Probability

Hasan Baig

Lent 2021

Contents

[1__Probability Spaces|

1.1 xamples of Probability Spaces| . . . . . . . . ... o
[1.2  Combinatorial Analysis| . . . . . . . . . .. e
1.3 Stirhing’s Formula]. . . . . . . ..o
|I1.4  Properties of Probability Measures| . . . . . .. .. ... ... ... ... ...
[1.4.1 Countable subadditivity] . . . .. .. ... ... ... ... 0 o0
1.4.2 ontinuity of Probability Measures|. . . . . . . .. .. ... .. ... ... ...,

[1.5.1 Bonferroni Inequalities|. . . . . . . ... ..
[1.5.2  Counting using Inclusion-Exclusion|. . . . . ... .. ... 0000000
11.5.3  Counting Derangements| . . . . . . . . . . . .. o o
[1.6 Independence| . . . . . . . . ...
1. onditional Probabilityl . . . . . . . . o o o
1.8 Law of Total Probability|. . . . . . .. . .. .
1.9 Bayes” Formula] . . . . . . . . e
I1.10 Simpson’s Paradox| . . . . . . . . . e

V) Rand Variables

2.1  Definitions and Examples| . . . . . . . . ..o
2.2 Expectation| . . . . . . . . . L
2.2.1 Properties of Expectation| . . . . . . . . ... ..
2.3 Another proof of the inclusion-exclusion formula . . . .. .. ... ... ... . ... .....
[2.3.1  Properties of Indicator Random Variables| . . . . . . ... .. ... .. ...
2.4 Terminologyl. . . . . . . . e
2.5 Inequalities| . . . . . . . e
2.5.1 Markov’s Inequality] . . . . .. ... ... o
2.5.2 ebyshev’s INeqUAalItY]. . . . « o v v v v e
2.5.3  Cauchy-Schwarz Inequality] . . . . . . . .. .. o
2.5.4 Cases of Equality]. . . . . . . . .
2.5.5  Jensen’s Inequality| . . . . . . . ..o
2.0.6  Cases of Equality] . . . . . . . . . .
2.5.7  AM-GM Inequality|. . . . . . . . . ..
2.6 Conditional expectation| . . . . . . . . . .. L
2.6.1 Law of Total Expectation| . . . . . . . . .. ... . .

12.6.3  Daistribution of the sum of independent r.v.’s| . . . . . . .. .. ... ... ...
[2.6.4 Properties of Conditional kixpectation| . . . . . ... ... ... ... ..........
2.7.1  Expected time to absorption| . . . . . . .. ... L Lo
2.8 Probability Generating Functions| . . . . . . . . ... oo oo oo

S Ot w W

10
11
12
13
13
14
15
15
16
18



2.9.1  Another Proot Using Conditional Expectation|. . . . . . . .. ... ... ... ... .. 52

[2.10 Branching Processes| . . . . . . . . . . . 52
[2.10.1 Extinction Probability| . . . . . . . . ..o 55

B Continuous Random Variables| 59
3.1 Definitions and Properties| . . . . . . . . .. oL 59
8.2  Expectation| . . . . . ... L e 63
3.3 Exponential as a [imit of geometrics| . . . . . .. ... Lo oo 65
3.4 Multivariate Density Functions| . . . . . . . . . . ... o o 70
3.5 Density of the Sum of Independent r.v.’sf. . . . . . . ... .o oo 72
3.6 Conditional Density] . . . . . . . . .. . e 73
8.7 Law of Total Probability|. . . . . . . . . .. o 73
8.8 Transtormation of a multidimensional rov. . . . . . . . ..o oo 74
[3.9  Order Statistics for a Random Sample| . . . . . ... ... ... ... 000000 75
[3.10 Moment Generating Functions (mgfs)l . ... 76
.11 Multivariate Moment Generating Function|. . . . . . . .. ... .. oo o000 79
B.12 Limit Theorems for Sums of ud rov’sl. . . . . . . oo oo oo 80
B.13 Central limit theorem| . . . . . . . . . . o o e 84
3.14 Applications|. . . . . . . . L e 86
3.15 Sampling Error via the CLT|. . . . . . . . . . . . o 87
3.16 Buffon’s Needle| . . . . . . . . . . o 0o 88
B.17 Bertrand’s Paradox|. . . . . . . . . . .. 90
B.18 Multidimensional Gaussian r.v.’sl . . . . . . ..o 92
BI9 Bivariate Gaussianl . . . . . . . . ..o e 97
3.20 Multivariate CLT (non-examinable)l . . . . . . .. ... ... o 99
3.21 Rejection Sampling] . . . . v v v v v v e e e e e e e 100




1 Probability Spaces

Definition. Suppose € is a set and F is a collection of subsets of €2.
We call F a o-algebra if:
(i) QeF
(ii) if A € F, then AC € F
(iii) for any countable collection (A,,),>1 with A, € F Vn, we must also have that |J A, € F

Definition. Suppose F is a o-algebra on Q. A function P : F — [0,1] is called a probability
measure if

(i) P(Q) =1

(ii) for any countable disjoint collection (A, ),>1 in F with 4,, € F Vn, we have

IP>( U An) = ZP(An)

n>1 n>1

We call (Q, F,P) a probability space. € is the sample space
F a o-algebra
P the probability measure

Note. We say P(A) is the probability of A

Remark. When Q2 countable, we take F to be all subsets of Q2

Definition. The elements of ) are called outcomes and the elements of F are called events.

Remark. We talk about probability of events and not outcomes.
Pick a uniform number from [0, 1]

Properties of P (immediate from the definition):
P(A%) =1 - P(A)

P(@)=0

if A C B, then P(4) < P(B)

P(AUB) =P(A) +P(B) - P(AN B)

1.1 Examples of Probability Spaces

Example. Rolling a fair die

0 ={1,2,...,6}, F = all subsets of Q.

P({w}) = §Vw € Q and if A C Q, then P(A) = %
(all outcomes equally likely)




Example. Equally likely outcomes
Let Q be a finite set, Q = {w1,...,w,}, F = all subsets.

Define P : F — [0, 1] byIP(A):%

In classical probability, this models picking a random element of (2.
P({w}) = ﬁ‘v’w €N

Example. Picking balls from a bag

Suppose we have n balls with n labels from {1,...,n} indistinguishable by touch.

Pick & < n balls at random (all outcomes equally likely) without replacement.
Take @ ={AC{1,...,n}:|A| -k} |Q = (})
P({w}) = -

Example. Deck of cards
Take a well-shuffled (all possible permutations equally likely) deck of 52 cards.

) = {all permutations of 52 cards} |Q| = 52!

!
P(top 2 cards are aces) = £X2X500 — 1

Example. Largest digit

Consider a string of n random digits from 0, ...,9 (every digit can be any from 0, ...

