jordan normal form
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Example.
1

1/23

1/2 1

2

P =

 0 1 0
0 1/2 1/2

1/2 0 1/2


What is p(n)

11 ?
Eigenvalues:

0 = det(λ− P ) = λ(λ− 1

2
)2 − 1

4
=

1

4
(λ− 1)(4λ2 + 1)

=⇒ λ = 1.
i

2
,− i

2

=⇒ p
(n)
11 = a+ b

(
i

2

)n
+ c

(
− i

2

)n
for some constant a, b, c(

± i
2

)n
=

(
1

2

)n
e±iπn/2 =

(
1

2

)n(
cos

(
1

2
πn

)
± i sin

(
1

2
πn

))

=⇒ p
(n)
11 = α+

(
1

2

)n [
β cos

(
1

2
πn

)
+ γ sin

(
1

2
πn

)]
for some ocnstant α, β, γ.
Note:

1 = p
(0)
11 = α+ β

0 = p
(1)
11 = α+

1

2
β

0 = p
(2)
11 = α+

1

4
β

and so α = 1
5 , β = 4

5 , γ = − 2
5

=⇒ p
(n)
11 =

1

5
+

(
1

2

)n [(
4

5

)
cos

(
1

2
πn

)
− 2

5

(
1

2
πn

)]
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2 Class Structure

Definition. For i, j ∈ I,
• i leads to j (i→ j) if Pi[Xn = j for some n] > 0
• i communicates with j (i↔ j) if i→ j and j → i

Theorem. For i 6= j the following are equivalent:
(i) i→ j
(ii) pi1i2 . . . pin−1in > 0 for some i1, . . . , in with i1 = i, in = j

(iii) p(n)
ij > 0 for some n

Proof. Equivalence of (i) and (iii) follows from

p
(n)
ij = Pi[Xn = j] ≤ Pi[Xk = j for some k] ≤

∞∑
k=0

p
(k)
ij

Equivalence of (ii) and (iii) follows from

p
(n)
ij =

∑
i2,...,in−1

pii2 . . . pin−1j

Prop. The relation is i↔ j is an equivalence relation

Proof. We must show that i ↔ j is reflexive, symmetric and transitive. That ↔ is reflexive
(i↔ i) and symmetric (i↔ j implies j ↔ i) are clear from the definition. That↔ is transitive
(i↔ j) and j ↔ k implies i↔ k) follows from (ii) of the theorem.

Definition. The equivalence classes of ↔ are called communicating classes. The chain is irre-
ducibleif there is only a single communicating class, i.e., i↔ j for all i, j ∈ I

Definition. A subset C ⊆ I is closed if i ∈ C, i→ j =⇒ j ∈ C.
A state i ∈ I is absorbing if {i} is closed.
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Example.

P =


1/2 1/2 0 0 0 0
0 0 1 0 0 0

1/3 0 0 1/3 1/3 0
0 0 0 1/2 1/2 0
0 0 0 0 0 1
0 0 0 0 1 0



5
6

1

1

1

1
3

1/3 1/2

2

4

1/3

1/3

1/2

The communicating classes are {1, 2, 3}, {4}, {5, 6}.
Only {5, 6} is closed.
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3 Hitting and Absorption Probabilities

Definition. Let (Xn) be a Markov Chain.
• The hitting time of a set A ⊆ I is the random variable HA : Ω→ {0, 1, 2, . . . } ∪ {+∞} given
by

HA(ω) = inf{n ≥: Xn(ω) ∈ A}, inf ∅ = +∞

• The hitting probability of A is
•

hAi = Pi[HA <∞] = Pi[hit A]

If A is a closed class, hAi is called the absorption probability.
• The mean hitting time is the expected time to reach A.

kAi = Ei[HA] = Ei[time to hit A]

Example.

4321

1/2

1/2

1/2

1/2

Starting from 2, what is the probability of absorption in 4? And how long does it take until the chain
is absorbed in 1 or 4?
Let hi = Pi[hit 4] and ki = Ei[time to hit 1 or 4].
Note that h1 = 0, h4 = 1.

h2 =
1

2
h1 +

1

2
h3

h4 =
1

2
h2 +

1

2
h4

k1 = 0, k4 = 0

k2 = 1 +
1

2
k1 +

1

2
k3

k3 = 1 +
1

2
k2 +

1

2
k4

=⇒ h2 =
1

2

(
1

2
h2 +

1

2

)
=

1

4
h2 +

1

4
=

1

3

k2 = 1 +
1

2

(
1 +

1

2
k2

)
=

3

2
+

1

4
k2 = 2
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Theorem. The vector of hitting probabilities hA = (hi)
A
i∈I is the minimal nonnegative solution to

(∗)

{
hAi = 1 (i ∈ A)

hAi =
∑
j∈I pijh

A
j (i 6∈ A)

Minimal means that if x = (xi)i∈A is another solution with xi ≥ 0 for all i ∈ I then hAi ≥ xi for all
i ∈ I.

Proof.
• Step 1: hA is a solution to (*).

