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0 Proofs

Definition (Proof). A proof is a logical argument that establishes a conclusion.

We prove things for two reasons
(i) To be sure they are true.
(ii) To understand why they are true.

Claim. For any positive integer n, n3 − n is a multiple of 3.

Proof. For any positive integer n:
Have n3 − n = n(n2 − 1) = (n− 1)n(n+ 1)
but 1 of n− 1, n, n+ 1 is a multiple of 3, as they are 3 consecutive integers.

Claim. For any positive integer n, if n2 is even then n is even.

Proof (False). Given a positive integer n that is even:
have n = 2k, some integer k.
Thus n2 = (2k)2 = 4k2 = 2(2k2), so n is even.

Rubbish, we wanted: if A then B but showed if B then A.

Proof (True). Suppose n odd: so n = 2k + 1, some integer k then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

so n2 odd
thus n even.

Note. Claim true because of properties of odd numbers.

To show “if A then B", we showed there is no case where A is true and B is false.
To show A =⇒ B: same as showing not B =⇒ not A. A =⇒ B means can’t have A true, B,
false.
Not B =⇒ not A means can’t have B false, A true.
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Claim. Solution of real equation x2 − 5x+ 6 = 0 is: x = 2 or x = 3

This is really 2 assertions:
i) x = 2 & x = 3 are solutions of x2 − 5x+ 6 = 0.
ii) There are no other solutions

equivalently:
i) x = 2 or x = 3 =⇒ x2 − 5x+ 6 = 0
ii) x2 − 5x+ 6 = 0 =⇒ x = 2 or x = 3

Proof. if x = 2 or x = 3 :
Have x− 2 = 0 or x− 3 = 0
so (x− 2)(x− 3) = 0
ie x2 − 5x+ 6 = 0

if x2 − 5x+ 6 = 0:
have (x− 2)(x− 3) = 0 so x− 2 = 0 or x− 3 = 0
ie x = 2 or x = 3

Proof (Alternative).

x2 − 5x+ 6 = 0 ⇐⇒ (x− 2)(x− 3) = 0

⇐⇒ x− 2 = 0 or x− 3 = 0

⇐⇒ x = 2 or x = 3

Claim. Every positive real is at least 1

Proof (False). Let x be the smallest real: want x = 1. (this is nonsense)
if x < 1: then x2 < x
if x > 1:

√
x < x

Thus x = 1

Moral. Every line in a proof must be justified.

1 Elementary Number Theory

Intuitively: the natural numbers written N, consist of:
1, 1 + 1, 1 + 1 + 1, 1 + 1 + 1 + 1, . . .
We want to make this precise.

Definition (Peano Axioms). What we assume: natural numbers N, is a set containing an element
‘1’ with an operation ‘+1’ satisfying:
(i) ∀n : n+ 1 6= 1
(ii) If m 6= n then m+ 1 6= n+ 1
(iii) For any property P (n): If P (1) true and ∀nP (n) =⇒ P (n+1) then P (n)∀n (induction axiom)
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Take P (n) =‘n is on that list ’
Can write 2 for 1 + 1 etc.
have operation ‘+2’ by ’n+ 2 = (n+ 1) + 1
In fact, can define ‘+k’ for every number k by induction (Take P (k) to be statement “ ‘+k’ is defined’)
Similarly can define multiplication, powers etc.

Can check usual rules of arithmetic
(i) ∀a, b : a+ b = b+ a
(ii) ∀a, b : ab = ba
(iii) ∀a, b, c : a+ (b+ c) = (a+ b) + c
(iv) ∀a, b, c : a(bc) = (ab)c
(v) ∀a, b, c : a(b+ c) = (ab) + (ac)

Definition. a < b if a+ c = b for some c.

Can check:
(vi) ∀a, b : a < b =⇒ a+ c < b+ c
(vii) ∀a, b : a < b =⇒ ac < bc
(viii) ∀a, b, c : a < b, b < c =⇒ a < c
(ix) ∀a : NOT a < a

1.1 A more useful form of induction

Induction says: if P (1) and ∀n : P (n) =⇒ P (n+ 1), then P (n)∀n.
A more useful form is strong induction: if P (1) and ∀n : P (m)∀m ≤ n =⇒ P (n+1), then P (n)∀n.
To deduce from ordinary induction, apply ordinary induction to Q(n) where Q(n) is ‘P (m)∀m ≤ n.’

Remarks.
(i) Technically don’t need to check P (1) separately as implied by condition if interpreted suitably

but is safer to check P(1).
(ii) Normally, to prove P (n)∀n, take an n and show P (n). Strong induction says: if it would help

to assume P (m) for some m ≤ n, feel free to do so.

Two equivalent forms of (strong) induction:
(i) If P (n) false for some n, then for some n, P (n) false but P (m) true ∀m < n. ‘If there is a

counterexample, then there is a minimal counterexample’.
(ii) If P (n) for some n then there is a least n with P (n) - well-ordering principle.
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1.2 Integers

Integers written Z consist of all symbols n,−n (n a natural number) and 0.
Can define + and · etc. on Z from N
Plus:

∀a : a+ 0 = a

∀a ∃b s.t. a+ b = 0

Define a < b if ∃c ∈ N with a+ c = b. All previous rules still hold except 1 change,

∀a, b, c ∈ Z : if a < b and c > 0 then ac < bc

1.3 Rationals

Rationals written Q consist of all expressions a
b , where a, b ∈ Z with b 6= 0 with a

b regarded the same
as c

d if ad = bc.
Define a

b +
c
d = ad+bc

bd .
We can check it does not matter how we write a

b and c
d .

Note. Cannot define operation on Q by sending a
b to a2

b2 as 1
2 and 2

4 go to different places.

Similarly for · can check all usual algebraic rules.
Also ∀a 6= 0∃b s.t. ab = 1
Define a

b <
c
d if ad < bc

Can check all rules for Z still hold.
Can view Z as living inside Q by identifying a in Z with a

1 in Q

1.4 Primes

Structure of N under + easy: start at 1, keep doing ‘+1’ but more complicated under ·
For a natural number n, multiples of n are all integers kn for some integer k e.g. 2n, 3n,−5n, 0 are
all multiples of n.
if m is a multiple of n, can say n divides m or n is a divisor of m or n is a factor of m or n|m ‘n
divides m’.

Definition. A natural number n ≥ 2 is prime if its only divisors are 1, n. e.g. 7,11, not 14 as
14 = 2 · 7.
Aim: break up each number into primes. E.g. 63 = 3 · 3 · 7
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Prop 1.1. Every natural number n ≥ 2 is expressible as a product of primes.

Proof. induction on n: n = 2X
given n > 2 :
if n prime: X
if n composite: have n = ab, some 1 < a, b < n
So by induction have:

a = p1p2p3 . . . pk

b = q1q2q3 . . . ql

some primes p1, p2, p3 . . . pk, q1, q2, q3, . . . ql
hence ab = p1p2p3 . . . pkq1q2q3 . . . qlXXX

Remark. Can define an empty product (i.e. of no primes) to equal 1. If so, then prop 1 could
start at 1.

Theorem 1.2. There are infinitely (i.e. not finitely many) primes

Proof. Suppose not: let p1, . . . , pk be all the primes.
Let n = p1p2 . . . pk + 1
Then n has no prime factor (as none of p1, . . . , pk divide it)
Contradicting the fact that n may be expressed as a product of primes (prop 1.1)

Remark. There is no ‘pattern’ to the primes: no (algebraic) formula for the nth prime.

Want: prime factorisation of a number is unique (up to reordering).
Why is that? Why can’t we have 41 · 101 = 47 · 73?
We would need p|ab =⇒ p|a or p|b (for p prime)
We do need p prime, e.g. 6|8 · 9 but 6 - 8 and 6 - 9.
Should ‘p|ab =⇒ p|a or p|b’ be easy or hard?
It cannot be easy (‘straight from definitions’) because it is about primes dividing things whereas
definition of prime is about things dividing it so it is the wrong way round!

1.5 Highest Common Factors

Definition. For a, b natural numbers, c ∈ N is the HCF of a and b if:
i) c|a, c|b (‘c is a common factor of a and b’)
ii) if d|a, d|b then d|c (‘every common factor divides c’)

[e.g. 18 has factors: 1, 2, 3, 6, 9, 18
12 has factors: 1, 2, 3, 4, 6, 12
so common factors 1, 2, 3, 6
Thus hcf = 6]
so the hcf(if it exists) is the greatest of all common factors
but if a and b have common factors 1,2,3,4,6 then a & b would not have an hcf.
Aim: hcf always exists.
We will need:
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Prop 1.3. (Division algorithm): Let n, k be natural numbers. Then, can write n = qk + r where
q, r ∈ Z with 0 ≤ r ≤ k − 1

Proof. Induction on n: n = 1X
Given n > 1,
have n− 1 = qk + r for some integers q, r with 0 ≤ r ≤ k − 1
if r < k − 1, have n = qk + (r + 1)
if r = k − 1, have n = (q + 1)kX

1.6 Euclid’s Algorithm

This will both prove hcf exists and give an efficient way to calculate the hcf.
For finding hcf of a & b (say a ≥ b)

Method.

General For a = 372, b = 162
Write a = q1b+ r1(q1, r1 ∈ Z, 0 ≤ r1 < b) 372 = 2 · 162 + 48
Write b = q2r1 + r2(q2, r2 ∈ Z, 0 ≤ r2 < r1) 162 = 3 · 48 + 18
Write r1 = q3rn + r3(q3, r3 ∈ Z, 0 ≤ r3 < r2) 48 = 2 · 18 + 12

. . . 18 = 1 · 12 + 6
Continue until rn−1 = qn+1rn + rn+1 with rn+1 = 0, output rn 12 = 2 · 6, output 6

Note. Terminates (in ≤ b steps since b > r2 > r2 > . . . )

Theorem 1.4. The output of Euclid’s algo on a, b is hcf of a, b.

Proof.
i) have rn|rn−1 (as rn+1 = 0)

so rn|rn−2 (from 2nd last line)
so rn|ri∀i (inductively)
so rn|b (2nd line)
so rn|a (1st line)

ii) given d with d|a, d|b:
have d|r1 (1st line)
so d|r2 (2nd line)
and d|ri∀i (inductively)
so in particular d|rnX
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e.g. hcf 87, 52: run Euclid:

87 = 1 · 52 + 35

52 = 1 · 35 + 17

35 = 2 · 17 + 1

17 = 17 · 1 + 0

so hcf(87, 52) is 1, or (87, 52) = 1 or say 87, 52 are coprime.