Q={0,1,...,9}" || = 10™

Ay, = {no digit exceeds k} and By, = {largest digit is k}
P(B) = &
Notice By = A\ Ar_1

|Ak| = (k == 1)n — |Bk| = (k—‘r 1)n — k"

So P(By) = (1=K




Example. Birthday problem

There are n people. What is the probability that at least 2 of these share the same birthday.
Assume nobody is born on 29/02. Also assume each birthday is equally likely. So Q = {1,...,365}"
F = all subsets.

Since all outcomes are equally likely, we take

A = {at least 2 people share same birthday}
A® = {all n birthdays are different}.
Since P(A) = 1 — P(AY), it suffices to calculate P(A)

A9 365 x 364 x -+ x (365 —n+1)

P(A%) = =
(47) 1] 365"

And hence:
B 365 x 364 X -+ X (365 —n—+1)

P(A) =1
(4) 365™

Note. n =22 — P(A) = 0.476
n =23 = P(A4) =~ 0.507

1.2 Combinatorial Analysis

() finite set & suppose || = n.

k
Want to partition Q) into k disjoint subsets Q... with |Q;| =n; and > n; = n.
i=1
How many ways are there?
M = # of ways

(P (rm n—{(m - Fap1)) n!
B ni na Nk _TL1!'TL2! ~~~~~ ng!

n n!
Nyy...,NE nl'nZ'nk'

We write




Strictly increasing and increasing functions f = {1,...,k} — {1,...,n} is strictly increasing if
whenever z < y, then f(z) < f(y).
f is called increasing if whenever x < y, then f(x) < f(y).
e How many strictly increasing functions f = {1,...,k} — {1,...,n} exist?
Any such function is uniquely determined by its range which is a subset of {1,2,...,n} of size
k. There are (Z) such subsets, and hence (Z) strictly increasing
e How many increasing functions f = {1,...,k} — {1,...,n} exist?
Define a bijection

{f:{1,...;k} = {1,...,n}| increas.} to {g : {1,...,k} = {1,...,n+ k — 1}|strict. increas.}

Vf increasing, define g(i) = f(i) +¢ — 1. Then ¢ is strictly increasing and takes values in
{1,....,n+k—1}

So total number of increasing functions f = {1,...,k} — {1,...,n} is ("+,’:_1).

1.3 Stirling’s Formula

Notation. Let (a,) and (b,) be 2 sequences. We write:

. a
Ay, ~ by if = —1asn— oo
n




Theorem (Stirling).

n! ~n"V2mne™ " as n — o

Note. Weaker examinable statement proved below

Proof (non-examinable). Vf : twice differentiable, Va < b:

b
/f dz = fla) £ f(>(b a)—%/a(ac—a)(b—x)f”(x)dx

(can prove by doing IBP twice)
Take f(z) =logz, a=kand b=k +1

k+1 e -
/ log 2 dz = log k + log(k + 1) +1/ (@—k)(k+1-2)
k k

2 2 ;2
logk +log(k+1) 1 /1 ()(1 —x)
= - [ ————=dz
2 2 )y (z+k)?

Take the sum for £k =1,...,n — 1 of the equality above to get:

" _log((n —1)!) + log(n!) / z(1—x)
/1 logzdx = 5 Z x—l—k
z(1—x)

nlogn —n + 1 = log(n!) logn+za here we set a 1/1 dx
- = N — , W w ==/ ——
= s 2 T2 ), @t k)2

logn'—nlogn—n—i———i—l—Zak

n—1
n! =n"e "/nexp (1 — Z ak>
k=1

1z(1
Note that a, < 1 0 x(kzx) dz = &

n—1
So Y ar < co. We set A = exp <1— > ak>

k=1
Then:
n—1
=n"-e "VA- exp (Z ak>
k=1
———
—0
So we proved that
n!

— Aasn— oo

nte~"\/n
Which means n! ~ n™e™"/nA as n — co.
To finish the proof, need to show A = /27




Theorem (Continued).

Claim. A = /27 knowing that n! ~ n"w™"/n- A as n — oo

Proof.

22n.<2n>22n @) o an_ (20)n-V2n- 4.7 NG

n

n!-n! n"2—"\/ﬁ~A~n”-e—"-\/ﬁ~A:A\/ﬁ

Using a different method we will prove that

9-2n 2n N 1
n T
Which will then force A = /2w
ya
Consier I, = [, (cos§)™df, n > 0.
SOIOZEaIldllzl.

2
By integration by parts

n—1
I, = Iy o
So
2n — 1 2n—1)-(2n—3)...3-1 (2n)! T
Iy = ——1In 2= Iy = ———— .=
2n 2n-(2n —2)...2 ~~ 2’n-nl-n! 2

-2
Achieved by mutiplying numerator and denominator by the even terms 2n(2n — 2)...2.
So Ip, =272 (>")Z
In the same way we get

Ly o 242 L (o (20 !
" @2n+1)...3-1 2n+1 n
From I, = "T_l n_o we get:

In 31 asn— oo
n—2

Wantlfﬁﬁlasnﬁoo
Recall I,, = fog (cos )™ df. We see that I, is decreasing as a function of n.
Therefore

Iy, Iop—
L N

Iopnt1 = Iopga

And also
IZn > IZTL

Iopy1 = Ion—2

— 1

So 112” — 1 as n — oo, which means
2n41

R Gl

n

(@ G mm

2
2
— <22"(n>> g-(QnJrl)%lasn%oo

— 1

n

This is saying (272" - (2"))2 ~ m ~ L

n




Claim. Weaker statement of Stirling:

log(n!) ~ nlogn as n — oo

Proof. Define [,, = log(n!) =log2+ ...logn
For x € R, we write |z]: integer part of x.

log|lz| <logxz < log|z + 1]

Integrate from 1 to n

/longszg/ logxd:cg/ log|z + 1| dx
1 1 1

n—1 n n
Zlogkﬁ/ logmdeZIng
k=1 i

k=1
lp—1 <nlogn—n+1<I,

For all n we get

Divide through by nlogn to get:

ln

— 1 as n — ool
nlogn

— A=+v2rd

nlogn—n+1<I,<(n+1)log(n+1)—(n+1)+1

1.4 Properties of Probability Measures

Note. Have (2, F,P) probability space.
P: F — [0,1] is a probability measure if:
(i) P(Q) =1
(i) (Ap)n>1 disjoint
P(UA,) =Y P(A4,) countable additivity




1.4.1 Countable subadditivity

~

Claim. Let (A,),>1 be a sequence of events in F (4, € FVn)

Then . .
P (U An> <> P(4)

n=1

Proof. Define By = A; and B, = A,\(41U---UA,_1)Vn > 2.
Then (B,,)n>1 is a disjoint sequence of events in F and |J B2 = |J A,

n>1 n>1
By countable additivity for (By,):

But B, C A,,. So P(B,,) <P(4,)Vn.

Therefore:
JP’(UAn) :JP’(UBn) =Y P(B) <Y P4

n>1

1.4.2 Continuity of Probability Measures

Let (Ay,)n>1 be an increasing sequence on F, i.e. Vn A, € Fand A, C A,,11. Then P(A,,) < P(A,41).
So P(A,,) converges as n — oo.