If X0 = i ∈ A then clearly HA = 0, so hAi = 1.
If X0 = i ∈ A, then by the Markov property,

Pi[HA <∞|X1 = j] = Pj [HA <∞] = hAj

=⇒ hAi = Pi[HA <∞] =
∑
j∈I

Pi[HA <∞, X1 = j]

=
∑
j∈I

Pi[HA <∞|X1 = j]Pi[X1 = j]

=
∑
j

hAj pij

=⇒ hA is a solution to (*)

• Step 2: hA is minimal.
Let x be any nonnegative solution to (*). If i ∈ A, clearly hAi = 1 = xi. So suppose
i 6∈ A. Then

xi =
∑
j∈I

pijxj =
∑
j∈A

pijxj +
∑
j 6∈A

pijxj

=
∑
j∈A

pij +
∑
j 6∈A

pij

∑
k∈A

pjk +
∑
k 6∈A

pjkxk


= Pi[Xi ∈ A] + Pi[X1 6∈ A,X2 ∈ A] +

∑
j 6∈A

∑
k 6∈A

pijpjkxk

By repeated substitution,

xi =Pi[X1 ∈ A] + Pi[X1 6∈ A,X2 ∈ A] + P[X1 6∈ A,X2 6∈ A,X3 ∈ A]+

· · ·+ P[X1 6∈ A, . . . ,Xn ∈ A] +
∑
j1 6∈A

· · ·
∑
jn 6∈A

pij1pj1j2 . . . pjn−1jnxjn︸ ︷︷ ︸
≥0 as x non-neg.

=⇒ xi ≥ Pi[HA ≤ n] for all n

=⇒ xi ≥ lim
n→∞

Pi[HA ≤ n] = Pi[HA <∞] = hAi

=⇒ hA is minimal
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Example. (continued from previous one) Recall that h = hA

(∗)


h1 = h1

h4 = 1

h2 = 1
2h1 + 1

2h3

h3 = 1
2h2 + 1

2h4

The system (*) does not determine h1 but by the minimality condition, we must choose h1 = 0. So
we find the same solution

Example (Gambler’s Ruin).

3210

q p q p q

. . .

p00 = 1 0 < p = 1− q < 1

Starting with a fortune of i£, what is the probability of leaving broke? I.e., what is hi = Pi[hit 0]
By the theorem, {

h0 = 1

hi = phi+1 + qhi−1 (i = 1, 2, 3, . . . )

Assume p 6= q. The general solution to the recursion is

hi = A+B

(
q

p

)i
If p < q (most casinos): 0 ≤ hi ≤ 1 for all i =⇒ B = 0, A = 1, and so hi = 1 for all i.
If p > q:

h0 = 1 : h0 = 1 =⇒ B = 1−A =⇒ hi =

(
q

p

)i
+A

(
1−

(
q

p

)i)
hi ≥ 0 for all i =⇒ A ≥ 0. And minimality implies

A = 0 =⇒ hi =

(
q

p

)i
If p = q (fair casino), the general solution to the recursion is

hi = A+Bi

0 ≤ hi ≤ 1 =⇒ B = 0

h0 = 1 =⇒ A = 1

and so hi = 1 for all i
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Example (Birth and death chain).

3210

q1 p1 q2 p2 q3

. . .

hi = Pi[hit 0] is the extinction probability from i

(∗)

{
h0 = 1

hi = pihi+1 + qihi−1 (i = 1, 2, . . . )

Consider ui = hi−1 − hi. Then

piui+1 + qiui = pihi − hi+1 − qihi−1 + qihi

= (pi + qi − 1)hi = 0

=⇒ ui+1 =
qi
pi
ui =

(
qiqi−1 . . . q1

pipi−1 . . . p1

)
︸ ︷︷ ︸

γi

= γiui

=⇒ hi = 1− (h0 − hi)︸ ︷︷ ︸
u1+···+ui

= 1−A(γ0 + · · ·+ γi−1)

with A = u1 unknown.
If
∑∞
i=0 γi =∞ : 0 ≤ hi ≤ 1 =⇒ A = 0 =⇒ hi = 1 for all i

If
∑∞
i=0 γi <∞ : minimal solution is A = (

∑∞
i=0 γi)

−1

=⇒ hi =

∑∞
j=1 γj∑∞
j=0 γj

Since for any i, we have hi < q, the population survives with positive probability.
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Theorem. The vector of mean hitting times kA = (kAi )i∈I is the minimal solution to

(†)

{
kAi = 0 (i ∈ A)

kAi = 1 +
∑
j 6∈A pijk

A
j (i 6∈ A)

Proof.
• Step 1: kA satisfies (†).

If X0 = i ∈ A, then HA = 0 so clearly kAi = Ei[HA] = 0
If X0 = i 6∈ A, then HA ≥ 1, so by the Markov prop.,

E[HA|X1 = j] = 1 + Ej [HA] = 1 + kAj

kAi = Ei[HA] =
∑
j∈I

Ei[HA|X1 = j]Pi[X1 = j]︸ ︷︷ ︸
pij

= 1 +
∑
j 6∈A

pijk
A
j

• Step 2: kA is minimal.
Suppose x is any nonnegative solution to (†). Then xi = kAi = 0 for all i ∈ A. For i 6∈ A,

xi = 1 +
∑
j 6∈A

pijxj = 1 +
∑
j 6∈A

pij

1 +
∑
k 6∈A

pjkxk


= Pi[HA ≥ 1] + Pi[HA ≥ 2] +

∑
j 6∈A

∑
k 6∈A

pijpjkxk

Again, by repeated substitution, for any n,

xi = Pi[HA ≥ 1] + · · ·+ Pi[HA ≥ n] +
∑
j1 6∈A

· · ·
∑
jn 6∈A

pij1 . . . pjn−1jnxjn︸ ︷︷ ︸
≥0

=⇒ xi ≥
∞∑
n=1

Pi[HA ≥ n] = Ei[HA] = kAi

Thus kA is the minimal solution.
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4 Strong Markov Property

Definition. A random variable T : Ω → {0, 1, 2, . . . } ∪ {+∞} is a stopping time if the event
{T = n} only depends on X0, . . . , Xn for n = 0, 1, 2, . . .