Definition (Coprime). Two numbers a, b are coprime if hcf(a, b) = 1.

Can we write 1 = 87x+ 52y some x, y ∈ Z?
Have:

1 = 1 · 35− 2 · 17 (from 3rd line)

= 1 · 35− 2(52− 35) (from 2nd line)
= −2 · 52 + 3 · 35
= −2 · 52 + 3 · (87− 52)

= 3 · 87− 5 · 52X
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Theorem 1.5.
∀a, b ∈ N ∃x, y ∈ Z s.t. xa+ yb = hcf(a, b)

‘Can write hcf as a linear combination of a and b.’

Proof (1st). Run Euclid on a, b, say with output rn
Have rn = xrn−1 + yrn−2 some x, y ∈ Z
But rn−1 expressible as xrn−2 + yrn−3 some x, y ∈ Z
Whence, rn = xrn−2 + yrn−3 some x, y ∈ Z
Continue: we obain ∀i : rn = xri + yri−1, some x, y ∈ Z (inductively)
Thus rn = xa+ yb , some x, y ∈ Z (from line 2 and then line 1)

Note. Euclid is showing x, y exist & gives a way to actually find then

Proof (2nd). Let h be least positive linear combination of a & b

Claim. h = hcf(a, b)

Proof. ii) given d|a, d|b: have d|(xa+ yb)∀x, y ∈ Z and in particular d|h
i) suppose h - a, then a = qh+ r, some q, r ∈ Z with 0 < r < h
=⇒ r = a− qh = a− q(xa+ yb) is also a linear combination
Thus h|a and similarly h|b XX

Note. 2nd proof doesn’t show how to find

Application: solving integer linear equations
Suppose a, b ∈ N, when can we solve ax = b, x ∈ Z? (if x ∈ Q allowed, always yes)
Answer: ⇐⇒ a|b
What about (ax+ by)|c?
e.g. 320x+ 72y = 33? no as LHS even, RHS odd.
87x+ 52y = 33? yes as we have 87x+ 52y = 1 (some x, y ∈ Z) and multiply up.

Corollary 1.6. Let a, b, c ∈ N then the equation ax+by = c has an integer solution ⇐⇒ hcf(a, b)|c.

Proof. let h = hcf(a, b)
=⇒ : have ax+ by = c, some x, y ∈ Z but h|a, h|b, so h|(ax+ by) X
⇐= : have h = ax+ by some x, y ∈ Z.
multiply by c

h :
c = a(x · c

h
) + b(y · c

h
)

Remark. Corollary 6 sometimes called Bezout’s Theorem.
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Lemma 1.7. Let p be a prime and a, b ∈ Z then p|ab =⇒ p|a or p|b.

Proof. Suppose p - a: want p|b.
Then hcf(p, a) = 1,
so px+ ay = 1, some x, y ∈ Z
so pbx+ aby = b
whence b is a multiple of p as each of pbk and aby are.

Remark. Similarly, p|a1a2 . . . an =⇒ p|ai some i. Lemma 1.7 tells us p|a1 or p|a2a3 . . . an
and can show remark holds. Also, we do need p prime.

Theorem 1.8 (Fundamental Theorem of Arithmetic). Every natural number n ≥ 2 is expressible as
a product of primes uniquely up to reordering.

Proof. Existence: prop 1
Uniqueness: induction on n : n = 2 X
Given n > 2: suppose n = p1p2 . . . pk = q1q2 . . . ql, where pi, qi primes.
Task: k = l and after reordering pi = qi ∀i
Have: p1|q1q2 . . . ql, so p1|qi some i.
Reorder; we may assume p1|q1 hence p1 = q1 as q1 prime.
So n

p1
= p2 . . . pk = q2 . . . ql thus k = l and p2 = q2, p3 = q3 . . . pk = qk (induction) XX

Digression: in Theorem 1.8, took the ‘things that cannot be broken up’ (the primes), and broke up
each number as a product of these uniquely.
Consider instead Z[

√
−3] meaning all complex numbers of form x + y

√
−3 where x, y ∈ Z e.g. 2 +

t
√
−3, 1− 4

√
−3, 7,

√
−3.

Can add/ multiply any 2 elements of Z[
√
−3], staying inside Z[

√
−3].

4 = 2× 2 = (1 +
√
−3)(1−

√
−3)

So unique factorisation fails in Z[
√
−3].

1.7 Application of the Fundamental Theorem of Arithmetic
1.7.1 Factors

What are factors of 23 · 37 · 11?
Certainly any 2a3b11c, 0 ≤ a ≤ 3, 0 ≤ b ≤ 7, 0 ≤ c ≤ 1 is a factor.
No others - e.g. if 7|n = 23 ·37 ·11, then we’d get a prime factorisation of n involving 7 - contradicting
uniqueness of prime factorisation.
So the factors of n = pa11 . . . pakk are precisely all numbers pb11 . . . pbkk , 0 ≤ bi ≤ ai ∀i.
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1.7.2 HCFs

Common factors of 23 · 37 · 5 · 113 and 24 · 32 · 11 · 13 are all 2a · 3b · 11c, 0 ≤ a ≤ 3, 0 ≤ b ≤ 2, 0 ≤ c ≤ 1
so hcf is 23 · 32 · 11.
In general, HCF of pa11 . . . pakk and pb11 . . . pbkk (ak, bk ≥ 0) is: pmin(a1,b1)

1 . . . p
min(ak,bk)
k .

1.7.3 LCMs

Definition. Common multiples of 23 · 37 · 5 · 113 and 24 · 32 · 11 · 13 are all 2a · 3b · 11c · 13e·anything
where a ≥ 4, b ≥ 7, c ≥ 1, d ≥ 3, e ≥ 1 so 24 · 37 · 51 · 113 · 131 is a common multiple and every common
multiple is a multiple of it.
We say it is the LCM or Least Common Multiple of our 2 numbers.
In general, LCM of pa11 . . . pakk and pb11 . . . pbkk (ak, bk ≥ 0) is: pmax(a1,b1)

1 . . . p
max(ak,bk)
k .

Amusing consequence: hcf(x, y) lcm(x, y) = xy. Indeed because min(a, b)+max(a, b) = a+ b, ∀a, b ∈
Z.

12



1.8 Modular arithmetic

Definition. Let n ≥ 2, be a natural number, the integers mod n, written Zn consist of the integers
with two regarded as the same if they differ by a multiple of n.
e.g. in Z7, 2 is the same as 16.
If x and y are the same in Zn, can write:
x ≡ y (mod n)
or x ≡ y (n)
or x = y in Zn

thus x ≡ y (n) ⇐⇒ x− y is a multiple of n
⇐⇒ x = y + kn, some k ∈ Z

Note. No two of 0, 1, . . . , n− 1 are congruent mod n and every x is congruent to one of them
mod n (division algorithm). So can view Zn as:

0

1

2

3

4

5

n− 1

.
.
.

Do + and × make sense in Zn?

Note. Even or odd does not work same e.g. 2 ≡ 9 (7)
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Would need if a ≡ a′ (n) and b ≡ b′ (n) then a+ b = a′ + b′ (n) and ab = a′b′ (n)
a′ = a+ kn, k ∈ Z
b′ = b+ jn, j ∈ Z
so a′ + b′ = a+ b+ (k + j)n ≡ a+ b (n)
a′b′ = (a+ kn)(b+ jn) = ab+ (kb+ aj + kjn)n ≡ ab (n)X
All usual rules of arithmetic inherited from Z:
e.g. do have a+ b ≡ b+ a (n), since a+ b = b+ a in Z.
Some things already done are expressible in modular arithmetic.
e.g. ‘p|ab =⇒ p|a or p|b (p prime)’ is exactly saying:
ab ≡ 0 (p) =⇒ a ≡ 0 (p) or b ≡ 0 (p) (in Z the line)
or equivalently:
In Zp : ab = 0 =⇒ a = 0 or b = 0 (in Zp the circle)

1.8.1 Inverses

For a, b ∈ Zn, say b is an inverse of a if ab = 1
e.g. in Z10, inverse of 3 is 7. Inverse of 4 does not exist as ∀x ∈ Z : 4x 6≡ 1 (10) since 4x is even.

Note.
(i) if inverse exists, it is unique.

Suppose in Zn, have ab = ac = 1, then b(ab) = b(ac) =⇒ 1 · b = 1 · c =⇒ b = c
(ii) if a is invertible in Zn, can write a−1 for inverse.
(iii) can ‘cancel’ an invertible. If a is invertible and ab = ac then b = c (multiply each side by a−1).
(iv) in general, cannot cancel e.g. in Z10 have 4 · 5 = 2 · 5 but 4 6= 2.

Moral. Zp very well-behaved, for prime p.

Prop 1.9. Let p be a prime. Then every a 6≡ 0 (p) is invertible mod p.
(Equivalently, in Zp : a 6= 0 =⇒ ∃b with ab = 1 )

Proof. Have (a, p) = 1
So ax+ py = 1, some x, y ∈ Z
i.e. ax = 1− py
so ax ≡ 1 (p)
In Zp, consider a · 0, a · 1, a · 2, . . . , a · (p− 1)
(our task is to show one of these is 1)
But these are distinct in Zp:
(ia = ja =⇒ (i − j)a = 0 =⇒ i − j ≡ 0 (p) or a ≡ 0 (p) =⇒ i − j ≡ 0 (p) =⇒ i = j (as
0 ≤ i, j ≤ p− 1).
Hence must be 0, 1, . . . , p− 1 in some order.
Thus ia = 1, some i.

General n?
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Prop 1.9 (more general). Let n ≥ 2, a invertible mod n ⇐⇒ (a, n) = 1.

Proof.

(a, n) = 1 ⇐⇒ ax+ ny = 1 some x, y ∈ Z
⇐⇒ ax = 1− ny some x, y ∈ Z
⇐⇒ ax ≡ 1 (n) some x, y ∈ Z

Definition. The Euler φ function defined for each n ∈ N by φ(n) = no. of x, 1 ≤ x ≤ n with
(x, n) = 1.
Soφ(n) = no. of invertibles( or units) in Zn,
e.g. p prime: φ(p) = p− 1, φ(p2) = p2 − p (−p comes from p, 2p, 3p, . . . , pp
If p, q distinct primes, φ(pq) = pq− p− q+1 (−p from multiples of q, similarly multiples of p for −q,
+1 from subtracting pq twice.)