Claim.
lim P(A,) =P(|_JAn)

n—oo
n

Proof. Set B; = A; and Vn > 2 B =A\(A1U---UA, 1)

ThenUBk—A andUBk—UAk
k=1 k=1
So P(A,) =P( U By) = Z P(Bx) — > P(By) as By, disjoint sequence of events.
Pl n—00 p
Remains to prove that

NE

P(By) = P (U An>

Since | ) By = kf:jl Ay, we get P An) = P(UBn) = Y P(B,)O

el
Il

Note. Similarly, if (A,) is a decreasing sequence in F, i.e. Vn A, € F and A, ;1 C A,, then

An)—>P<ﬂAn> as n — 0o

10



1.5 Inclusion-Exclusion Formula

Let A,B € F. Then P(AUB) =P(A) + P(B) —P(AN B)
Let C € F. Then P(AUBUC) = P(A)+P(B)+P(C)-P(ANB)-P(ANC)—-P(BNC)+P(ANBNC)

Claim. Let A4y,...,A, € F. then

- ). P4, NAy)

1<iy <iz<n

+ > P(4;,NA4,NA;)

1<i1<i2<iz<n

+ (=D)"MPA4; NN Ay,)

P( Ai>: (=i Z P(A;, N---NA;,)
i=1 k=1

1<i1<i2< - <ipg<n

Proof. By induction. For n = 2 it holds.
Assume it holds for n — 1 events. We will prove it for n events.

P(A1U---UA,) =P((A1U. .. 4,,_1)UA,) = P(A1U. .. A1) +P(A,) —P((A1U. .. Ap—1)NA,) (%)

Notice
P((A1U... A1) NA,) =P(A1NA,)U---U(A,_1NAy))

Set B; = A; N A,,. By the inductive hypothesis,

n—1

P(A1U---UAp_1) =Y (-1 > P(A;, N---NA;)
k=1 1<ip <@g < <ip<n—1
n—1

P(ByU---UB, 1) =Y (-1)F! > P(B;, N---N By,)
k=1 1<i1 <@ < <ip<n—1

Plugging these two into back into (*) gives the claim. [J

Let (2, F,P) with |Q] < 00 and P(4) = 5] VA € F.
Let Ay,..., A, € F. Then

n—1

AL U UAp_q| = (-1 > |4, NN A,

k=1 1< <ip < <ip<n—1

11



1.5.1 Bonferroni Inequalities

~

Claim. Truncating sum in the inclusion-exclusion formula at the r- th term gives an overestimate if
r is odd and an underestimate if r is even, i.e.

P ( Ai) < z:(—l)]chl Z P(A;, N---NA,;,) if r is odd
i=1 il

1<i1 <ia < <ip<n

C s

%
Il

P (U Ai> > (-1 > P(A;, N---N Ay if 7 is even
=1l k

=il 1< <ig < <ig<n

Proof. By induction. For n =2 P(AU B) < P(A) + P(B)
Assume the claim holds for n — 1 events. Will prove for n.
Suppose r is odd. Then

P(A,U---UA,) =P(AU---UA,_1)+P(A,) —P(ByU---UB,_1), where B; = A, N A, (x)
Since r is odd, apply the inductive hypothesis to P(A; U---U A,,) to get:
n—1 T
P (U Ai) <> (- > P(4;, N---N Ay
i=1 k=1 1<i <ip<--<ipr<n—1
Since r — 1 is even, apply the inductive hypothesis to P(By U---U B,,_1)
n—1 r—1
P (U Bi> > (-1k! > P(B;, N---N By,)
i=1 k=1 1<iy <ig<--<ig<n—1

Substitute both bounds in (*) to get an overestimate.
In exactly the same way we prove the result for r even. [

12



1.5.2 Counting using Inclusion-Exclusion

~

Example. Number of surjections f: {1,...,n} — {1,...,m}

Let Q={f:{1,...,n} = {1,...,m}} and A= {f € Q: f is a surjection }.
|[A|=?Vie {1,...,m} define A; ={feQ:i&{f(1),...,...,f(n)}}
Then

A=ASNASN---NAC = (4, U---UA,)°
Al =10 = [A1 U UAp[ =m" —[A; U--- U Ay

m m

PHIRREPIES VD DI TIPS 9 e (4 (R
=1 1§i1<i2<--~<ikgm_:(mjk)n_’ =1

So

4] = " é(—n’“” ( Jom =

=S ()

1.5.3 Counting Derangements

~

Note. A derangement is a permutation with no fixed points

Example.
A = {derangements} = {f € Q: f(i) #iVi—1,...,n}

Pick a permutation at random. What is the probability it is in A7
Define A; = {f € Q: f(i) =i}

@ C
Then A= A{ NAS N---NAS = (U Ai>
i=1

So P(4) =1 — P (ig Ai)

By inclusion-exclusion

P <CJ Ai> :i(—l)k“ > P4, NN AL)

So

! (DM S (DR 1
PA)=1-P||JA|=1-) o => e = 0.3678

13



1.6 Independence

Definition. Let A, B € F. They are called independent (A Il B) if
P(ANB) =P(A) - P(B)
A countable collection of events (A,,) is said to be independent if V distinct i1, ia, . . ., iy we have

k
]P(Ail N ﬂAZk) = HP(AZJ)

Jj=1

Remark. Pairwise independent does not imply independent see example below

Example. Toss a fair coin twice
1
Q= {(0,0),(0,1),(1,0),(1,1)} P(w) = ZVw e

Define A = {(0,0), (0,1)}, B = {(0,0),(1,0)} and C = {(1,0), (0,1)}

P(4) = P(B) =P(C) = 5
P(AN B) = P({(0,0)}) = = = % . % _P(4) - P(B) — AL B
Similarly
P(BNC)=P(B) P(C) — B 1L C
and

P(ANC)=P4) -P(C) = Al C
P(ANBNC)=P(@)=0#P(A)-P(B)-P(C)
So A, B and C' are note independent

Claim. If A is independent of B, then A s also independent of B®

Proof.
P(AN BY) =P(A) — P(AN B)
P(A) —P(A) - P(B)
P(A) - (1 — P(B)) = P(A) - P(B)O

14



1.7 Conditional Probability

Definition. Let B € F with P(B) > 0
Let A € F. We define the conditional probability of A given B and write P(A|B) to be

P(AN B)

P(IB) = —55;

Note. If A and B are independent, then P(]P,“zg?) = P(‘E))(‘ESB) =P(A)
So in this case P(A|B) = P(A)

Claim. Suppose (4,) is a disjoint sequence in F.
Then P(J A»|B) = >_P(A,|B) (countable additivity for conditional probability)
n

Proof.