Examples.
(i) The first passage time

Tj = inf{n ≥ 1 : Xn = j}

is a stopping time since {Tj = n} = {X1 6= j, . . . , Xn−1 6= j}
(ii) The hitting time HA of a set A is a stopping time

{HA = n} = {X0 6∈ A, . . . ,Xn−1 6∈ A,Xn ∈ A}

(iii) The last exit time of a set A
LA = sup{n ≥ 0 : Xn ∈ A}

is in general not a stopping time because {LA = n} depends on whether (Xn+m)m≥1 visits A
or not.

Theorem (Strong Markov Property). Let (Xn)n≥0 be Markov(λ, P ), and let T be a stopping time
for (Xn). Then conditional on T <∞ and XT = i, (XT+n)n≥0 is Markov(δi, P ) and independent of
X1, . . . , XT

Proof. Let B be an event determined by X0, . . . , XT . Then X ∩ {T = m} is determined by
X0, . . . , Xm. So by (usual) Markov property

P[{XT = j0, . . . , XT+n = jn} ∩B ∩ {T = m} ∩ {XT = i}]
= P[X0 = j0, . . . , Xn = jn]P[B ∩ {T = m} ∩ {XT = i}]

Summing over m gives

P[{XT = j0, . . . , XT+n = jn} ∩B ∩ {T <∞} ∩ {XT = i}]
= P[X0 = j0, . . . , Xn = jn]P[B ∩ {T <∞} ∩ {XT = i}]

Dividing by P[T <∞, XT = i] (if it is positive) gives

P[{XT = j0, . . . , XT+n = jn} ∩B|T <∞, XT = i]

= P[X0 = j0, . . . , Xn = jn]P[B|T = m,XT = i]
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Example (Gambler’s ruin continued).

3210

q p q p q

. . .

p00 = 1 0 < p = 1− q < 1

We have previously found Pi[hit 0]. We now find the distribution of time to hit 0 starting from 1.
Let

Hj = inf{n ≥ 0 : Xn = j}

φ(s) = E1[sH0 ] = E1[sH01H0<∞]

=

∞∑
n=0

snP[H0 = n]

Clain: E2[sH0 ] = φ(s)2

Conditional on H1 <∞ under P2, we can write H0 = H1 + H̃0 where H̃0 is the time it takes after H1

to reach state 0. Since H1 is a stopping time, by the strong Markov property at H1, H̃0 is independent
of H1 (as it only depends on (XH1+n)n≥0)

=⇒ E2[sH0 ] = E2[sH1 |H1 <∞]E2[sH̃0 |H1 <∞]P[H1 <∞]

= E2[sH11H1<∞]︸ ︷︷ ︸
E1[sH0 ]

E2[sH̃0 |H1 <∞]︸ ︷︷ ︸
E1[sH0 ]

= φ(s)2

as H̃0 is conditionally independent from H1
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Example (continued). Claim:
psφ(s)2 − φ(s) + qs = 0

Conditional on X1 = 2, we have H0 = 1 + H̄0 where H̄0 is the time it takes after 1 step to reach 0.
By Markov property, H̄0 under P[ · |X2 = 2] has the same distribution as H0 under P2.

=⇒ φ(s) = E1[sH0 ] = pE1[sH0 |X1 = 2] + qE1[sH0 |X0 = 0]

= pE[s1+H̄0 |X1 = 2] + qs

= psE1[sH̄0 |X1 = 2]︸ ︷︷ ︸
P2[sH0 ]=φ(s)2

+qs

= psφ(s)2 + qs

=⇒ φ(0) = 0 and φ(s) =
1±

√
1− 4pqs2

2ps
for s > 0

Since φ(s) ≤ 1 and since φ(s) is continuous, only then negative root is possiblefor all s ∈ [0, 1)]

=⇒ φ(s) =
1−

√
1− 4pqs2

2ps

=
1

2ps

[
1−

(
1 +

1

2
(−4pqs2)− 1

8
(4pqs2)2 + . . .

)]
= qs+ pq2s3 + . . .

= sP[H0 = 1] + s2P[H0 = 2] + s2P[H0 = 3] + . . .

P[H0 = 1] = q

P[H0 = 2] = 0

etc. As s→ 1 from below, we have φ(s)→ P1[H0 <∞]

=⇒ P1[H0 <∞] =
1−
√

1− 4pq

2p
=

{
1 if p ≤ q
q
p if p>q

Also, if p ≤ q,
E1[H0] = E1[H01H0<∞] = lim

δ↑1
φ′(s)

Differentiating the quadratic equation gives

2psφ(s)φ′(s) + pφ(s)2 + φ′(s) + 1 = 0

=⇒ φ′(s) =
pφ(s)2 + q

1− 2psφ(s)
→ 1

1− 2p
=

1

q − p

E1[H0] =
1

q − p
as s ↑ 1
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5 Recurrence and transcience

Definition. Let (Xn) be a Markov Chain. A state i ∈ I is
• recurrent if Pi[Xn = i for infinitely many n] = 1
• transient if Pi[Xn = i for infinitely many n] = 0

First passage time to j : Tj = inf{n ≥ 1 : Xn = j}
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Theorem. The following dichotomy holds:
(i) If Pi[Ti <∞] = 1 then i is recurrent and

∞∑
n=0

p
(n)
ii =∞

(ii) If Pi[Ti <∞] < 1 then i is transcient and

∞∑
n=0

p
(n)
ii <∞

In particular, every state is either recurrent or transient.