How do powers behave in Zp?
e.g. powers of 2 in Z7:

21 = 2

22 = 4

23 = 1

(then 2, 4, 1, 2, 4, 1, . . . )
Powers of 2 in Z11:

21 = 2

22 = 4

23 = 8

24 = 5

25 = 10

26 = 9

27 = 7

28 = 3

29 = 6

210 = 1

(Then 2, 4, 8, 3, . . . )
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Theorem 1.10. p prime, then in Zp, ap−1 = 1, ∀a 6= 0.

(Equivalently in Z : a 6≡ 0 (p) =⇒ ap−1 ≡ 1 (p))

Proof. in Zp, consider a · 1, a · 2, . . . , a · (p− 1)
(ai = aj =⇒ i = j as a invertible) & non-zero (ai = 0 =⇒ a = 0 or i = 0 )
so are 1, 2, . . . , p− 1 in some order.
Multiply ap−1(p− 1)! = (p− 1)!
Now cancel (p− 1)! (invertible as product of invertibles)
To obtain: ap−1 = 1.

General n?

Theorem 1.10. (More general) Fermat-Euler: Let n ≥ 2 then in Zn, every invertible a has aφ(n) = 1.

Proof. Let the units in Zn be x1, x2, . . . , xφ(n)
Consider ax1, ax2, . . . , axφ(n). These are distinct (axi = axj =⇒ xi = xj , as a invertible)
and invertible as product of invertibles.
So are x1, x2, . . . , xφ(n) in some order. Multiply: aφ(n)x1x2 . . . xφ(n) = x1x2 . . . xφ(n)
now cancel each xi to obtain aφ(n) = 1.

We know (p− 1)! 6≡ 0 (p). What is it?
p = 5 : 4! = 24 ≡ −1 (5)
p = 7 : 6! = 720 ≡ −1 (7)

Lemma 1.11. Let p be prime. In Zp : x2 = 1 =⇒ x = 1 or x = −1.

Note. in Z8 : 12 = 32 = 52 = 72 = 1.

Proof. In Zp : x2 = 1 =⇒ x2 − 1 = 0 =⇒ (x− 1)(x+ 1) = 0 =⇒ x− 1 = 0 or x+ 1 = 0
(p prime) =⇒ x = ±1

Remark. Turns out that (non-zero) poly in Zp of degree k has ≤ k roots in Zp.

Theorem 1.12. Wilson’s Theorem: Let p be a prime. Then (p− 1)! ≡ −1 (p)

Proof. may assume p > 2 (Theorem true for p = 2)
in Zp, consider 1, 2, 3, . . . , p− 1.
Can pair up each a with its inverse a−1 (fora 6= a−1

but a = a−1 ⇐⇒ a2 = 1 ⇐⇒ a = 1 or a = −1.
Thus 1, 2, . . . , p− 1 consists of some pairs a, a−1&1,−1.
Multiply (p− 1)! = 1

p−3
2 · 1 · (−1) = −1

16



Is −1 a square in Zp?
e.g. in Z5 : x = 2 has x2 = −1X
in Z7 : 02 = 0, 12 = 1, 22 = 4, 32 = 2 so no.
in Z13 : x = 5 has x2 = −1X
in Z19 : no

Prop 1.13. Let p be an odd prime. Then −1 is a square mod p ⇐⇒ p ≡ 1 (4).

Proof. For p = 4k + 3 : suppose x2 = −1 (in Zp)
have x4k+2 = 1 (Fermat-Euler).
but x4k+1 = (x2)2k+1 = (−1)2k+1 = −1
For p = 4k + 1 : have (4k)! = −1 (Wilson)
Compare (4k)! = 1 · 2 . . . 2k(2k + 1)(2k + 2) . . . (4k)
with (2k)!2 = 1 · 2 . . . 2k · 1 · 2 . . . (2k − 1)(2k)
but have 4k = −1, 4k − 1 = −2, . . . , 2k + 1 = −2k
so (2k)!2 = (4k)!(−1)2k = (4k)! = −1X

1.8.2 Solving congruence equations

1) Solve 7x ≡ 4 (30)
Finding a solution:
Have (7, 30) = 1 so can sum 7, 30 to obtain: 13 · 7− 3 · 30 = 1
so 13 · 7 ≡ 1 (30)
whence 7 · 52 ≡ 4 (30)
so x = 52 is a solution.
Other solutions:
any x′ ≡ 52 (30) also works.
No more: if x′ a solution, want x′ ≡ x (30)
Have 7x ≡ 4 (30)
Have 7x′ ≡ 4 (30)
so 7x = 7x′ (30)
so x = x′ (30) as 7 invertible X
so our solution is all x ≡ 52 (30)
shorter method:
7x ≡ 4 (30) ⇐⇒ 13 · 7x ≡ 13 · 4 (30) ⇐⇒ x ≡ 52 (30) (as 13 invertible) X
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2) Solve 10x = 12 (34)

10x ≡ 12 (34) ⇐⇒ 10x = 12 + 34y, some y ∈ Z
⇐⇒ 5x = 6 + 17y, some y ∈ Z
⇐⇒ 5x ≡ 6 (17)

and now same as before.

A simultaneous congruence?
Do we expect solution to x ≡ 6 (17), x ≡ 2 (19)?
Guess yes as 17, 19 coprime so ‘mod 17 & mod 19 should be independent of each other’
how about x ≡ 6 (34), x ≡ 11 (36)?
no: is x even or odd? (note that (34, 36) = 2 6= 1)

Theorem 1.14 (Chinese Remainder Theorem). Let u, v be coprime:
then for any a, b, there is an x with x ≡ a (u) and x ≡ b (v)
moreover, x is unique mod uv.

Proof. existence: have su+ tv = 1 some s, t ∈ Z
now su ≡ 0(u) and 1 (v)
Also tv ≡ 1 (u) and 0 (v)
hence x = a(tv) + b(su) has x ≡ a (u) and b (v)
certainly any x′ ≡ x (uv) also a solution.
Conversely, suppose x′ ≡ a (u), x′ ≡ b (v)
so x′ ≡ x (u) and x′ ≡ x (v)
=⇒ u|x′ − x& v|x′ − x
hence uv|x′ − x (as u, v coprime)
so x′ ≡ x (uv)X

Remark. Similarly, if u1, u2, . . . , uk pairwise coprime then ∀a1, . . . , ak ∃x s.t. (by induction)

x ≡ a1 (u1)
x ≡ a1 (u2)
...
x ≡ ak (uk)

NOT 6, 10, 15.
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1.9 An appication of Fermat-Euler
1.9.1 RSA Coding

Method. Normally, to send a coded message:

Message Coded
Message MessageENCODE DECODE

Completely ‘obvious’ that knowing how to encode = knowing how to decode.
However:
pick 2 large distinct primes p & q (e.g. 100 digits long)
Let n = pq.
Fix a ‘coding exponent’ e.
To encode a message x (viewed as an element of Zn:

x→ xe

How to decode?
seek d s.t. (xe)d = x.
Have xφ(n) = 1 in Zn, assuming x coprime to n.
So if you publish n & e, then anyone can encode, but only you can decode!

2 The Reals

2.1 The need for reals

Have N contained in Z contained in Q: Why not stop there?

Prop 2.1. There is no rational x with x2 = 2. (In any proof, may assume x > 0, since (−x)2 = x2.)

Proof (1st). Suppose x2 = 2, for some a
b where a, b ∈ N.

So a2

b2 = 2 i.e. a2 = 2b2 but exponent of 2 in prime factorisation of a2 even, in 2b2 is odd.
Contradicting unique factorisation

Note. Same proof shows if ∃x ∈ Q with x2 = n, some n ∈ N , then n must be a square
number (each exponent in prime factorisation of n must be even).

Proof (2nd). Suppose x2 = 2, some x = a
b where a, b ∈ N

so for any c, d ∈ Z,
cx+ d is of form e

b , some e ∈ Z
and so cx+ d > 0 =⇒ cx+ d ≥ 1

b
but 0 < x− 1 < 1 (as 1 < x < 2)
so 0 < (x− 1)n < 1

b if n sufficiently large.
This is contradiction as (x− 1)n is of form cx+ d, some c, d ∈ Q (using x2 = 2)
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So “Q has a gap"
How to express ‘Q has a gap’ mentioning only Q?

−3 −2 −1 0 1 2 3

all x with x2 < 2

We see that 2 is an upper bound; 1.75 is an upper bound; 1.5 is also an upper bound; so is 1.42.
No LEAST upper bound. This is how we say, inside Q, that ‘Q has a gap.’

2.2 What we assume about reals

Definition. Reals are a set written R, with elements 0 and 1 (0 6= 1) equipped with operations +
and · and an ’ordering’< such that:
(i) + is commutative & associative with identity 0 and every x has an inverse.
(ii) · is commutative & associative with identity 1 and every x 6= 0 has an inverse.
(iii) · distributive over + i.e. (a(b+ c) = (ab) + (ac)∀a, b, c)
(iv) ∀a, b : exactly 1 of a < b, a = b, b < a holds and a < b, b < c =⇒ a < c (all a, b, c)
(v) ∀a, b, c : a < b =⇒ a+ c < b+ c, and a < b =⇒ ac < bc if c > 0.
(vi) For any set S of reals that is non-empty and bounded above, S has a least upper bound ‘Least

upper bound axiom’
(S bounded above if ∃x ∈ R with x ≥ y ∀y ∈ S - such an x is an upper bound for S. Say x is
the least upper bound of S if x is an upper bound for S and every upper bound x′ for S satisfies x ≤ x′)

Remarks.
(i) From 1 to 5, can check e.g. 0 < 1.

Indeed, if not then 1 < 0, so 0 < −1 (adding -1)
So 0 < 1 (multiplying by the ’positive’ −1)

(ii) May view Q as contained in R - by identifying a
b ∈ Q with a · b−1 ∈ R

(iii) Least upper bound axiom, 6, FALSE in Q
(iv) Why ‘non-empty and bounded above’ in 6?

• If S not bounded above then it has no U.B. so certainly no least U.B.
• If S empty then every x ∈ R is an U.B. so no least U.B.

(v) Can construct R out of Q, and check that 1 to 6 do hold

2.3 Examples of sets and least upper bounds

(i) S = {x ∈ R : 0 ≤ x ≤ 1} - “The set of all x ∈ R such that 0 ≤ x ≤ 1”

R
−3 −2 −1 0 1 2 3

S

Is 2 an U.B. for S? Yes: x ≤ 2 ∀x ∈ S.
Is 3

4 an U.B. for S? No: 7
8 ∈ S, but

7
8 >

3
4 .