P4l = 20T

_ PU, (AN B)
; P(B)

P(A B
- Z P(A, N0 B) countable additivity of P
. ()

=Y P(A,|B)O

1.8 Law of Total Probability

Claim. Suppose (By,)nen is a disjoint collection in F and |J B,, =  and VnP(B,,) > 0.
Let A€ F. Then P(A) =), P(A|B,) - P(B,)

Proof.
P(A) =P(ANQ) =P <Aﬂ <U3n>>
=P (U (AN Bn)>

n

= Z P(AN B,,) countable additivity of P

= P(A|B,) - P(B,)O

15



1.9 Bayes’ Formula

Claim. (B,,) disjoint events, |J B, = Q, P(B,) > 0¥n

P(Bn|4) = S, P(A|By,) - P(By)
Proof. p(p 1A~ EBnNA4) _ P(A]B,) - P(By)
( n| )_ P(A) o IP’(A)
and

P(A) = Z P(A|By) - P(By) using law of total prob.
k

Note. This formula is the basis of Bayesian statistics.
We know the probabilities of the events (Bjy) and we have a model which gives us P(A|B,,). Bayes’
formula tells us how to calculate the posterior probabilities of B,, given that the event A occurs.

Equation. Let (B,,) be a partition of €2, i.e. (B,) are disjoint and UB,, = Q

_ P(A|B,) - P(B,)
VAe FP(B,|A) = >, P(A|By)P(By)

Baye’s formula

16



Example (False positives for a rare condition). Suppose that condition A affects 0.1% of the popu-
lation. We have medical test which is posititve for 98% of the affected population and 1% of those
unaffected by the disease. Pick an individual at random. What is the probability they suffer from A

given they tested positive?

Define

A = {individual suffers from A}

P = {individual tested positive}
Want P(A|P)

P(A) = 0.001, P(P|A) = 0.98, P(P|A) = 0.01
P(P|A) -P(A) 0.98 x 0.001
P(A|P) = = —0.089---
(A1P) P(P|A) - P(A) + P(P|AC) -P(AC)  0.98 % 0.001 + 0.01 % 0.999

So P(A|P) ~ 0.9
The reason why this is low is because P(P|AY) >> P(A)

1

1 + PPIAS) P(AC)
P(P|A)-P(A)

P(A|P) =

But P(A®) ~ 1 and P(P|A) ~ 1 so can approximate

P(AIP) = —praey
1+ )

~ (.09

Suppose there is a population of 1000 people and about 1 suffers from the disease. In the 999 not
suffering from the disease about 10 will test positive. So in total there will be about 11 people testing
positive. Pick an individual at random among these 11 people, then the prob they have the disease

will be 1—11

17




Example (Extra knowledge gives surprising results). 3 Statements:
(a) I have 2 children one of whom is a boy
(b) I have 2 children and the eldest one is a boy
(¢) I have 2 children one of whom is a boy born on a Thursday
P(I have 2 boys|a) = ?

P(I have 2 boys|b) = ?
P(I have 2 boys|c) = ?

Define
BG = {elder = boy, younger = girl}

GB = {elder = girl, younger = boy}

BB, GG defined similarly
(a) .
P(BB|BBUBGUGB) = 3

1
P(BB|BB U BG) = 3
GT = {elder = girl, younger = boy born on a Thursday

TN = {elder = boy born on a Thursday, younger = boy not born on a Thursday

TT, TG, NT defined similarly

P(TT UTN UNT
P(TT UTN UNT|GTUTGUTT UTN UNT) = T U(TNLLJJNTL:GT)U e

1.10 Simpson’s Paradox

All applicants | Admitted | Rejected | % Admitted
State 25 25 50%
Independent 28 22 56%

Men Only | Admitted | Rejected | % Admitted
State 15 22 41%
Independent 5 8 38%

Women Only | Admitted | Rejected | % Admitted
State 10 3 7%
Independent 23 14 62%

18



Remark. This phenomenon is called confounding in statistics. It arises when we aggregate data
from disparate populations.

Let

A = {individual is admitted}

B = {individual is a man}
B¢ = {individual is a woman}

C = {individual comes from a state school}
C° = {individual comes from an independent school}

Here we see that
P(A|BNC) > P(A|BNCY)
P(A|B€ N C) > P(A|B° nCY)

However we see that
P(A|C) > P(A|C)

P(A|C) = P(AN B|C) + P(AN BC|C) =
_P(ANBNC) N P(ANB¢NCQO)
P(C) P(C)
=P(A|BNC)-P(B|C) +P(A|B° nC) - P(B°|C)
> P(A|BNCY)-P(B|C) + P(A|B° n C°)P(BC|C)

Assume further that P(B|C) = P(B|C®). Then,

P(A|C) > P(A|BNCC) - P(B|C) + P(A|B° N C°) - P(BC|C®)
= P(A|CY)

So under this extra assumption (P(B|C) =P(B|C)) which is not valid here, we would get that
indeed P(A|C) > P(A|CY)
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2 Discrete Random Variables

2.1 Definitions and Examples

Definition (Discrete Probability Distribution).
(Q, F,P) Qfinite or countable

Q= {wl,wz,...,}
F = {all subsets of Q}
If we know P({w;}) Vi, then this determines P.
Indeed, let A C Q then
P(A) -P( ] {w:}) = > P{w})
P:w; EA 1:w; EA

We write p; = P({w;}) and we call it a discrete probability distribution

Note. Properties:
e p; >0V

*2ipi=1

Example (Bernoulli Distribution). Model the outcome of the toss of a coin.

Q={0,1} pr =P({1}) =p and po =P({0}) =1—-p

P(we see a H) =p, P(weseeaT)=1—p

Example (Binomial distribution).
B(N,p), N eZ*,p e [0,1]

Toss a p-coin (prob of H is p) N times independently.

P(we see k heads) = (]Z)pk(l —p)*
N
Q={0,1,...,N} pp = <k> pF - (1—p)*

N
Zpk =1
k=0

20



Example (Multinomial Distribution).

k
M(N,pl?"'apk)’ NGZ+3 pla"‘apkzoand sz:]-
=1
1 2 k

k boxes and N balls
P(pick box i) = p;

Throw the balls independently.

k
Q:{(nlvynk)eNanl:N}
i=1

The set of ordered partitions of N.

N
P(n; balls fall in box 1,...,ny fell in box k) = (

Example (Geometric Distribution). Toss a p-coin until the first H appears.
0={1,2,...}

pr = P(we tossed k times until first H) = (1 — p)*~p

oo
Zpk =1
k=1

Q={0,1,...} P(k tails before first H = (1 —p)* - p = p}

> oph=1
k=1
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Example (Poisson Distribution). This is used to model the number of occurences of an event in a
given interval of time. For instance, the number of customers that enter a shop in a day.

Q={1,2,...} A>0

-, X
k!’
We call this the Poisson distribution with parameter .

P =¢€ vk € Q

kz_oze ’\];H:e Aer=1

So indeed it is a probability distribution.

Suppose customers arive into a shop during [0, 1]. Discretise [0,1] , i.e. subdivide [0, 1] into IV intervals
[, 4], i=1,2,...,N

In each interval, a customer arrives with probability p (independently of other intervals and with
probability (w.p.) 1 — p nobody arrives.