Proof.
• Step 1: Inductively, define the r-th passage time to j:

T
(0)
j = 0, T

(1)
j = Tj , T

(r+1)
j = inf{n ≥ T (r)

j + 1 : Xn = j}

The length of the r-th excursion is defined by

Sri =

{
T

(r)
i − T (r−1)

i if T (r−1)
i <∞

0 otherwise

time

I

T
(0)
i T

(1)
i T

(2)
i T

(3)
i T

(4)
i

S
(1)
i S

(2)
i S

(3)
i S

(4)
i

Lemma. For r = 2, 3, . . . , conditional on T (r−1) < ∞, the length of the r-th
excursion S(r)

i is independent of {Xm : m < T
(r−1
i )} and

P[S
(r)
i = n|T (r−1)

i <∞] = Pi[Ti = n]

Proof.
By the strong Markov property, conditional on T

(r−1)
i < ∞, (X

T
(r−1)
i +n

)n≥0 is
Markov(δi, P ) and is independent of X0, . . . , XT

(r−1)
i

. Now

S
(r)
i = inf{n ≥ 1 : X

T
(r−1)
i +n

= i}

is the first passage time of (X
T

(r−1)
i +n

)n≥0 to state i.
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Theorem.

Proof.
• Step 2: Let Vi denote the number of visits to i:

Vi =

∞∑
n=0

1Xn=i

Then

Ei[Vi] = E[

∞∑
n=0

1Xn=i] =

∞∑
n=0

Pi[Xn = i] =

∞∑
n=0

pnii

Let fi be the return probability to i:

fi = Pi[Ti <∞]

Lemma. For r = 0, 1, 2, . . . , we have Pi[Vi > r] = fri

Proof. Note that {Vi > r} = {T (r)
i <∞} if X0 = i.

Also note that Pi[Vi > 0] = 1. By induction,

Pi[Vi > r + 1] = Pi[T (r+1)
i <∞]

= P[T
(r)
i <∞, S(r+1)

i <∞]

= Pi[T (r)
i <∞]︸ ︷︷ ︸
fr
i

P[S
(r+1)
i <∞|T (r)<∞

i ]︸ ︷︷ ︸
fi

= fr+1
i

(i) If Pi[Ti <∞] = 1, then by the last lemma,

Pi[Vi =∞] = lim
r→∞

Pi[Vi > r] = 1

So i is recurrent and
∞∑
n=0

p
(n)
ii = Ei[Vi] =∞

(ii) If Pi[Ti <∞] < 1, then

∞∑
n=0

p
(n)
ii = Ei[Vi] =

∞∑
r=0

Pi[Vi > r] =

∞∑
r=0

fri =
1

1− fi
<∞

So Pi[Vi =∞] = 0, so i is transient.
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Theorem. Recurrence and transience are class properties: for any communicating class, either all
states i ∈ C are recurrent or all are transient

Proof. Let i, j ∈ C and assume that i is transient. Since i and j communicatem there exist
n,m s.t.

p
(n)
ij > 0 and p(m)

ji > 0

For all r ≥ 0, then
p

(n+m+r)
ii ≥ p(n)

ij p
(r)
jj p

(m)
ji

=⇒
∞∑
r=0

p
(r)
jj ≤

1

p
(n)
ij p

(m)
ji

∞∑
r=0

p
(n+m+r)
ii <∞

So j is transcient aswell.

Theorem. Every recurrent class is closed.

Proof. Let C be a class that is not closed, i.e., there is i ∈ C, j 6∈ C and m ≥ 1 s.t.

Pi[Xm = j] > 0

Since C is a communicating class and j 6∈ C,

Pi[{Xm = j} ∩ {Xn = i for infinitely many n}] = 0

=⇒ Pi[Xn = i for infinitely many n] =
∑
j∈I

Pi[Xn = i for infinitely many n,Xm = j]

<
∑
j∈I

Pi[Xm = j] = 1

Thus i is not recurrent and since recurrence is a class property, this means that C is not
recurrent (i.e. transient).

Theorem. Every finite closed class is recurrent.

Warning. Infinite closed classes may be transient

Proof. Let C be a finite closed class and suppose X0 ∈ C

=⇒ 0 < P[Xn = i for infinitely many n] for some i ∈ C
= P[Xn = i for some n]Pi[Xn = i for infinitely many i] by the strong Markov prop.

=⇒ Pi[Xn = i for infinitely many n] > 0

=⇒ i is not transient =⇒ i is recurrent

Corollary. Finite classes are recurrent iff closed.
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Theorem. Suppose P is irreducible and recurrent. Then for all j ∈ I,

P[Tj <∞] = 1

Proof. It suffices to show that Pi[Tj <∞] = 1 for all i ∈ I since then

P[Tj <∞] =
∑
i

P[X0 = i]Pi[Tj <∞] = 1

Since P is irreducible, there is m s.t. p(m)
ji > 0.

Since P is recurrent,

1 = Pj [Xn = j for infinitely many n]

= Pj [Xn = j for some n ≥ m+ 1]

=
∑
k∈I

Pj [Xn = j for some n ≥ m+ 1|Xm = k]Pj [Xm = k]

=
∑
k∈I

Pk[Xn = j for some n ≥ 1]p
(m)
jk

=
∑
k∈I

Pk[Tj <∞]p
(m)
jk

=⇒ Pi[Tj <∞] = 1 since
∑
k

p
(m)
jk = 1 and p(m)

ji > 0
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6 Recurrence and Transience of Random Walks

Example (Simple Random Walk on Z).

i+ 1ii− 1

p q p q

. . .

pq

p
(2n+1)
00 = 0 since the walk cannot return to 0 after an odd number of steps.

p
(2n)
00 =

(
2n

n

)
pnqn =

(2n)!

(n!)2
pnqn

Stirling’s formula: n! ∼
√

2πne−nnn where An ∼ Bn if limn→∞
An

Bn
= 1

=⇒ p
(2n)
00 ∼

√
4πn

2πn

(2n)2n

n2n
(pq)n =

C√
n

(4pq)n

Case p = q = 1
2 :

p
(2n)
00 ∼ C√

n
=⇒ p

(2n)
00 ≥ C

2
√
n

for n ≥ n0

=⇒
∞∑
n=0

p
(n)
00 ≥

∞∑
n=n0

p
(2n)
00 ≥ C

2

∞∑
n=n0

n−1/2 =∞

=⇒ Random walk is recurrent

Case p 6= q:
r = 4pq < 1 =⇒ p

(2n)
00 ≤ rn for n ≥ n0

=⇒
∞∑
n=0

p
(2n)
00 <∞

Random walk is transcient
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Example (Simple Random Walk on Z2).