Least upper bound of S is 1, because:
• 1 is an U.B: x ≤ 1 ∀x ∈ S
• Every U.B. y has y ≥ 1, since 1 ∈ S. X

Can also write L.U.B = 1 or supremum of S = 1 or sup S = 1. (Last is usual notation).
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(ii) S = {x ∈ R : 0 < x < 1}

R
−3 −2 −1 0 1 2 3

S

(Can write S as (0, 1) “open interval from 0 to 1". Earlier example can be written [0, 1] “closed
interval from 0 to 1".)
Is 2 an U.B.? Yes as x ≤ 2∀x ∈ S
Is 3

4 an U.B.? No: 7
8 ∈ S, but

7
8 >

3
4 .

sup S = 1 because:
• 1 is an U.B: x ≤ 1 ∀x ∈ S
• No U.B. c has c ≤ 1.

Indeed, certainly c > 0 (c ≥ 1
2 , since

1
2 ∈ S)

So if c < 1 then 0 < c < 1 so 1+c
2 ∈ S with 1+c

2 > c .

(iii) S{1− 1
n : n ∈ N} = {0, 12 ,

2
3 ,

3
4 , . . . }

R
−3 −2 −1 0 1 2 3

Clearly 1 is an U.B.
Is there an U.B. x < 1?

Prop 2.2 (Axiom of Archimedes). N is not bounded above in R.
R

1 2 3 4 . . . C

Proof. If not, then let C = sup N.
So C − 1 not an U.B. for N,
so ∃n ∈ N with n > C − 1
but then n+ 1 ∈ N, n+ 1 > C, contradicting C an U.B

Corollary 2.3. For each t > 0, ∃n ∈ N with 1
n < t.

R
0 t1

n

Proof. Have some n ∈ N with n > 1
t (by prop 2)

So 1
n < t.

Note. Prop 2 and Corollary 3 are telling us that R does not contain any ‘infinitely big’ or ‘infinitely
small’ elements.

Back to example 3:
Do have sup S = 1, because suppose C < 1 is an U.B.
Then 1− 1

n < C ∀n ∈ N,
So 1− C < 1

n∀n ∈ N, contracting Corollary 2.3 X
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Warning. If S has a greatest element (like [0, 1]), then the greatest element is sup S - so sup S ∈ S.
But if S has no greatest element(like (0,1)), then sup S 6∈ S.

Note. If S is a set of reals that is non-empty and bouned below (∃x s.t. x ≤ y ∀y ∈ S - such an x is
a lower bound for S)

R
x

S

Then the set −S = {−y : y ∈ S} is non-empty and bounded above, so has a least upper bound C.
So −C is the greatest lower bound of S - called the infimum of s or inf S.
In particular, if S non-empty and bounded (bounded above and below) then it has a sup and an inf.

Theorem 2.4. ∃x ∈ R with x2 = 2.

Proof. Let S = {x ∈ R : x2 = 2}

R
−3 −2 −1 0 1 2 3

S C

Have S nonempty (e.g. 1 ∈ S)
and bounded above (e.g. 2 is an U.B.)
So S has a sup, C say (and 1 ≤ C ≤ 2)

Claim. C2 = 2

Proof. Suppose not
If C2 < 2: (Hope (C + t)2 < 2 for t small)
For 0 < t < 1, have (C + t)2 = C2 + 2Ct+ t2 ≤ C2 + 5t < 2 for t small (t < 2−C2

5 )
This contradicts C an U.B. for S (as C + t ∈ S for t small)
If C2 > 2: (Hope (C − t)2 > 2 for t small)
For 0 < t < 1, have (C + t)2 = C2 − 2Ct+ t2 ≥ C2 − 4t > 2 for t small (t < C2−2

4 )
This contradicts C is the least U.B for S (as C − t an U.B. for t small) X

Remark. Same proof shows that n
√
x exists ∀n ∈ N ∀x ∈ R, x > 0. i.e. ∃y ∈ R s.t. yn = x.

A real that is not rational is called irrational
e.g.
√
2,
√
3,
√
6,
√
15 irrational.

Also, 2 + 3
√
5 irrational.

Indeed, if 2 + 3
√
5 = a

b (a, b ∈ N) then
√
5 = a−2b

3b ∈ Q
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Also, “the rationals are dense”, meaning that if a, b ∈ R with a < b then ∃c ∈ Q with a < c < b

R
0 a b

> 1
n

Indeed may assume a, b ≥ 0 (if a, b ≤ 0, look at −a,−b instead)
Choose n ∈ N with 1

n < b− a
among 0

n ,
1
n ,

2
n , . . . , there is a final one that is ≤ a, say q

n
(else a would be an U.B for { 0n ,

1
n ,

2
n , . . . }, contradiction axiom of Archimedes)

so a < q+1
n < bX

Also, “the irrationals are dense” ∀a, b ∈ R with a < b, ∃ irrational c with a < c < b.
Indeed, ∃ rational c with a

√
2 < c < b

√
2,

So a < c√
2
< b.X

What should “1 + 1
2 + 1

4 + 1
8 + · · · = 2” mean?

what should “0.33333 · · · = 1
3 ” mean?

Presumable that, 1 + 1
2 , 1 +

1
2 + 1

4 , 1 +
1
2 + 1

4 + 1
8 , . . . should “tend to” 2

and 0.3, 0.33, 0.333, 0.3333, . . . should “tend to" 1
3

Given a sequence x1, x2, x3, . . . of reals, and c ∈ R, what should “xn tends to c” mean?
NOT that the xn are getting closer to c
e.g. would not want 1

2 ,
2
3 ,

3
4 ,

4
5 , . . . to tend to 17.

And NOT that ∀ε > 0, ∃n with c− ε < xn < c+ ε
e.g. would not want that 1

2 , 10,
2
3 , 10,

3
4 , 10,

4
5 , 10, . . . to tend to 1.

We want the sequence to get and stay, within ε of c.
So: we say that x1, x2, x3, . . . tends to c if ∀ε > 0,∃N s.t. ∀n ∈ N have c− ε < xn < c+ ε
“∀ε > 0, xn eventually (∀n ≥ N , some N) within ε of c”
Equivalently: ∀ε > 0 ∃N s.t. ∀n ≥ N have |xn − c| < ε

R
CC − ε C + ε

eventually within (C − ε, C + ε)
Where the absolute value, |a|, of a ∈ R is defined by :

|a| =

{
a if a ≥ 0

−a if a < 0

So can think of |a− b| as “the distance from a to b on the number line”,
e.g. |9− 2| = |2− 9| = 7
Easy to check the triangle inequality: |a− c| ≤ |a− b|+ |b− c|.

If xn tends to C, can write xn → C
or xn → C as n→∞
“xn tends to C as n tends to infinity”
or lim

n→∞
xn = C

or “the sequence x1, x2, . . . has limit C”
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Examples:
(i) 1

2 ,
1
2 + 1

4 ,
1
2 + 1

4 + 1
8 , . . .

This is x1, x2, x3, . . . where xn = 1− 1
2n (inductively)

Claim. xn → 1

R
0 1

( )

Proof. Given ε > 0:
Choose N ∈ N with N > 1

ε
Then ∀n ≥ N : |xn − 1| = 1

2n ≤
1
n ≤

1
N < ε

(ii) The constant sequence C,C,C,C, . . . (i.e. xn = C ∀n)

Claim. xn → C

Proof. Given ε > 0 :
Have |xn − c| < ε∀nX

(iii) xn = (−1)n : −1, 1,−1, 1, . . .
R

−3 −2 −1 0 1 2 3

Claim. There is no c ∈ R with xn → c

Proof. suppose xn → C
Choose ε = 1
So ∃N ∈ N s.t. ∀n ≤ N , have |xn − c| < 1
In particular, |1 − c| and (−1) − c| < 1, so |1 − (−1)| < 2 (triangle inequality).
X

(iv) The sequence xn given by: xn =

{
1
n if n odd
0 if n even

(sequence need not have a ‘nice’ or ‘1-line’ definition)

Claim. xn → 0

R
-1 0 1

Proof. Given ε > 0:
Choose N ∈ N with 1

N < ε.
Then ∀n ≥ N : xn

1
n or 0, so |xn − 0| ≤ 1

n ≤
1
N < εX
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Note.
(i) If xn → C, some C, say that the sequence x1, x2, x3, . . . is convergent

or the sequence (xn) is convergent
or the sequence (xn)

∞
n=1 is convergent

If (xn) not convergent, say it is divergent.
e.g. ((−1)n)∞n=1 is divergent. (NOT saying ‘it goes off to infinity’)

(ii) Same idea as in 3rd example shows ‘limits are unique’.
If xn → c and xn → d then c = d.
Indeed, suppose c 6= d, and choose ε = 1

2 |c− d|
Then ∃N ∈ N with |xn − c| < ε∀n ≥ N
And ∃M ∈ N with |xn − d| < ε∀n ≥M
But now for any n ≥ max(M,N) Have: |xn − c|, |xn − d| < ε,
so |c− d| < 2ε

A sequence given in the form x1, x1 + x2, x1 + x2 + x3, . . . is called a series. Can write it as
∞∑
n=1

xn.

The k-th term of this actual sequence is
k∑

n=1
xn

If series x1, x1 + x2, x1 + x2 + x3, . . . is convergent, say to c, can write
∞∑
n=1

xn = c

e.g.
∞∑
n=1

1
2n = 1.

Warning. CANNOT write
∞∑
n=1

xn to denote the limit, until we know it exists.

Similarly, CANNOT write lim
n→∞

xn until we know the limit exists e.g. CANNOT write lim
n→∞

(−1)n.

Limits do behave as we expect.
For example: if xn ≤ d∀n and xn → c then c ≤ d

R
c?d

( )

Indeed, suppose c > d.
Choose ε = |c− d|
Then ∃N ∈ N s.t. ∀n ≥ N have |xn − c| < ε.
But |xn − c| < ε =⇒ xn > d X

Warning. If xn < d∀n and xn → c, need not have c < d
e.g. 1

2 ,
1
2 + 1

4 ,
1
2 + 1

4 + 1
8 , . . . has all xn < 1 but lim

n→∞
xn = 1

How about xn + yn?
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Prop 2.5. If xn → c and yn → d then xn + yn → c+ d

R
x1 x2x3

( )
dc

y1y2y3
( )

Idea: “Late xn are close to c and late yn are close to d so late xn + yn are close to c+ d".