N
P(k customers arrived) = <k) 'pk(l - p)N_k

Takep:%, A>0:

(JIZ).pk.u—p)N—m:WNLiW(%)k_(1_%>N—k:2_,:$!_w(l_%)mk

Keep k fixed and send N — oo

So:
k

A
-EasN—H)o

P(k customers arrived) — e~

This is exactly the Poisson distribution. So we showed that the B(N,p) with p = % converges to the
Poisson with parameter .

Definition. (2, 7,P). A random variable X is a function X : Q — R satisfying

{w: X(w)<z}e FVvzreR

Notation. We will use the shorthand notation: suppose A C R

(X €A} = {w: X(w) € A}

Definition. Given A € F, define the indicator of A to be

lifwe A

0 otherwise

llwe A) =14(w) :{

Because A € F, 1,4 is a random variable.
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Definition. Suppose X is a random variable. Define the probability distribution function of X
to be
Fx((E) = IP(X < .77), Fx R — [0, ].]

Definition. (Xi,...,X,,) is called a random variable in R" if

(X1,...,Xn): Q> R®

and Vxq,...,2, € R we have
{Xl lea-"vXn an} eF
ie.
{w: Xhj(w) <z1,...,Xp(w) < x)n}
Note. This definition is equivalent to saying that Xy, ..., X,, are all random variables (in R).
Indeed:

{XlgxlavXnan}:{Xlgxn}mO{Xngxn}EJ:
EF EF

Definition. A random variable X is called discrete if it takes values in a countable set.

Suppose X takes values in the countable set S. For every x € D we write p, = P(X = 2) = P({w :
X(w) =x}). We call (py)zes the probability mass function of X (pmf) or the distribution of X.

If (p,) is Bernoullim then we say that X is a Bernoulli r.v. or that X has the Bernoulli distribution.
If (p.) is Geometric, similarly say X is a geometric r.v. etc.

Definition. Suppose that Xi,..., X, are discrete r.v.s taking values in Sp,...,S,. We say
Xi,..., X, are independent if

]P(Xlzl‘l,,Xn:l‘n):P(Xlz.'L'l)]P(Xn:IEn) Ty 631,...,mn65n
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Example. Toss a p-biased coin N times independent.
Take

_ N
Q=1{0.1)
N
weDp, = l—Ip“”°(1—p)1_“”c w=(w1,...,wn) €Q
k=1

Define
Xp(w)=wp VE=1,.... Nwe
Then the X} gives the outcome of the k-th toss and is a discrete r.v.

X : Q- {0,1}

P(Xy=1)=Plwr=1)=pand P(Xy; =0) =P(w, =0)=1—p

So Xj has the Bernoulli distribution with parameter p

Claim. Xi,..., Xy are independent r.v.s

Proof. Let z1,...,zx € {0,1}. Then

P(Xy = o1,..., Xn = ) = P(w = (31, .., )

N
= p(a:l,..,,wn) — HpXk 3 (1 —p)liXk

k=1

Define
Sy (w=X1(w) + -+ Xn(w) = #textof H in N tosses

SN:Q—){O,...,N}
P(S, = k) = (g) =p*-(1-p"*

So Sy has the Binomial distribution of parameters N and p

2.2 Expectation

(Q, F,P). Assume € is finite or countable.
Let X : O — R be a r.v. (discrete).
We say X is non-negative if X > 0.




Definition (Expectation of X > 0).
E[X] =) X(w) P({w})

Qx ={X(w) :we N}

So
U (x =2}

rENx

IE[X]:Z Pwh = > > X(w) P({w}

z€Qx we{X=x}
Z Z P({w}) = Z z-P(X =2x)
2€Qx we{X=x} TEQX

So the expectation of X (mean of X, average value) is an average of the values taken by X with
weights given by P(X = z).
So

= Z 4 = Jo3%

€N x

Example. Suppose X has the Binomial distribution with N and p.

(X ~ Bin(N, p))

So

. N k N—k
E[X]:kZZIk G (1-p)
N
(N—1)!-NP . B
ZZ(k—m()N—k)!'p (=)t

N
- N Z N-1 . k_l-(].— )(N—l)—(k—l)
= INp E—1 p p

k=

N
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Example. Ket X be a Poisson r.v. of parameter A\ > 0, i.e.

Definition. Let X be a general r.v. (discrete). We define X, = max(X,0) and X_ = max(—X,0).
Then
X=X;-X_

1X| =X, +X_

We can define E[X ]| and E[X;] since, they are both non-negative.
If at least one of E[X ] or E[X_] is finite, then we define

E[X] = E[X,] - E[X_]

If both are co (E[X ;] = E[X_] = c0), then we say the expectation of X is not defined. Whenever we
write F[z], it is assumed to be well-defined.

If E[|X|] < oo, we say X is integrable.

When E[X] is well defined, we have again that

2.2.1 Properties of Expectation

(i) If X > 0, then E[X] > 0

(i) If X > 0 and E[X] = 0, then P(X = 0) = 1

(iii) If z € R, then E[cX]| = cE[X] and E[c + X| = z + E[X]

(iv) If X and Y are 2 r.v.s, then (X and Y are both integrable)
E[X + Y] =E[X] +E[Y]

(v) Let x1,...,¢, € Rand Xy,..., X, r.v.s Then (all integrable)

(vi) If X = 1(A) with A € F, then E[X] = P(A)
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Claim. Suppose X7, X5, ... are non-negative radom variables. Then

o

Proof. (9 countable)

E[zxn] D) IACLIBIED 3 EACLIRIED o8

n

Claim. If g : R — R, then define g(X) to be the random variable g(X)(w) = g(X (w))
Then E[g(X)] = EwEQx g(z) -P(X =x)

Proof. Set Y = g(X). Then

= Z y-P(Y =

yEQy

V=y={w:Yw =y} ={w:g(X(w) =y} ={w: X(w) e g 'y} ={X € g7 {y})}
So

E[Y]

> y-P(X eg™'({y})

yENyY

=Yy > PX=u

yeEQYy  xzeg—'({y})
o> g@) P(X =z
y€Qy zeg=1({y})

3 gla) B(X =)

TEQ X

Claim. If X > 0 and takes integer values, then

X] = ip(x > k) = ip(x > k)
k=1 k=0

Proof. We can write since X takes > 0 integer values

X = i1X>k il(X>k) (*)
k=1 k=0

Taking E in (*) and using that E[1(A)] = P(A4) and countable additivity for (1(X > k))j gives
the statement. O

27




2.3 Another proof of the inclusion-exclusion formula

2.3.1 Properties of Indicator Random Variables

o 1(A9) =1-1(4)
e 1(ANB) =1(A) - 1(B)
e (AUB)=1-(1-1(4)1-1(B))

More generally

n n

i=1 i1 <i2

Taking E of both sides we get

P(AyU---UAn) =Y P(A)— Y P(Ay, NA,) +- -+ (=)™ P(A; N+ N A4y)

1A U UA) =1-JJ1-1(4) =) 1(A) = D 1(A, NAy) +--+ (-1)" 1 (AN -
1=1

NA4,)

2.4 Terminology

of X

Definition. Let X be ar.v. and r € N. We call E[X"] as long as it is well-defined) the r-th moment

Definition. The variance of X denoted Var(X) is defined to be

Var(X) = E[(X — E[X])?]

the more concentrated X is aroudn E[X].
We call\/Var(X) the standard deviation of X

The variance is a measure of how concentrated X is around its expectation. The smaller the variance,

Properties:
e Var(X) > 0 and if Var(X) = 0, then

P(X = E[X]) =

e 7 € R, then Var(cX) = ¢?Var(X) and Var(X + ¢) = Var(X)
o Var(X) = E[X?] — (E[X])?