1/4

1/4

1/4

1/4

pij =

{
1
4 if |i− j| = 1

0 otherwise

Suppose X0 = 0 and write X±n for the orthogonal projections onto the lnes y = ±x

x

y

Observation: X±n are independent simple symmetric random walks on 1√
2
Z and X0 = 0 iff X±0 = 0

=⇒ p
(2n)
00 =

((
2n

n

)(
1

2

)2n
)2

∼ C

n

since both X+ and X− must take 2n steps if X does and ust return to 0

=⇒
∞∑
n=0

p
(2n)
00 =∞ =⇒ The random walk is recurrent
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Example (Simple Random Walk on Z3).

pij =

{
1
6 if |i− j| = 1

0 otherwise

We will show the random walk is transient.
Again p(2n+1)

00 = 0.
All walks from 0 to 0 must take the same number of steps in direction (1,0,0) as in direction (-1,0,0),
and analogously for the other two coordinates.

=⇒ p
(2n)
00 =

∑
i,j,k≥0,i+j+k=n

(2n)!

i!i!j!j!k!k!

(
1

6

)2n

=

(
2n

n

)(
1

2

)2n ∑
i,j,k≥0,i+j+k=n

(
n!

i!j!k!

)2(
1

3

)2n

Fact 1. If n = 3m then
(

n
i j k

)
≤
(

n
m m m

)
for i, j, k.

(suppose the maximal
(

n
i j k

)
has i > j + 1 t. Then i!j! > (i− 1)!(j + 1)! thus

(
n

i j k

)
<
(

n
i−1 j+1 k

)
so(

n
i j k

)
wasn’t max.)

Fact 2. ∑
i,j,k≥0,i+j+k=n

n!

i!j!k!

(
1

3

)n
= 1

(The LHS is the total prob. of distribution of three balls in three bins.)

=⇒ p
(2n)
00 ≤

(
2n

n

)(
3m

m m m

)(
1

3

)3m

∼ C
√
n

√
n

2 ·
√
n

√
n

3 = Cn−3/2

Since p(2n)
00 ≥

(
1
6

)2
p

(2n−2)
00 up to changing C,

p
(2n)
00 ≤ Cn−3/2 for all n

=⇒
∑
n

p
(2n)
00 ≤ C

∑
n

n−3/2 <∞

=⇒ The random walk is transient
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7 Invariant Measures

Definition. A measure λ = (λi)i∈I) with λi ≥ 0 for al i ∈ I is invariant (or stationary or in
equilibrium) if

λP = λ

Theorem. Let (Xn)n≥0 be Markov(λ, P ) and suppose that λ is invariant for P . Then (Xn+m)n≥0

is also Markov(λ, P ).

Proof.
P[Xm = i] = (λPm)i = λi for all i ∈ I

so the intitial distribution of (Xn+m)n≥0 is λ
Also, conditional on Xn+m = i, by the Markov property for (Xn), Xn+m+1 is independent
Xm, Xm+1, . . . , Xn+m and it has distrbution (pij)j∈I .

Theorem. Suppose I is finite. For some i ∈ I, suppose p(n)
ij → πj as n→∞, for all j ∈ I.

Then (πj)j is an invariant distribution

Proof. (π) is a distribution:∑
j∈I

πj =
∑
j∈I

lim
n→∞

p
(n)
ij = lim

n→∞

∑
j∈I

p
(n)
ij = 1

noting we can swap sum and limit as I finite.
(π) is invariant:

πj = lim
n→∞

p
(n+1)
ij = lim

n→∞

∑
k∈I

p
(n)
ik pkj =

∑
k∈I

lim
n→∞

p
(n)
ik pkj = (πP )j

Remark. For the simple symmetric random walk on Zd, we have p(n)
ij → 0 as n→∞, for all

i, j ∈ Zd. The limit 0 is invariant, but not a distribution.

Example.

P =

[
1− α α
β 1− β

]
We found earlier that

p
(n)
11 =

{
β

α+β + α
α+β (1− α− β)n if α+ β > 0

1 otherwise

So if α+ β 6∈ {0, 1}, we have p(n)
11 →

β
α+β . Similarly,

Pn →

[
β

α+β
β

α+β
β

α+β
β

α+β

]

So by the theorem, (β/(α+ β), α/(α+ β)) is an invariant distribution.
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Example.

1

1/23

1/2 1

2

πP = π ⇐⇒


π1 = 1

2π3

π2 = π1 + 1
2π2

π3 = 1
2π2 + 1

2π3

π1 + π2 + π3 = 1 =⇒ π3 =
2

5
, π1 =

1

5
, π2 =

2

5

Definition. For each state k ∈ I, let γki be the expected time spent in the state i between two visits
to k:

γki = Ek
Tk−1∑
n=0

1Xn=i

= Ek
Tk∑
n=0

1Xn=i if k 6= i
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Theorem. Let P be irreducible and recurrent. Then
(i) γkk = 1
(ii) γk = (γki )i∈I is an invariant measure
(iii)

γkP = γk

(iv) 0 < γki <∞ for all i ∈ I

Proof.
(i) obvious from definition.
(ii) Since P is recurrent,
(iii)

Pk[Tk <∞, X0 = XTk
= k] = 1

γkj = Ek
Tk∑
n=1

1Xn=j = j

= Ek
∞∑
n=1

1Xn=j and n≤Tk

=

∞∑
n=1

Pk[Xn = j, n ≤ Tk]