Plan
Given ε > 0 :
. . .
Choose N = . . .
∀n ≥ N , somehow get |(xn + yn)− (c+ d)| < ε

Proof. Given ε > 0:
Have xn → c,
So ∃N ∈ N s.t. |xn − c| < ε

2 ∀n ≥ N
Also yn → d,
So ∃M ∈ N s.t. |yn − d| < ε

2 ∀n ≥M
Thus ∀n ≥ max(M,N), have |(xn + yn)− (c+ d)| ≤ |xn − c|+ |yn − d| < ε

2 + ε
2 = ε

Remark. If we’d used “ |xn − c| < ε" instead, would have got at the end that
|(xn + yn)− (c+ d)| < 2ε instead which is clearly ok.

2.4 An Important Result on Limits of Sequences Without Having Know the
Limit in Advance

Definition. A sequence x1, x2, . . . is increasing if xn+1 ≥ xn ∀n

Theorem 2.6. If x1, x2 . . . is increasing and bounded above (i.e. {x1, x2 . . . } bounded above) then
it converges.

R
x1 x2x3

Kc = sup(X)

x4

Remark. If we lived in Q, this would be false, e.g. 1, 1.4, 1.41, 1.414, 1.4142, . . . (“want to
→
√
2”)

Proof. Let c = sup{x1, x2, . . . }

Claim. xn → c

Proof. Given ε > 0
∃N a.t. xN > c− ε (else c− ε an U.B. for {x1, x2, . . . }
so ∀n ∈ N : c− ε < xN ≤ xn < c,
whence |xn − c| < ε X

R
xN

cc− ε
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Similarly, if (xn) is decreasing (xn+1 ≤ xn ∀n) and bounded below, then (xn) convergent.
So “a bounded monotone(increasing or decreasing) sequence is convergent”

2.4.1 Three applications

Firstly:

Prop 2.7. i)
∞∑
n=1

1
n diverges

ii)
∞∑
n=1

1
n2 converges

Note. No ‘closed form’ for 1+ 1
2 +

1
3 + · · ·+

1
n or 1+ 1

4 +
1
9 + · · ·+

1
n2 . This is why series are

often harder than sequences.

Idea: 1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 + 1
8 + 1

9 + . . .
≥ 1 + 1

2 + 1
4 + 1

4 + 1
8 + 1

8 + 1
8 + 1

8 + 1
16 + · · · = 1 + 1

2 + 1
2 + 1

2 + . . .

Proof. i) have 1
3 + 1

4 ≥
1
2

and 1
5 + 1

6 + 1
7 + 1

8 ≥
1
2

and in general 1
2n+1 + 1

2n+2 + · · ·+ 1
2n+1 ≥ 1

2 ∀n

Hence the partial sums of
∞∑
n=1

1
n unbounded and so certainly

∞∑
n=1

1
n not convergent X

Idea: 1 + 1
22 + 1

32 + 1
42 + 1

52 + 1
62 + 1

72 + 1
82 + . . .

≤ 1 + 1
22 + 1

22 + 1
42 + 1

42 + 1
42 + 1

42 + 1
82 + · · · = 1 + 2

22 + 4
42 + 8

82 + . . .

Proof. ii) have 1
22 + 1

32 ≤
2
22 = 1

2
and 1

42 + 1
52 + 1

62 + 1
72 ≤

4
42 = 1

4

and in general 1
(2n)2 + 1

(2n+1)2 + · · ·+ 1
(2n+1−1)2 ≤

2n

(2n)2 = 1
2n ∀n

Hence partial sums of
∞∑
n=1

1
n2 bounded (1 + 1

2 + 1
4 + 1

8 + · · · = 2)

so
∞∑
n=1

1
n2 converges, by thm 6 X

Remarks.
(i) 1 + 1

2 + 1
3 + 1

4 + . . . is called the harmonic series

(ii) In fact,
∞∑
n=1

1
n2 = π2

6 - proved in part II ‘Linear Analysis’
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Secondly: Decimal expansions

What should “0.a1a2a3 . . . ” mean (0 ≤ ai ≤ 9, each i)?
It should be the limit of 0.a1, 0.a1a2, 0.a1a2a3 . . .

So we define 0.a1a2a3 . . . to be
∞∑
n=1

an
10n (converges as all terms ≥ 0 as partial sums bounded,

e.g. by 1)

Conversely: Given x ∈ R, 0 < x < 1,
want to write x = 0.a1a2a3 . . . for some a1, a2, · · · ∈ {0, 1, . . . , 9}

R
1
10

2
10

3
10

4
10

5
10

6
10

0
10

x

Choose the greatest a1, · · · ∈ {0, 1, . . . , 9} s.t. a1
10 ≤ x

thus 0 ≤ x− a1
10 <

1
10

Now take greatest a2 ∈ {0, 1, . . . , 9} s.t. a1
10 + a2

100 ≤ x
So 0 ≤ x− a1

10 −
a2
100 <

1
100

Continue inductively: we obtain a1, a2, a3, · · · ∈ {0, 1, . . . , 9} s.t.

0 ≤ x−
k∑

n=1

an
10n < 1

10k
∀k

Remarks.
(i) Call a decimal expansion 0.a1a2a3 . . . recurrent if an+k = an ∀n ≥ N , some N and k

e.g. 0.3178426426426426 . . .
Can check x = 0.a1a2a3 . . . recurrent ⇐⇒ x rational

(ii) Decimal expansion need not be unique e.g. 0.37000 · · · = 0.36999 . . .
(iii) That’s the only way to have non-unique decimal expansion: If 0.a1a2a3 · · · = 0.b1b2b3 . . .

are different decimal expansions of the same number then:
∃N ∈ N s.t. an = bn∀n < N and aN = bN − 1 and an = 9, bn = 0∀n > N (or vice
versa).

Thirdly: the number e

Definition. e = 1 + 1
1! +

1
2! +

1
3! + . . .

This does converge: all terms ≥ 0 and the partial sums are bounded by 1+1+ 1
2+

1
4+

1
8+· · · = 3

(since 1
n! ≤

1
2n−1 ∀n ≥ 2, inductively)

If we write 0! = 1 then e =
∞∑
n=0

1
n! .

Definition. A real x is algebraic if it is a root of a (non-zero) polynomial with integer coefficients,
i.e. adxd + ad−1x

d−1 + · · ·+ a1x+ a0 = 0, where a0, . . . , ad ∈ Z (some d) with ad 6= 0
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e.g.
(i) Every rational is algebraic: p

q is a root of qx− p (i.e. satisfies qx− p = 0)
(ii)
√
2: is algebraic: it satisfies x2 − 2 = 0.

(iii)
√
2 + 1: is algebraic: it satisfies (x− 1)2 − 2 = 0.

Are all reals algebraic?

Prop 2.8. e is not rational

Proof. Suppose e is rational. Write e = p
q where p, q ∈ N , with q > 1 (if q = 1, rewrite as

2p
2q ).

So
∞∑
n=0

q!
n! ∈ Z

(since xn → c then kxn → kc for any k ∈ R)
Sum = (q! + q!

1! +
q!
2! + · · ·+

q!
q! ) + ( q!

(q+1)! +
q!

(q+2)! + . . . ) i.e. integer + < 1

Formally:

Now,
∞∑
n=0

q!
n! ∈ Z

Also, q!
(q+1)! =

1
q+1

q!
(q+2)! =

1
(q+1)(q+2) ≤

1
(q+1)2

And in general q!
(q+n)! ≤

1
(q+1)n .

So
∞∑

n=q+1

q!
n! ≤

1
(q+1) +

1
(q+1)2 + 1

(q+1)3 + · · · = 1
q < 1

But this contradicts
q∑

n=0

q!
n! +

∞∑
n=q+1

q!
n! ∈ Z

Definition. A real that is not algebraic is called transcendental.

Theorem 2.9. The number c =
∞∑
n=1

1
10n! i.e. c = 0.1100010000000000000000010 . . . is transcendental.

We’ll need two facts about polynomials:
(i) For any polynomial P, ∃ constant K s.t.
|P (x)− P (y)| ≤ K|x− y| ∀0 ≤ x, y ≤ 1.
Indeed, say P (x) = adx

d + · · ·+ a0
Then

P (x)− P (y) = ad(x
d − yd) + ad−1(x

d−1 − yd−1) + · · ·+ a1(x− y)
= (x− y)[ad(xd−1 + xd−2y + · · ·+ yd−1) + · · ·+ a1]

So |P (x)− P (y) ≤ |x− y|[(|ad + ad−1 + · · ·+ |a1|)d] as 0 ≤ x, y ≤ 1X

(ii) A (non-zero) poly of degree d has ≤ d roots.
Indeed, given poly P of degree d:
If P has no roots: X
If P has a root: say a is a root.
Then P (x) = (x− a)Q(x), some poly Q of degree d− 1 (by dividing the poly P )
So each root of P is either a or a root of Q but Q has ≤ d− 1 roots (induction) X
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Proof. Write cn =
n∑
k=0

1
10k! - so cn → c.

ccn

P

tiny

not as tiny

Suppose poly P has c as a root.
Then ∃K s.t. |P (x)− P (y)| ≤ K|x− y| ∀0 ≤ x, y ≤ 1.
Say P has degree d : P (x) = adx

d + · · ·+ a0 (all ai ∈ Z, ad 6= 0)

Now, |c− cn| =
∞∑

k=n+1

1
10k! ≤ 2

10(n+1)!

Also cn = a
10n! , some a ∈ Z, so P (cn) = b

10d·n! , some b ∈ Z
(since P ( st ) =

q
td
, some q ∈ Z, whenever s, t ∈ Z)

But for n large enough, cn not a root of p (by 2nd fact),
so |P (cn)| ≥ 1

10d·n! , i.e. |P (cn)− P (c)| ≥ 1
10d·n!

Thus 1
10d·n! ≤ K 2

10(n+1)! , a contradiction for n sufficiently large.

Remarks.
(i) Same proof shows that any real x s.t. ∀n∃ rational pq with 0 < |x− p

q | <
1
qn is transcendental.

“x has very good rational approximations”
(ii) Such x are called “Liouville numbers”. So could view Theorem 9 as saying ‘every Liouville

number is transcendental”
(iii) This does not show e transcendental. But in fact it is.
(iv) Another proof of existence of transcendentals is coming in chapter 4.
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2.5 The Complex Numbers

Some polys have no real roots - e.g. x2 + 1.
We’ll try to ‘force’ an x with x2 = −1 (cannot force an x with x2 = 2, x3 = 3)

R

(0, 1) = i

Definition. The complex numbers, written C, consists of R2 (The set of all ordered pairs (a, b)
with operations + and · defined by:

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (ac− bd, ad+ bc)

Can view R as contained in C by identifying a ∈ R with (a, 0) ∈ C.