Proof.
Var(X) = E[(X — E[X])?] = E[X? — 2XE[X] + (E[X])?]

= E[X?] - 2E[X]E[X] + (E[X])* = E[X?] - (E[X])*

e Var(X) = miﬂr@l E[(X — ¢)?] and this min is achieved for ¢ = E[X]
cE

Proof. Call f(c) = E[(X — ¢)?] = E[X?] — 2¢E[X] + ¢?
Minimise f to get min f(c) = f(E[X]) = Var(X)O
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Example.
(i) X ~ Bin(n,p), E[X] =np

Var(X)

E[X?] - (E[X])®

)(Z) pF(1—p)" "

k-(k—1)-nl-p*- (1—p
(k=2)!-(k—=1)-k-((n—2)— (k—2))!

3

|
—_

EX(X-1]=Y k- (k

>
U

)n—k

I
M§

k

k=2

1

=n(n—1)p°
So
Var(X) = E[X (X — 1)] + E[X] — (E[X])* = n(n — 2)p” 4+ np — (np)® = np(1 — p)

(ii) X ~Poi(A), A >0, E[X] =\
Var(X) = E[X?] — A2

E[X(X—1)]:ik-(k—1).e**.A—k:e**iﬁ-v:v
( !
k=2

So Var(X) = N2+ E[X] - A2 =]\

Definition. Let X and Y be 2 random variables. Their covariance is defined
Cov(X,Y) =E[(X — E[X])(Y — E[Y])]

“It is a “measure” of how dependent X and Y are.”
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Properties
(i)
Cov(X,Y) = Cov(Y, X)
Cov(X, X) = Var(X)

Cov(X,Y) = E[XY] — E[X] - E[Y]

Proof. Expand (X — E[X])(Y — E[Y]) and use properties of expectation

(iv) Let x € R. Then
Cov(cX,Y) = cCov(X,Y)

and
Cov(c+ X),Y) = Cov(X,Y)

(v)
Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)

Proof.

Var(X +Y) =E[(X +Y) - E[X] - E[Y])?
[(X —E[X]) + (Y - E[Y]))?]
[(X —E[X])?] +E[(Y — E[Y])?] + 2E[(X — E[X])(Y - E[Y])]

r(X) + Var(Y) + 2Cov(X,Y)

i
= =

I
5

(vi) For all ¢ € R, Cov(c,X) =0
(vil) X,Y,Z are random variables, then

Cov(X +Y,7Z)=Cov(X,Z)+ Cov(Y, Z)
More generally, for c1,c¢2,...,¢n,d1,...,¢n € Rand X;,..., X, and Y7,..., Yy r.v’s
Cov (Z CiXi, Zdl)fl> — ZZCideOV(Xi, Y'J)
p=il i=1 i=1 j=1

In particular

Var (i XZ-> = iVar(Xi) -+ Z Cov(X;, X;)
=1 =1

i#]

Remark. Recall that X and Y are indep, if for all  and y

PX=z,Y=y)=PX=2x)-PY =y)
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Claim. Let X and Y be 2 indep. r.v’s and let

f,g:R—R

Then

Proof.

(z,y)
=Y f@P(X =2))_ gW)PY =y)

Equation. Suppose that X and Y are independent. Then
Cov(X,Y) =0, since Cov(X,Y) =E[(X —E[X])(Y —E[Y]) =0
So if X and Y are independent, then

Var(X +Y) = Var(X) + Var(Y)

Warning.
Cov(X,Y) =0 =~ independence

Example. Let X7, X5, X3 be indep. Ber(%)

Define
Yi=2X; -1, Y5 =2X,—2
Zy = X3Y1, Zr = X3Y,
EV1] = E[Ys] = E[Z1] = E[Z5] = 0
and
Cov(Z1, Z2) = ElZ1, 2o] = E[X3ViYs] = 0
indep.

We will show that Z; and Z5 are not indep.
Indeed,

P(Z, = 0,75 =0) =P(X3 =0) =

but
P(Z, =0)-P(Z, = 0) = P(X3 = 0)* = =

Hence as not equal, Z; is not independent of Z5
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2.5 Inequalities

2.5.1 Markov’s Inequality

Claim (Markov’s Inequality). Let X > 0 be a random variable. Then Va > 0,

E[X]

P(X >a) <

Proof. Observe that
X>a-1(X >a)

Taking expectations we get

EX]>Ela-1(X >a)]=a-P(X > a)

So

&=

[X]

P(X >a) <

2.5.2 Chebyshev’s Inequality

Claim (Chebyshev’s Inequality). Let X be a r.v. with E[X] < co. Then VYa > 0

Var(X)
a2

P(IX - E[X]] > a) <

Proof.
E[(X — E[X])? Var(X
P(X — E[X]| > a) = P(X —E[X]?>a?) < CL . XD _ a(2 )

markov
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2.5.3 Cauchy-Schwarz Inequality

~

Claim (Cauchy-Schwarz Inequality). Let X and Y be 2 r.v’s. Then

E[lXY]] < VE[X?|E[Y?]

Proof. Suffices to prove it for X and Y with E[X?] < oo and E[Y?] < oo
Also enough to prove it for X, Y >0
XY <

(X2+Y? = E[XY]< -(E[X?)+E[Y? < 0o

N
N =

Assume E[X?] > 0 and E[Y?] > 0, otherwise result is trivial.
Let t € R and consider
0< (X —tY)?=X?-2tXY +¢*Y?

= E[X?] - 2tE[XY] + #E[Y?] >0
HO!

Minimising f gives that for ¢, = %, f achieves its minimum.
2 2
2E[XY])" | (EXY])®

ft) >0 = E[X?] - EY7] + Eye >

= (E[XY])* <E[X?] E[Y”]

2.5.4 Cases of Equality

Note. Equality in C-S occurs when

E[XY]

E[(X —tY)?] =0 for t = By

E[(X -tY)) =0 = P(X =tY) =1

2.5.5 Jensen’s Inequality

Definition. A function f: R — R is called convex if Vz,y € R and for all ¢ € (0, 1)

flz+ (1 —t)y) <tf(x)+ (1 —-1)f(y)
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Claim (Jensen’s Inequality). Let X be a r.v. and let f be a convex function. Then

E[f(X)] = f(E[X])

Proof.