=
∑
i∈I

∞∑
n=1

Pk[Xn−1 = i,Xn = j, n ≤ Tk]︸ ︷︷ ︸
Pk[Xn−1=i,n≤Tk]P[Xn=j|Xn−1=i]

=
∑
i∈I

pij

∞∑
n−1

Pk[Xn−1 = i, n ≤ Tk]

=
∑
i∈I

pij Ek[

Tk−1∑
n−1

1Xn=i]︸ ︷︷ ︸
γk
i

=
∑
i∈I

pijγ
k
i = (γkP )j

(iv) P irreducible =⇒ ∃n,m ≥ 0 s.t. p(n)
ik > 0, p

(m)
ki > 0

=⇒ γki ≥ γkkp
(m)
ki = p

(m)
ki > 0

1 = γkk ≥ γki p
(n)
ik =⇒ γki ≤

1

p
(n)
ik

<∞
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Theorem. Let P be irreducible and λ be an invariant measure for P with λk = 1. Then λi ≥ γki for
all i. If in addition P is recurrent, then λ = γk

Proof. Since λ is invariant,

λj =
∑
i1∈I

λi1pi1j =
∑
i1 6=k

λi1pi1j + pkj

=
∑
i1 6=k

∑
i2 6=k

λi2pi2i1 + pki1

 pi1j + pkj

= . . .

=
∑

i1,...,in 6=k

λinpinin−1
. . . pi1j︸ ︷︷ ︸

≥0

+

pkj +
∑
i1 6=k

pki1pi1k + · · ·+
∑

i1,...,in−1 6=k

pkin−1 . . . pi2i1pi1j


=⇒ for j 6= k,

λj ≥ Pk[X1 = j, Tk ≥ 1] + Pk[X2 = j, Tk ≥ 2] + · · ·+ Pk[Xn = j, Tk ≥ n]

= Ek

min(n,Tk)∑
m=1

1Xm=j

 = Ek

min(n,Tk−1)∑
m=0

1Xm=j


→ γkj as n→∞

=⇒ λj ≥ γkj
If P is recurrent, γk is invariant, so µ = λ− γk ≥ 0 is invariant.
P is irreductible =⇒ ∀i ∃n s.t. p(n)

ik > 0.

=⇒ 0 = µk =
∑
j∈I

µjp
(n)
jk ≥ µip

(n)
ik =⇒ µi = 0

=⇒ µ = 0 =⇒ λ = γk

Example. The simple symmetric random walk on Z is irreducible and we have also seen that it is
recurrent. The measure π = (πi) where πi = 1 for all i ∈ Z is invariant:

π = πP ⇐⇒ πi =
1

2
πi−1 +

1

2
πi+1X

By the theorem, every invariant is a multiple of of π. Since
∑
i∈Z πi = +∞, there is no invariant

distribution.

Example. The simple symmetric random walk on Z3 has an invariant measure, but it is not recurrent.
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Note. Recall that i is recurrent if Pi[Xn = i for inf. many n] = 1, or equivalently Pi[Ti <∞] = 1
This does not imply that the expected return time mi = Ei[Ti] is finite.

Definition. • i is positive recurrent if mi <∞
• i is null recurrent if i is recurrent but mi =∞

Theorem. Let P be irreducible. Then the following are equivalent:
(i) Every state is positive recurrent
(ii) Some state is positive recurrent
(iii) P has an invariant distribution
Moreover, when (iii) holds, then mi = 1/πi

Proof. (i) =⇒ (ii): clear.
(ii) =⇒ (iii): If i is positive recurrent, it is recurrent in particular. Therefore γi is invariant.
Since ∑

j∈I
γij = mi <∞]

Thus πj =
γi
j

mi
defines an invariant distribution. (iii) =⇒ (i): first note that, for every

k ∈ I, πk > 0. Indeed, since π is invariant and P irreducible,

πk =
∑
i∈I

πip
(n)
ik > 0 for some n

Now set λi = πi

πk
. Then λ is an invariant measure with λk = 1. Therefore λ ≥ γk.

=⇒ mk =
∑
i∈I

γki ≤
∑
i∈I

πi
πk

=
1

πk
<∞ (*)

Thus k is positive recurrent.
Finally, knowing that P is recurrent, we have previously seen that every invariant measure λ
with λk = 1 must satisfy λ = γk. Thus, we have equiality in (*)
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Example.

i+ 1ii− 1

p q p q

. . .

pq

q < p

Invariant measure equation:

πi =
∑
j

πjpji

= πi−1p+ πi+1q

This recurrence relation has the following general solution:

πi = A+B

(
p

q

)i
So there is a two-parameter family of invariant measures. Uniqueness up to multiples does not hold.
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8 Convergence to Equilibrium

Example.

P =

[
0 1
1 0

]
=⇒ P 2 = I =⇒ P 2n = I and P 2n+1 = P

=⇒ Pn does not converge

But note that P has invariant distribution π =
(

1
2 ,

1
2

)

Definition. A state i ∈ I is aperiodic if p(n)
ii > 0 for n sufficiently large. P is aperiodic if all states

are aperiodic.

Lemma. Let P be irreducible and have an aperiodic state i. Then for all j, k ∈ I,

p
(n)
jk > 0 for n sufficiently large

In particular, all states are aperiodic.