Note. (a, 0) + (b, 0) = (a+ b, 0) and (a, 0) · (b, 0) = (ab, 0)

Let i = (0, 1). Then i2 = (0, 1)(0, 1) = (−1, 0) = −1

Note. Every z ∈ C is of the form a+ bi, where a, b ∈ R
Indeed (a, b) = a(1, 0) + b(0, 1) = a+ biX
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Remarks.
(i) C obeys all our usual algebraic rules (rules 1 to 3 in definition of R - even ∀z 6= 0∃w s.t. zw = 1

Indeed, given z = a+ bi:
(a+ bi)(a− bi) = a2 + b2

So

(a+ bi)

(
a

a2 + b2
+

−b
a2 + b2

i

)
= 1X

Such a structure is called a field e.g. C,R,Q,Zp (p prime), NOT Z.
(ii) Amazing fact: every (non-zero) polynomial (even allowing coefficients in C) has a root in C.

This is the Fundamental Theorem of Algebra - proved in IB ‘Complex Analysis’.

3 Sets and Functions

Definition. A set is any (but: see later) collection of (mathematical) objects e.g. R,N, {1, 5, 9}, [0, 1]
Two sets with the same members are the same.
(i.e. ‘a set is determined by its members’):

If ∀x : x ∈ A ⇐⇒ x ∈ B then A = B.
(Write x ∈ A if x is a member of A, x 6∈ A is not).
e.g. {1, 3, 7} = {1, 7, 3} (“order not important”)
and {3, 4, 4, 6} = {3, 4, 6} (“no multiple membership”)

3.1 New sets from old
3.1.1 Subsets

Given a set A and property P (x), can form {x ∈ A : P (x)}: the subset of all members with property
P (‘subset selection’).
e.g. {x ∈ N : x is prime }

Definition. B is a subset of A if ∀x : x ∈ B =⇒ x ∈ A.
Written B ⊂ A or B ⊆ A.
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Can visualise as:
A

B

Have A = B ⇐⇒ A ⊆ B,B ⊆ A

3.2 Unions and Intersections

Definition. Given sets A and B, can form their union A ∪B = {x : x ∈ A or x ∈ B}
And their intersection A ∩B = {x : x ∈ A and x ∈ B}

Can visualise as:

A B

A ∩B

A B

A ∪B

Definition. Say A and B are disjoint if A∩B = ∅ (“The empty set” or “the set with no elements”)

Can visualise as:
A B
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Note. Could view intersection as a special case of subset selection: A ∩B = {x ∈ A : x ∈ B}

Can visualise as:

A B

A\B

Definition. Similarly, have the set difference A\B = {x ∈ A :6∈ B} (“A minus B”)

Note. ∪,∩ are commutative and associative.
Also ∪ distributive over ∩ : A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
And ∩ distributive over ∪ : A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Claim. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Proof.
LHS ⊆ RHS: Given x ∈ A ∩ (b ∪ C):

Have x ∈ A, and also x ∈ B or x ∈ C.
If x ∈ B: Have x ∈ A, x ∈ B, so x ∈ A ∩B, so x ∈ RHS X
If x ∈ C: Have x ∈ A, x ∈ C, so x ∈ A ∩ C, so x ∈ RHS XX

RHS ⊆ LHS: Given x ∈ (A ∩B) ∪ (A ∩ C):
Have x ∈ A ∩B or x ∈ A ∩ C.
If x ∈ A ∩B: Have x ∈ A, x ∈ B ∪ C, so x ∈ RHS X
If x ∈ A ∩ C: Have x ∈ A, x ∈ B ∪ C, so x ∈ RHS XXX

Can also have bigger unions
e.g. if An = {n2, n3}, each n ∈ N, then A1 ∪A2 ∪ · · · = {x ∈ N : x is a square or a cube}.
Can write this as

∞⋃
n=1

An or
⋃
n∈N

An. (N is the ‘index set’)

Warning.
⋃
n∈N

An means {x : x ∈ An, some n}
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In general, given a set I and sets Ai : i ∈ I, can form⋃
i∈I

Ai = {x : x ∈ Ai, some i ∈ I}⋂
i∈I

Ai = {x : x ∈ Ai, ∀i ∈ I} (only for i 6= ∅ (see later))

3.3 Ordered Pairs

For any a, b, can form the ordered pair (a, b)
- key point being that (a, b) = (c, d) ⇐⇒ a = c and b = d.
For sets A and B, can form their product (“A cross B”) A×B = {(a, b) : a ∈ A, b ∈ B}
eg. can view R2 = R× R as a plane:

R

(2, 3)

Similarly, could form A3 = all ‘ordered triples’ from A, etc.

Note. If we wished, could define (a, b) = {{a}, {a, b}} and can check ‘key point’ above.

3.4 Power Set

Definition. For any set X, can form the power set P(X), consisting of all subsets of X:

P(X) = {Y : Y ⊆ X}

e.g. If X = {1, 2} then P(X) = {∅, {1}, {2}, {1, 2}}

Warning. For a set A, can form {x ∈ A : p(x)}.
CANNOT form {x : p(x)}
Indeed, if we could, then consider {x : x 6∈ x} = X, say.
Do we have X ∈ X?
If yes: then X 6∈ X by def. of X
If no: have X ∈ X by def. of X (called Russell’s Paradox).
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Similarly, there is no ‘universal’ set Y meaning ∀x : x ∈ Y .
Otherwise, could form X above by subset selection: X = {x ∈ Y : x 6∈ x}

Moral. To guarantee that a given set exists, it should be obtained in some way (e.g. our ‘new sets
from old’ rule) from known sets (e.g. N,R).

3.5 Finite Sets

Write N0 = N ∪ {0} - so N0 = {0, 1, 2, 3, . . . }.
For n ∈ N0, say that set A has size n if can write A = {a1, a2, . . . , an} with the ai distinct.
e.g. {1, 3, 7} has size 3
∅ has size 0.
Say A finite if ∃n ∈ N0 s.t. A has size n, infinite otherwise.

Note. A cannot have size n and size m, for n 6= m.
Indeed suppose A has size n and size m, where n,m > 0.
then, removing an element, we obtain a set of size n − 1 and size m − 1 - done by induction on
max(m,n).

Prop 3.1. A set of size n has exactly 2n subsets.

Proof (1st). May assume our set is {1, . . . , n}

1 2 3
. . .

n

To specify a subset S, we must say if 1 ∈ S or 1 6∈ S. Then if 2 ∈ S or 2 6∈ S, and so on.
So # choices for S = 2× 2× · · · × 2 = 2n (each ‘2’ comes from if k ∈ S)

Proof (2nd). Induction on n : n = 0 X
Given n > 0 :
For T ⊆ {1, 2, . . . , n− 1}, how many S ⊆ {1, . . . , n} have S ∩ {1, . . . , n− 1} = T
Exactly 2: T and T ∪ {n}
Hence, # subsets of {1, . . . , n} = 2 ·# subsets of {1, . . . , n− 1}
So done by induction.

Remark. Could view 2nd proof as a ‘more formal version’ of 1st proof .
If A has size n, write |A| = n (‘size of A’ or ‘mod A’)
So prop 1 says: |A| = n =⇒ |P(A)| = 2n.
Can also say that A is an n-set.
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3.6 Binomial Coefficients

Definition. For n ∈ N0 and 0 ≤ k ≤ n, write
(
n
k

)
[‘n choose k’ ] for the number of subsets of an

n-set that are of size k:(
n
k

)
= |{S ⊆ {1, 2, . . . , n} : |S| = k}|

e.g. 2-sets in a 4-set {1, 2, 3, 4} : {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4} So
(
4
2

)
= 6

Note.
(
n
0

)
= 1,

(
n
n

)
= 1,

(
n
1

)
= n (n > 0)

Also,
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
n

)
= 2n

Since each side counts the number of subsets of {1, . . . , n}

Also:
(i)
(
n
k

)
=
(
n

n−k
)
∀n ∈ N0, 0 ≤ k ≤ n e.g.

(
8
3

)
=
(
8
5

)
Indeed specifying which k members to prick same as specifying which n − k members not to
pick.

(ii)
(
n
k

)
=
(
n−1
k−1
)
+
(
n−1
k

)
∀n ≥ 1, 0 < k < n - e.g.

(
7
3

)
=
(
6
2

)
+
(
6
3

)
Indeed, # of k-subsets of {1, . . . , n} without n is

(
n−1
k

)
(pick our k from 1, 2, . . . , n− 1

and # of k-subsets of {1, . . . , n} with n is
(
n−1
k−1
)
(pick remaining k − 1 from 1, 2, . . . , n− 1

Hence
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)

Hence Pascal’s Triangle: In each row, we start and end with 1, and each other term is the sum
of two terms above it.

1
↙↘

1 1
↙↘ ↙↘

1 2 1
↙↘ ↙↘ ↙↘

1 3 3 1
↙↘ ↙↘ ↙↘ ↙↘
1 4 6 4 1
So if n-th row is a0, a1, . . . , an then ak =

(
n
k

)
(induction on n) e.g.

(
6
3

)
= 20
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Prop 3.2. (
n

k

)
=
n(n− 1)(n− 2) . . . (n− k + 1)

k!

Proof. # ways to name a k-set = n(n− 1)(n− 2) . . . (n− k+1) (naming an element, naming
different element, etc.)
# times a given k-set named = l(k − 1)(k − 2) . . . 1 (naming an element, naming different
element, etc.)

n

k

Hence, # k-sets in {1, . . . , n}isn(n−1)(n−2)...(n−k+1)
k!

Notes.
(i) Hence e.g.

(
n
2

)
= n(n−1)

2

(ii) Can also write
(
n
k

)
= n!

k!(n−k)!

(iii) From our formula, n3 ∼
n3

6 for large n.

Theorem 3.3 (Binomial Theorem).

(a+ b)n =

(
n

0

)
an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + · · ·+

(
n

n

)
bn ∀a, b ∈ R, n ∈ N

Proof. When we expand (a + b)n = (a + b)(a + b) . . . (a + b), we obtain terms of the form
akbn−k (0 ≤ k ≤ n)
# of terms akbn−k =

(
n
k

)
(must specify k brackets where we use the ‘a’).