Claim. Let f : R — R be a convex function then f is the supremum of all the lines
lying below it. In other words

Ym € R Ja,b € R s.t. f(m)=am+band f(x) > ax + b Va

(= mp L= 101

z<m m-—

So there exists a € R

s.t.

fm) = f@) _ o f) = f(m)

m—x y—m

forallz <m <y

(take tangent)

Proof. Let m € R. Let x < m < y. Then m = tx + (1 — t)y for some ¢t € [0,1]. By

convexity

fim) <tf(z)+ (1 —1)f(y)

m =tf(m)+ (1 —1t)f(m)
So

H7m) — () < (L= (7 0) - f(m)) = LS8 T =T
So there exists a € R
o LB
s.t.
flm) = f(z) <a< 1) = f(m) forallz <m <y
m—x - y—m

Rearranging this inequality we get

f(z) > a(x —m) + f(m) for all

Set m = E[X]. Then from the claim, we get Ja,b € R s.t f(E[X]) = aE[X] + b (*) and Vz we
have f(z) > ax + b Apply this last inequality to X to get

f(z) >aX +b

and taking E
E[f(X)] 2 aE[X] +b = f(E[X])
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Note. A rule to remember the direction:
Var(X) = E[(X —E[X])}] >0

implies
E(X?) > (E[X])’D

2.5.6 Cases of Equality

Let X be ar.v. and let f be a convex function satisfying if m = E[X], then Ja,b € R s.t.
f(m) =am+band f(xr) >axr+bVr#m

What is the condition of X in order to have equality in Jensen?
We want

Have:
E[X]=m, f(m)=am+band f(z) >ax+bVr#£m
Consider f(X) > aX +b. Then f(X)— (aX +b) >0
So taking expectations
E[f(X) —(aX +b)] >0

But
ElaX +b] =am+b= f(m) = f(E[X])

We assumed

which means that
E[f(X)—(aX +b)]=0
But
f(X)>aX +b

so this forces f(X) =aX +b
By assumption f(m) =am+b and Vz #m f(z) >ax+b
So this forces X = m with probability 1
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2.5.7 AM-GM Inequality

~

%Zf (x4 >f< Z%)
P

E[f(X)] = f(E[X])

Claim (AM-GM Inequality). Let f be a convex function and let z1,..., 2, € R. Then

Proof. Define X to be the r.v. taking values {z1,...,2,} all with equal prob

1
P(szi)=£vz':1,...,n
. 1
k=1

1 n
— >
+3 s> s (530 )
k=1
Let f(z) = —logz. This is a convex function and so

ffZIngk log<1 ifck>

k=1

By Jensen’s inequality, we get

n 1/n 1 n
k=1 k=1

i.e. the geometric mean is < the arithmetic mean.

2.6 Conditional expectation

Note. Recall if B € F with P(B) > 0, we defined

P(AN B)

P(4IB) =~

Definition. Let B € F with P(B) > 0 and let X be ar.v.

We define
E[X -1(B)]

EX|B] = =57
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2.6.1 Law of Total Expectation

~

events, i.e.
Q=J
n

Then

Claim (Law of Total Expectation). Suppose X > 0 and let (©2,,) be a partition of Q into disjoint

Proof. Write
X=X-1(Q) =) X 1)

Taking expectations we get

———
X

EIX]=E | X - 19%)| = STEIX - 1(2)]

n

By countable additivity of E
So
E[X] =Y E[X, 1(2)] = Y E[X|2] - P(Qn)

n

2.6.2 Joint Distributions

Definition. Let X;,..., X, be r.v.’s (discrete). Their joint distribution is defined to be

P(Xl le,...,XnZJIn) VY, GQxl,...,IIJn EQXn

PXy=z) =P{Xi=as}n{JHXi=z}) = D PXi=z1,... X0 =2y)

i=2 X; X1, Xom

P(X; = z;) = > P(X1 =21, .., Xn = Tp)
X100y Xi—1, X415, Xn

We call (P(C; = x;))., the marginal distribution of X;

Definition. Let X and Y be 2 r.v.’s
The conditional distribution of X giben Y =y (y € €,) is defined to be

P(X =z|Y =y), z € Qx

PX =1z Y =y)

P(X =z|Y =y) = P =)
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Equation.

(law of total probability)

2.6.3 Distribution of the sum of independent r.v.’s

Definition. Let X and Y be 2 independent r.v.’s (discrete)

P(X+Y =2)=) P(X+Y =2Y =y)
=Y PX=z-yY =y)

=Y P(X=z—y)-P(Y =y)

This last sum is called the convolution of the distribution of X and Y
Similarly,

PX+Y =2)=> P(X=x)P(Y =z—z)

Example. Let X ~ Poi(A) and Y ~ Poi(y) independent

IP’(X—}-Y:n):iIP’(X:r)]P’(Y:n—T)

n—r

AT )
= AL ek
Ze e (n—r)!

So X +Y ~ Poi(A + p)

Definition. Let X and Y be 2 discrete r.v.’s. The conditional expectation of X given Y =y is

E[X]Y =] = —Epﬂi&(i 3 2
BIXIY = 4] = ey BIX - 107 = )

:m;x~P(X:x,Y:y)

= Zx]P’(X =z|Y =vy)
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Note. We observe that for very y € Qy, E[X|Y = y] is a function of y only.
We set

9(y) = E[X]Y = y]

Definition. We define the conditional expectation fo X given Y and write it as E[X|Y] for the
random variable g(Y")

We emphasise that E[X|Y] is a random variable and it depends only on Y, because it is a function
only of Y

Equation.
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Example. Toss a p-biased coin n times independently. Write
X, =1(i—thtossisa H) fori=1,...,n

and

Want E[X,|Y,,] =7
Set g(y) = E[X1]Y;, = y], then E[X;1]Y,,] = g(Y)
Need to find g
Let y € {0,...,n}. Then
9(y) = E[Xa|Y, = y] =P(X1 = 1|, =y)

y=0:
P(X,=1]Y,=0)=0

PXy =1¥n =v) = =55 :Z) - P(Y, =y :

Since the (X;) are iid, we get
P(X; =21, Xo+ 4+ Xp=y—1)=P(X; =1) P(Xo+ -+ Xn=y— 1)

n—1
=p- ¥l (1 = )Y
P (y_l) p'~ - (1-p)

So
b, 1y =gy P Py
S (T (e O LD

So g(y) = £. Therefore

EX[Y,] = g(¥a) = -2
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2.6.4 Properties of Conditional Expectation

Claim.
°

Ve e R E[eX|Y =z -E[X|Y] and E[c|]Y] =¢
e Xq,...,X, r.v.’s, then

n

= ZE[XJY]

i=1

E li XY
=1l

E[E[X|Y] = E[X]

Proof. only prove third:

By properties of expectation

Proof (Another way).

DEXY =y PY=y)=> > ¢ PX=zYy =y)-PY =y) =E[X] =0

Claim. e Let X and Y be 2 independent r.v.’s. Then

E[X|Y] = E[X]




Proof.