Proof. P irreducible =⇒ ∃r, s s.t. p(r)
ji , p

(s)
ik > 0/

=⇒ p
(r+n+s)
jk ≥ p(r)

ji p
(n)
ii p

(s)
ik > 0 for n sufficiently large

since i is aperiodic.
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Theorem. Let P be irreducible and aperiodic and suppose π is an invariant distribution for P . Let
λ be any distribution, and suppose that (Xn) is Markov(λ, P ). Then for all j ∈ I,

P[Xn = j]→ πj as n→∞

In particular,
p

(n)
ij → πj as n→∞ for all i, j

Proof. The proof is by coupling.
Let (Yn) be Markov(π, P ) and independent of (Xn). Fix a reference state b ∈ I and set

T = inf{n > 1 : Xn = Yn = b}

Claim: P[T <∞] = 1.
Wn = (Xn, Yn) is a Markov Chain on state space I × I and

• transition probabilities p̃(i,k)(j,l) = pijpkl
• initial distribution λ̃(i,k) = λiπk

Since P is aperiodic, the lemma implies that for all i, j, k, l ∈ I,

p̃
(n)
(i,k)(j,l) > 0 for n sufficiently large

=⇒ P̃ is irreducible

P̃ has invariant distribution π̃(i,k) = πiπk

=⇒ P̃ is positive recurrent

T is the first passage time of (Wn) to (b, b).
Since P is irreductible and recurrent,

P[T <∞] = 1.

From the claim, it follows that

P[Xn = i] = P[Xn = i, n < T ] + P[Xn = i, n ≥ T ]

= P[Xn = i, n < T ] + P[Yn = i, n ≥ T ] by strong Markov property
= P[Xn = i, n < T ] + P[Yn = i]︸ ︷︷ ︸

πi

−P[Yn = i, n < T ]

=⇒ |P[Xn = i]− πi| = |P[Xn = i, n < T ]− P[Yn = i, n < T ]| ≤ P[n < T ]→ 0

Example (continued).

P =

[
0 1
1 0

]
, π =

(
1

2
,

1

2

)
If X is Markov(δ0, P ) and Y is Markov (π, P ) then with probability 1

2 one has Y0 = 1 but X0 = 0
and X and Y will never meet

Remark. What happens when (Xn) is periodic?
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Lemma. Let P be irreducible. There exists an integer d ≥ 1 (the period) and a partition

I = C0 ∪ · · · ∪ Cd−1

such that, setting Cnd+r = Cr,
(i) p(n)

ij > 0 only if i ∈ Cr and j ∈ Cr+n for some r
(ii) p(nd)

ij > 0 for sufficiently large n, for all i, j ∈ Cr, for all r.

Proof. (In Norris’ book)

Theorem. Let P be irreducible of period d with the corresponding C0, . . . , Cd−1 as in the lemma.
Let λ be a distribution with

∑
i∈C0

λi = 1. Suppose (Xn) is Markov(λ, P ).
Then for r = 0, . . . , d− 1, j ∈ Cr,

P[Xnd+r = j]→ d

mj
(n→∞)

where mj is the expected return time to j

Proof. (In Norris’ book)
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9 Time Reversal

Theorem. Let P be irreducible and have invariant distribution π. Suppose (Xn)0≤n≤N is
Markov(π, P ), and set Yn = XN−n. Then (Yn)0≤n≤N is Markov(π, P̂ ) where

πj p̂ji = πipij (*)

and P̂ is irreducible with invariant distribution π

Proof. P̂ is well-defined by (*) and is a stochastic matrix since∑
i∈I

p̂ji =
1

πj

∑
i∈I

πipij =
πj
πj

= 1

(have πj > 0 since P is irreducible and π invariant). π is invariant for P̂ :∑
j∈I

πj p̂ji =
∑
j∈I

πipij = πi

(Yn) is Markov(π, P̂ ):

P [Y0 = i0, . . . , YN = iN ] = P[X0 = iN , . . . , XN = i0]

= πiN piN iN−1
. . . pi1i0

= πiN−1
ˆpiN−1iN piN−1iN−2

. . . pi1i0

= πi0 p̂i0i1 . . . p̂iN−1iN

P̂ is irreducible since by irreducibility of P , for all i, j ∈ I

pi0i1 . . . pin−1in > 0 for some i0, . . . , in with i0 = i, in = j

=⇒ p̂i1i0 . . . p̂inin−1
=
π0

π1
pi0i1 . . . pin−1in > 0

Definition. A stochastic matrix P and a measure λ are in detailed balance if

λipij = λjpji for all i, j ∈ I

Lemma. If P and λ are in detailed balance then λ is invariant for P

Proof.
(λP )i =

∑
j∈I

λjpji =
∑
j∈I

λipij = λi

Definition. Let P be irreducible and (Xn) be Markov(λ, P ). Then (Xn) is reversible if, for all N ,
(XN−n)0≤n≤N is also Markov(λ, P )
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Theorem. Let P be irreducible and let λ be a distribution. Suppose (Xn) is Markov(λ, P ). Then
the following are equivalent:
(i) (Xn) is reversible
(ii) P and λ are in detailed balance

Proof. Both (i) and (ii) imply that λ is invariant. By the previous theorem, thus both are
equivalent to P = P̂

Examples.

3210

p q p q

. . .

0 < p = 1− q < 1

p q

M

q

λ and P are in detailed balance

⇐⇒ λipi,i+1 = λi+1pi+1,i for i = 0, . . . ,M − 1

⇐⇒ λip = λi+1q

⇐⇒ λi = C

(
p

q

)i
for some constanct C

Thus

πi =
λj∑
j λj

= C̃

(
p

q

)i
for some suitable C̃ is also invariant distribution. Hence the chain started from π is reversible

Example (Random walk on a graph).

G =

1 2

34

Let vi be the valency (or degree) of vertex i, i.e., the number of edges incident to i

pij =

{
1/vi if (i, j) is an edge
0 otherwise

G connected =⇒ P irreducible. P is in detailed balance with v = (vi)i∈I :

vipij = 1 = vjpji
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Example.