So (a+ b)n =
n∑
k=0

(
n
k

)
akbn−k =

n∑
k=0

(
n

n−k
)
akbn−k

e.g. (1 + x)n = 1 + nx+ n(n−1)
2 x2 +

(
n
3

)
x3 + · · ·+ nxn−1 + xn

So, for x small, a good approximation to (1 + x)n is 1 + nx (e.g. 1.000018 ∼ 1.0008),
And a better approximation is 1 + nx+ n(n−1)

2 x2
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What can we say about relationships between sizes of unions and intersections (of finite sets)?
For example, |A ∪B| = |A|+ |B| − |A ∩B| (subtract as counted twice)

A B

Count Once

And |A ∪B ∪ C = |A| = |B|+ |C| − |A ∩B| − |B ∩ C| − |C ∩A|+ |A ∩B ∩ C|

A B

C

Theorem 3.4 (Inclusion-Exclusion Theorem). Let S1, . . . , Sn be finite sets.
Then |S1 ∪ · · · ∪ Sn| =

∑
|A|=1

|SA| −
∑
|A|=2

|SA|+
∑
|A|=3

|SA| − · · ·+ (−1)n+1
∑
|A|=n

|SA|

Where SA =
⋂
i∈A

Si and ‘
∑
|A|=k

|’ is taken over all A ⊆ {1, 2, . . . , n} of size k.

Proof. Let x ∈ LHS. Say x ∈ Si for k of the Si.

Claim. x counted once on RHS

Proof. #A, |A| = 1, with x ∈ SA = k
#A, |A| = 2, with x ∈ SA =

(
k
2

)
(must choose 2 of the i with x ∈ Si

In general, #A, |A| = r, with x ∈ SA =
(
k
r

)
So # times x counted on RHS = k −

(
k
2

)
+
(
k
3

)
− · · ·+ (−1)k+1

(
k
k

)
But (1 + (−1))k = 1−

(
k
1

)
+
(
k
2

)
−
(
k
3

)
− · · ·+ (−1)k

(
k
k

)
(Binomial thm),

So # times x counted on RHS = 1− (1 + (−1))k) = 1 (k ≥ 1)X
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3.7 Functions

Definition. For sets A and B, a function from A to B is a rule that assigns, to each x ∈ A, a
unique point f(x) ∈ B.
More precisely, a function from A to B is a set f ⊆ A×B s.t. ∀x ∈ A∃ unique y ∈ B with (x, y) ∈ f .
(If (x, y) ∈ f , can write f(x) = y)

3.7.1 Examples

(i) The function f(x) = x2 from R to R.
Can say: the function f : R→ R given by f(x) = x2

or: the function f : R→ R x 7→ x2

(ii) NOT f : R→ R given by f(x) = 1
x as f(0) undefined

(iii) NOT f(x) = ±
√
|x| as f(2) =

√
2 and −

√
2

(iv) f : R→ R given by f(x) =

{
1, if x rational,
0, if x not

(v) A = {1, 2, 3, 4, 5}, B = {1, 2, 3, 4} and f : A→ B given by:

5

4

3

2

1

4

3

2

1

(vi)

7

2

1

3

2

1
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(vii)

(viii)

Definition. Say f : A→ B injective if ∀a, a′ ∈ A : a 6= a′ =⇒ f(a) 6= f(a′)
Equivalently, f(a) = f(a′) =⇒ a = a′.

e.g.
Function Injective?

5 x since f(2) = f(5)
6 X
7 x
8 x

Definition. Say f : A→ B surjective if ∀b ∈ B ∃a ∈ A s.t. f(a) = b.
“Everything in B is hit.”
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e.g.
Function Surjective?

5 x since no a ∈ A has f(a) = f(2)
6 X
7 x
8 X

Definition. Say f : A→ B bijective if f injective and surjective.
“Everything hit exactly once” or “f pairs up A and B”

e.g.
6 above, or f : R→ R given by f(x) = x3.

Definition. For f : A→ B, A is the domain and B is the range.
The image of f is {f(a) : a ∈ A} = {b ∈ B : f(a) = b, some a ∈ A}. (‘Everything that is hit’)

For f : R→ R, image of f is {y ∈ R : y ≥ 0}

Warning. When specifying a function, must say what domain, range are
e.g. “is the function f(x) = x2 injective?” (meaningless)
For example, f : N→ N given by x 7→ x2 is but g : Z→ Z given by x 7→ x2 isn’t.

For A,B finite:
(i) No surjection A→ B if |B| > |A|
(ii) No injection A→ B if |A| > |B|
(iii) For f : A→ A, f injective =⇒ f surjective (and vice versa).
(iv) No bijection from A to any proper subset of A.

But for infinite sets:
(i) Define f0 : N→ N given by x 7→ x+ 1 then f0 injective but not surjective.

(ii) Define f1 : N→ N given by x 7→

{
x− 1, if x 6= 1,

1, if x = 1
then f1 surjective but not injective.

(iii) Define f0 : N→ N\{1} given by x 7→ x+ 1 then g a bijection from N to a proper subset of N.
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3.7.2 More Examples of Functions

(i) For any set X, have 1X : X → X given by x 7→ x, the identity function on X.
(ii) For any set X, and A ⊆ X, have indicator function or characteristic function χA : X → {0, 1}

given by x 7→

{
1, if x ∈ A,
0, if x 6∈ A

And some we have met before:
(iii) A sequence x1, x2, . . . of reals is a function N→ R, n 7→ xn.
(iv) The operation + on N is a function N2 → N, (a, b) 7→ a+ b
(v) A set X has size n ⇐⇒ ∃ bijection {1, 2, 3, . . . , n} → X, i 7→ ai (X = {a1, . . . , an})

3.7.3 Composition of Functions

Definition. Given f : A → B and g : B → C, the composition g ◦ f : A → C is defined by
(g ◦ f)(a) = g(f(a)), a ∈ A

e.g. if f : R→ R, x 7→ 2x and g : R→ R, x 7→ x+ 1.
Then (f ◦ g)(x) = f(g(x)) = f(x+ 1) = 2(x+ 1)
And (g ◦ f)(x) = g(f(x)) = g(2x) = 2x+ 1
So, in general ◦ not commutative - in our example, f ◦ g 6= g ◦ f
(e.g. since (f ◦ g)(1) 6= (g ◦ f)(1))

However, ◦ is associative: given f : A→ B, g : B → C, h : C → D, have h ◦ (g ◦ f) = (h ◦ g) ◦ f .
Indeed, for any x ∈ A:
(h ◦ (g ◦ f))(x) = h((g ◦ f(x))) = h(g(f(x)))
((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x)))
Thus (h ◦ (g ◦ f))(x) = ((h ◦ g) ◦ f)(x)∀x ∈ A, so h ◦ (g ◦ f) = (h ◦ g) ◦ f

Definition. Say f : A→ B is invertible if ∃g : B → A s.t. g ◦ f = 1A and f ◦ g = 1B .

e.g. f : R→ R, x 7→ 2x+ 1 and g : R→ R, x 7→ x−1
2 :

g ◦ f : ∀x ∈ R : (g ◦ f)(x) = g(f(x)) = g(2x+ 1) = x so g ◦ f = 1RX
f ◦ g : ∀x ∈ R : (f ◦ g)(x) = f(g(x)) = f(2x+ 1) = x so f ◦ g = 1RX
So f invertible (“with inverse g”)

Warning. For f0, f1 from above: f0 : N→ N, x 7→ x+ 1. f1 : N→ N, x 7→

{
x− 1, if x 6= 1,

1, if x = 1

Have f1 ◦ f0 = 1N but f0 ◦ f1 6= 1N as f0(f1(1)) 6= 1.
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Claim. f : A→ B invertible ⇐⇒ f bijective.

Proof. =⇒ : say g inverse to f . surj: ∀b ∈ B, b = f(g(b))X
inj: ∀a, a′ ∈ A : f(a) = f(a′) =⇒ gf(a) = gf(a′) =⇒ a = a′XX

⇐= : Let g(b) = the unique a ∈ A with f(a) = b, each b ∈ B X

3.8 Equivalence Relation

Definition. A relation on a set X is a subset R of X ×X. Usually write aRb for a, b ∈ R.

e.g.
(i) on N, aRb if a ≡ b (5)
(ii) on N, aRb if a|b
(iii) on N, aRb if a 6= b
(iv) on N, aRb if a = b = ±1
(v) on N, aRb if |a− b| ≤ 2
(vi) on N, aRb if either a, b ≤ 6 or a, b > 6
Some properties a relation might have:

Definition. R refexive if ∀x ∈ X : xRx

(i) Xis since x ≡ x (5) ∀x ∈ N
(ii) X
(iii) x
(iv) x
(v) X
(vi) X

Definition. R symmetric if ∀x, y ∈ X : xRy =⇒ yRx

(i) X
(ii) x
(iii) X(since a 6= b =⇒ b 6= a)
(iv) X
(v) X
(vi) X

Definition. R transitive if ∀x, y, z ∈ X : xRy, yRz =⇒ xRz
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e.g.
(i) X
(ii) X
(iii) x
(iv) x
(v) x
(vi) X

Definition. R is an equivalence relation if it is reflexive, symmetric and transitive.

e.g. 1 & 6 above. Also, on N xRy if x = y

Definition. {Ci : i ∈ I} is a partition of a set X if each Ci non-empty, and they are (pairwise)
disjoint and

⋃
i∈I

Ci = X

a

c

b

Then aRb if ∃i s.t. a, b ∈ Ci is an equivalence relation on X.
Aim: All equivalence relations are of this form.

Definition. For an equivalence relation R on a set X, and x ∈ X, the equivalence class of x is:
[x] = {y ∈ X : yRx}, same as {y ∈ X : xRy}
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e.g. in example 1, [2] = {y ∈ N : y ≡ 2 (5)}, so [2] = [7] so all the equivalence classes are (5 of them):

All x ≡ 0

All x ≡ 1

All x ≡ 2

All x ≡ 3

All x ≡ 4

Prop 3.5. Let R be an equivalence relation on a set X. Then the equivalence classes of R partition
X.

Proof. Each [x] non-empty (x ∈ [x]),
And

⋃
x∈X

[x] = X (x ∈ X ∀x ∈ [x])

So just need to show that equivalence classes disjoint (or equal).
Given x, y with [x] ∩ [y] 6= ∅, need [x] = [y]:
Have z ∈ [x] ∩ [y], some z.
So zRx, zRy whence xRy.
thus ∀t, tRx =⇒ tRy (transitivity).
∀t, tRx =⇒ tRy (transitivity).
So [x] = [y] X
[Example: is there an equivalence relation on N with 3 equiv classes: 2 of size ∞, 1 finite? ]

Definition. Given equivalence relation R ona set X, the quotient of x by R is X/R = {[x] : x ∈ X}
(“the set of countries”)

e.g. in example 1, X/R has size 5.