1

2
3

1/3

2/3

1/3

2/3

2/3

1/3

P =

 0 2/3 1/3
1/3 0 2/3

2/3 1/3 0


π = (1/3, 1/3, 1/3)

P̂ = PT
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10 Ergodic Theorem

Theorem (Strong Law of Large Numbers). Let (Yi)i=0,... be a sequence of i.i.d non-negative random
variables with E[Yi] = µ ∈ [0,∞]. Then

P[
Y1 + · · ·+ Yn−1

n
→ µ as n→∞] = 1

Notation. Let Vi(n) =
∑n−1
k=1 1Xk

= i = number of visits to i before n.
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Theorem (Ergodic Theorem). Let P be irreducible andlet λ be any distribution. If (Xn) is
Markov(λ, P ) then

P[
Vi(n)

n
→ 1

mi
as n→∞] = 1

In particular, if P is positive recurrent (with invariant distribution πi = 1/mi) then

P[
Vi(n)

n
→ πi as n→∞] = 1

Proof. (i) Case 1: P is transient. In this case, P[Vi < ∞] = 1, Vi =
∑∞
k=0 1Xn

= i is the
total number of visits

=⇒ P[
Vi(n)

n
≤ Vi

n
→ 0 =

1

mi
] = 1

as claimed
(ii) P is recurrent and λ = δi, i.e.,

Pi[
n

Vi(n)
→ mi as n→∞] = 1

Let S(r)
i be the rth excursion length between visits to i. We have seen that:

• the S(1)
i , S

(2)
i , . . . are independent

• the S(r)
i are identically distributed with E[S

(r)
i ] = mi

=⇒ Pi[
S

(1)
i + · · ·+ S

(n)
i

n
→ mi as n→∞] = 1

To get the claim, note:
S

(1)
i + · · ·+ S

(Vi(n))
i ≥ n

S
(1)
i + · · ·+ S

Vi(n)−1
i ≤ n− 1

=⇒ S
(1)
i + · · ·+ S

(Vi(n))
i

Vi(n)
≥ n

Vi(n)

=⇒ S
(1)
i + · · ·+ S

(Vi(n))
i

Vi(n− 1)
≤ n

Vi(n)

Since P[Vi(n)→∞] = 1 by (*), thus

P[
n

Vi(n)
→ mi] = 1

(iii) P is recrurrent with a general initial distribution λ. By recurrence, P[Ti < ∞] =
1. By the strong Markov property (XTI+n)n≥0 is Markov(δi, P ) and independent of
X0, . . . , XTi . The general claim now follows since limn

Vi(n)
n remains the same if (Xn)n≥0

is replaces by (XTi+n)n≥0
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Corollary. In the positive recurrent case, for any bounded function f : I → R,

P[
1

n

n−1∑
k=0

f(Xk)→ f̄ as n→∞] = 1

where
f̄ =

∑
i∈I

πifi

Proof. WLOG, |f | ≤ 1. Then for any J ⊂ I,

| 1
n

n−1∑
k=1

f(Xk)− f̄ | = |
∑
i∈I

(
Vi(n)

n
− πi)fi|

≤
∑
i∈J
|Vi(n)

n
− πi|+

∑
i 6∈J

(
Vi(n)

n
+ πi)

≤ 2
∑
i∈J
|Vi(n)

n
− πi|+ 2

∑
i 6∈J

πi

Choose J ⊂ I finite such that
∑
i 6∈J πi < ε. Choose N = N(ω) large enough such that

P[
∑
i∈J
|Vi(n)

n
− πi| < ε for n ≥ N ] = 1

Therefore

P[| 1
n

n−1∑
k=0

f(Xk)− f̄ | < 4ε for n ≥ N ] = 1

Question: From the observations of a Markov Chain, how can you estimate the transition matrix?
Suppose (Xi)i=0,...,n is given (observations). For any P̃ = (p̃ij), define

l(p̃) = log
(
p̃x0x1

p̃x1x2
. . . p̃xn−1xn

)
=
∑
i,j∈I

Nij(n)p̃ij

where

Nij(n) =

m−1∑
m=0

1{Xm=i,Xm+1=j = number transitions from i to j

The maximum likelihood estimator P̂ = P̂ (n) is the maximiser of l = ln. We can show (using
Lagrange multipliers)

p̂ij(n) =
Nij(n)

Vi(n)

where Vi(n) =
∑n−1
k=0 1Xk=i

41



Claim. If P is positive recrurrent, then

P[p̂ij(n)→ pij as n→∞] = 1

Proof. Nij =
∑Vi

m=1 Ym where Ym = 1 if the m-th transition is from i is to j and Ym = 0
otherwise. By the strong Markov property, the Yi are i.i.d with mean pij and independent
from Vi(n). MArkov Chain is positive recurrent so

P[Vi(n)→∞ as n→∞] = 1

Strong law of large numbers gives

P[p̂ij(n) =

∑Vi(n)
k=1 Yk
Vi(n)

→ pij as n→∞] = 1

Outlook: for an aperiodic irreducible finite state Markov Chain, we have seen that

P[Xn = i]→ πi (n→∞)

Thus, conversely, to sample from a given distribution π (on say N states), one may try to find a
Markov Chain as above with π as its invariant distribution, and then run it for a long time (Markov
Chain Monte Carlo - MCMC) - Metropolis and Ulam.

There are different ways to find such a Markov Chain. The most famous is the Metropolis algorithm.
(Metropolis, Rosenbluth, Teller & Teller (1953))

Question of theoretical and practical relevance: how fast is “n→∞”? E.g.

min{n :
∑
i

|P[Xn = i]− πi| < ε} =?

Depends very much on the particular structure of the Markov Chain. It is a subject of current reearch
interest
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