Definition. The map q : X → X/R, x 7→ [x], is the quotient map or the projection map.

Another example on Z× N, define (a, b)R(c, d) if ad = bc.
Easy to check this is an equivalence relation.
e.g. [(1, 2)] = {(1, 2), (2, 4), (3, 6) . . . }
So could regard Z× N/R as a copy of Q. [(a, b)]↔ a

b
Thus q : Z× N→ Z× N/R would map (a, b) to a

b .
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4 Countability

Remark. Looking at ‘sizes’ of infinite sets e.g. N ‘looks smaller’ than Z,Q,R.

Definition. Say a set X is countable if X finite or bijects with N (∃ bijection f : N→ X.
Equivalently, X countable ⇐⇒ can list X as a1, a2, a3, . . . (might terminate)

(i) Any finite set
(ii) N
(iii) Z
Can list Z as 0, 1,−1, 2,−2, 3,−3, . . .

i.e. Z is listed as a1, a2, a3, . . . , where an =

{
n
2 if n even
−n−12 if n odd

So ‘Z is same size as N’ (they biject)
Are all sets countable?

Prop 4.1. A set X is countable ⇐⇒ ∃ injection f : X → N

Proof. =⇒ : X(If X finite then X injects into N, and if X bijects with N then certainly X
injects into N)

⇐= : May assume X infinite (X finite =⇒ X countable)
Have X bijects with its image f(X) ({f(x) : x ∈ X} under f),
So enough to show f(X) countable.
Set: a1 = min f(X) and a2 = min f(X)\{a1}
and in general an = min(f(X)\{a1, a2, . . . , an−1})
Then f(X) = {a1, a2, a3, . . . } - each a ∈ f(X) is an, some n, because a = an, some n ≤ a so
f(X) countable X
Thus can view countable as ‘at most as large as N’
e.g. any subset of a countable set is countable.

Warning. In R, let X = { 12 ,
2
3 ,

3
4 , . . . } ∪ {1}

Then X countable as can list as 1, 12 ,
2
3 ,

3
4 , . . .

But if we counted by ‘least element’ etc. (as in proof of prop 1)
Then:

b1 = 1/2

b2 = 2/3

b3 = 3/4

...

So 1 would not be on our list!
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Theorem 4.2. N× N is countable.

N

N

1 2

3

4

5

6

7

8

9

10

Proof. Define a1 = (1, 1),

and an inductively by writing an−1 = (p, q) : an =

{
(p− 1, q + 1) if p 6= 1

(1, p+ q) if p = 1

This does hit every point (x+ y) ∈ N× N (e.g. induction on x+ y), so have listed N× N.

Proof. Define f : N× N→ N
(x, y) 7→ 2x3y.
Then f injective.

The same proof shows:

Theorem 4.2 (More general). Let A1, A2, A3, . . . be countable sets. Then
⋃
n∈N

An = A1∪A2∪A3∪. . .

is countable.
“A countable union of countable sets is countable”

Proof. For each i, have:
Ai countable,
So can list Ai as ai1, ai2, ai3, . . . (might terminate)
Define f :

⋃
n∈N

An → N

x 7→ 2i3j where x = aij , least such i.
Then f injective.
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Example. (i) Q is countable: Q = Z ∪ 1
2Z ∪

1
3Z ∪ . . . ,

and each 1
nZ countable (bijects with Z), so Q countable by Theorem 2.

(ii) The set A of algebraic numbers is countable.
Indeed enough to show the set of all integer polynomials is countable (as then A is a countable
union of finite sets (using Theorem 2).
Thus enough to show that, for each d, the set of all integer polys of d is countable (again using
Theorem 2).
But this set injects onto Zd+1 (adX

d + · · ·+ a1X + a0) 7→ (ad, . . . , a1, a0)),
And Zn countable ∀n (Z × Z countable by Theorem 2, so (Z × Z) × Z countable by Theorem
2, etc.) X

Definition. A set X is uncountable if it is not countable.

Theorem 4.3. R is uncountable.

Proof. We’ll show (0, 1) uncountable.
Given r1, r2, . . . in (0, 1), our task: find s ∈ (0, 1) not on that list (∀n : S 6= rn)
For each rn, have decimal expansion rn = 0.rn1rn2rn3 . . .

r1 =0.r11r12r13 . . .

r2 =0.r21r22r23 . . .

r3 =0.r31r32r33 . . .

...
...

Define s = 0.s1s2s3 . . . by:

s1 =

{
5 if r11 6= 5

6 if r11 = 5

s2 =

{
5 if r22 6= 5

6 if r22 = 5

And in general sn =

{
5 if rnn 6= 5

6 if rnn = 5

Then s not on our list (s 6= rn as they differ in decimal digit n.)

Remarks.
(i) Called A diagonal argument, or Cantor’s diagonal argument.
(ii) R is uncountable. A countable, so ∃ transcendental number.

Indeed, ‘most’ numbers are transcendental: R\A uncountable. (because: if R\A count-
able then R = A ∪ R\A would be countable ).

Another uncountable set
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Theorem 4.4. P(N) is uncountable.

Proof.

To ensure S 6= S1:
Take 1 ∈ S if 1 6∈ S1,
1 6∈ S if 1 ∈ S1

To ensure S 6= S1:
Take 2 ∈ S if 2 6∈ S1,
2 6∈ S if 2 ∈ S1
...

Suppose N listed as S1, S2, S3, . . .
Let S = {n ∈ N : n 6∈ Sn}
Then S not on our list,
Since ∀n : S 6= Sn (S, Sn differ at element n).

Remarks.
(i) This is a diagonal argument - really the same as our proof that R uncountable.
(ii) Alternatively, just inject (0, 1) into P(N):

Given x ∈ (0, 1), write x in binary as 0.x1x2x3 . . . (not ending with all-1s) and put
f(x) = {n : xn = 1}
(0.111000000 · · · ↔ {1, 2, 3})
(0.10101010 · · · ↔ set of odds)

In fact, our proof of theorem 4 shows:

Theorem 4.5. For any set X: there is no bijection(in fact, no surjection) from X to P(X)
e.g. P(R) does not biject with R

Proof. Given any function f : X → P(X), we’ll show f not surjective.
Let S = {x ∈ X : x 6∈ f(x)}.
Then S does not belong to the image of f, since ∀x have S 6= f(x) (S, f(x) differ at element
x).

Remarks.
(i) similar to Russell’s Paradox.
(ii) Gives another proof that there is no universal set V - as then would have P(V ) ⊆ V ,

whence certainly V would surject to P(v)
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Claim. Let Ai : i ∈ I be a family of open intervals, pairwise disjoint
This family is countable.

R( ) ( )( )( ) ( )

Warning. No ‘next interval’
R( ). . . ()( )( )( )

Proof (1st). Each Ai contains a rational,
And Q countable,
So the family is countable. X

Proof (2nd). {i ∈ I : Ai has length ≥ 1} countable (injects into Z)
{i ∈ I : Ai has length ≥ 1

2} countable (injects into Z)
and ∀n : {i ∈ I : Ai has length ≥ 1

n} countable (injects into Z)
So done - countable union of countable sets. X

Moral. To show X uncountable:
(i) Run diagonal argument on X
(ii) Inject favourite uncountable set into X

To show X countable:
(i) List it (usually fiddly)
(ii) Inject into N
(iii) Use ‘countable union of countable sets is countable’ (usually best)
(iv) If in/ near R, consider Q

Intuitively, think of ‘A bijects with B’ as saying that A and B “have the same size”.
And ‘A injects into B’ as saying that “A is at most as large as B”
And A ‘surjects to B’ as saying that “A is at least as large as B” (for B 6= ∅)

For these to make sense, we’d want that (for A,B 6= ∅):

Claim. ∃ injection f : A→ B ⇐⇒ ∃ surjection g : B → A.

Proof. =⇒ : fix a0 ∈ A.

Define g : B → A, b 7→

{
The unique a ∈ A with f(a) = b, if it exists
a0 if not

Then g surjective.

⇐= : For each a ∈ A, have some a′ ∈ B with g(a′) = a (as g surjective)
Let f(a) = a′, each a ∈ A.
Then f injective. X

We would also need that if “A is at most as large as B” and “B is at most as large as A” then A and
B “have the same size”.
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Theorem 4.6 (Schröder-Bernstein). If f : A → B and g : B → A are injections then ∃ bijection
h : A→ B.

Proof. For a ∈ A, write g−1(a) for the b ∈ B (if it exists) such that g(b) = a.
Similarly for f−1(b), where b ∈ B.
The ancestor sequence of a ∈ A is:
g−1(a), f−1(g−1(a)), g−1(f−1(g−1(a))), . . . (may terminate)
Similarly fro b ∈ B:
Let:

A0 = {a ∈ A : ancestor sequence stops at even time (i.e. stops in A)}
A1 = {a ∈ A : ancestor sequence stops at odd time (i.e. stops in B)}
A∞ = {a ∈ A : ancestor sequence does not stop}

(0 is even: so if a ∈ A has no g−1(a), then a ∈ A0)
Similarly for B0, B1, B∞

A0

A1

A∞

B0

B1

B∞

f g

f

Then f bijects A0 with B1 (noting that every b ∈ B, is f(a), some a ∈ A0).
And similarly g bijects B0 with A1.
And f (or g) bijects A∞ with B∞.

So the function h : A→ B, a 7→


f(a) if a ∈ A0

g−1(a) if a ∈ A1

f(a) if a ∈ A∞
is a bijection.

Example:
Do [0, 1] and [0, 1] ∪ [2, 3] biject?

−3 −2 −1 0 1 2 3

Have injection f : [0, 1]→ [0, 1] ∪ [2, 3] e.g. f(x) = x
and have injection f : [0, 1] ∪ [2, 3]→ [0, 1] e.g. f(x) = x

3
So by Schröder-Bernstein they biject.
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Would also be nice to have that, for any sets A and B, either A injects into B or B injects into A.
This is true, but harder - see part II ‘Set Theory and Logic’.

Have N,P(N),PP(N), . . . : does every X inject into one of those?
No, e.g. N ∪ P(N) ∪ PP(N) ∪ . . .
Then X ′ = X ∪ P(X) ∪ PP(X) ∪ . . .
Then X ′′ = X ′ ∪ P(X ′) ∪ PP(X ′) ∪ . . .
And so on.
Then Y = X ∪X ′ ∪X ′′ ∪X ′′′ ∪ . . .
“and can keep going”
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