EX|Y] =) 1(Y =) -E[X|Y = y]
:Zl(Y:y)-Zx-P(X:x|Y=y)
=Y 1Y =y) ) z-P(X =z)=E[X]O

—_——
1 E[X]

Claim. Suppose Y and X are independent r.v.’s. Then

E[E[X|Y]|Z] = E[X]

Proof. We have E[X|Y] = g(Y) i.e. E[X|Y] is a function only of Y. If Y and Z are indep.,
then f(Y) is also independent of Z for any function f. (can show directly)
So g(Y) is independent of Z. By the a previous property, we get

E[g(Y)|Z] = E[g(Y)] = E[E[X|Y]] = E[X] O

Claim. Suppose h R — R is a function. Then

E[R(Y) - X|Y] = h(Y) - E[X|Y]

Proof.
E[r(Y) - X|Y = y] = E[h(y) - XY = y]
= h(y) - E[X[Y =y]
So
Er(Y) - X|Y]=h(Y) -EX|Y]O
Corollary.
EE[X|Y]|Y] = E[X|Y]
and

E[X|X] = X
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Remark. Recall X; = (i-th tossis H) and V,, = X; +--- + X,

Y,
E[Xy[Y,] = =

By symmetry, for all 4
E[X;|Y,] = E[X1|Y]

n

ED X |Ya] = > E[Xi|Ya] = n - E[X,|Y,]
=1 =1l
Yn

¥

~EX Y] = = - EY,|Y,] = ?n

S|

2.7 Random Walks

Definition. A random/ stochastic process is a sequence of random variables (X, )nen

Definition. A random walk is a random process that can be expressed in the following way
Xp=2+Y1+---4+Y,

where (Y;) are independent and identically distributed (iid) r.v.’s and « is a deterministic number

(fixed).

Method. Let’s focus on the SRW (simple random walk) on Z which is defined by taking

PY;=4+1)=pand P(Y; =—-1)=¢qg=1-—p

| | | 7
i—1 @ i+1
We can think of X, as the fortune of a gambler who bets 1 at every step and either receives it back
doubled it w.p. p or loses it with prob. ¢

q p

————¥ |

0 z i—1 @ i+1 a
Suppose the gambler starts with £z at time 0. What is the prob. he reaches a before going bankrupt?

Notation. We write P, for the probability measure P(:| Xy = z) i.e.

VA € F Py(A) = P(A| X, = n)
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Method. Define
h(z) = P, ((X,) hits a before hitting 0) =?

By the law of total probability, we have
h(z) =P, ((X,) hits a before hitting 0|Y; = +1) - P,(Y; = +1)
+ P, ((X,,) hits a before hitting 0]Y; = —1) - P, (Y; = —1)
hz)=p-h(x+1)+q-h(z—-1)0<z<a
h(0) = 0) while h(a) =1

e Case p=¢q = %:
h(z) —h(z+1) =h(z —1) — h(x)

In this case,
0
h(xz) = —
() =2
*pFq
h(z) = ph(z + 1)gh(x — 1)

Try a solution of the form A*
Substituting gives

PN A+1=0 = )\zlor%

So the general solution will be of the form

hz)=A+B- (f-))m

Using the boundary conditions, h(a) = 1 and h(0) = 0 yields

This is the Gambler’s Ruin estimate.
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2.7.1 Expected time to absorption

Define
T =min{n >0: X, € {0,a}}

i.e. T is the first time X hits either 0 or a.

Want
E.[T] = 7, =7

Conditioning on the first step and using the law of total expectation
T =p-Eg[T1Y1 =41+ ¢ -E;[TY1=-1]0<z<a
= 7o =p (1 +Eea[T]) +q- (1 +Ex1[T])

So
To=14+p-Tpp1+q 71 0<2x<0

To="Tq =0
e Case p = 1. Try a solution of the form Axz?.
Az =1+ pA(z +1)?+qA(z - 1)) = A=-1
General solution will have the form
7o =Az’ + Br +C = —2°>4+ Bz +C
To=Ta =0 = 7, = z(a — x)

o Case p # % Try Cz as a solution.
Substituting gives

1
C = —
qa—p
So the general solution will be of the form
_ AN
Ty = -x+ A+ B ()
- p
Using 7o =7, =0,
aq _
1 q (p) 1
T = T — =
q—p q—p<% -1
P
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2.8 Probability Generating Functions

Definition. Let X be a r.v. with values in N. Let
pr=P(X=r), reN

be its prob. mass function. The pgf of X is defined to be
o0
p(z) = Zpr 2" =E[2¥] for |2] <1
r=0

When |z| < 1, the pgf converges absolutely.

Indeed
o0 o0 oo
1> P2 [ <D pr-l2M <D pr=1
r=0 r=0 r=0

So p(z) is well-defined and has a radius of convergence at least 1

Theorem. The pgf uniquely determines the distribution of X

Proof. Suppose (p;) and (g,) are 2 prob. mass functions with

oo oo
Zprzr = quzr V]z| <1
r=0 r=0

We will show that p, = ¢, Vr.
Set z = 0. Then py = qq.
Suppose p, = g, Vr < n.
RTP:

Pn+1 = 4n+1
Then
[e%S) 9]
Z pr2’ = Z grz"
r=n-+1 r=n+1

Divide through by 2"*! and then take the limit as z — 0 gives

Pn+1 = qn+1
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Theorem. we have
lim p/(2) = p/(1-) = E[X]

z—1

Proof. Assume first that E[X] < oo.
Let 0 < z < 1. We can differentiate p(z) term by term and get

pz) =) rp2" ' <> rp, = E[X]
r=0 =il

(because z < 1)
Since 0 < z < 1, we see that p/(z) is an increasing function of z.
This implies that

lim p'(z) < E[X]

z—1

Let e > 0 and N be large enough s.t.

N
erT >E[X]—¢
r=0

Also
So

This si true for any € > 0. Therefore

lim /(=) = p'(1-) = E[X]

z—1

Assume E[X] = co. For any M, take N large enough s.t.

oo
> orpr =M
r=0

We know from above that

N
im p'(z) > >
lim p'(2) > Z;rpr >M
This is true for all M > 0 and hence

limp/(2) =p'(1-) = E[X] =00 O

z—1

Note. In exactly the same way one can prove the following:
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Example.

(i)

X ~ Bin(n,p)

:i:(:)pz (1 —p) "
+

1—-p)"

(ii) Let X ~ Bin(n,p) and Y ~ Bin(m,p) and X 1l Y

E[zX+Y]

So

(iii) Let X ~ Geo(p)

(iv) Let X ~ Poi())

=E[z*]-E[z"] = (pz+1-p)" - (pz+1-p)" = (pz+1-p
X +Y ~ Bin(n+ m,p)
X7 _ = Y 4 ro__ b
ZZ —>\ )‘ A=Az A(z—1)

Let X ~ Poi(\), Y ~ Poi(A) and X 1L Y

IE[ZX+Y] =

)n-‘,—m

D) L en(z=l) = OHW)(E-1) — X 4 Y ~ Poi(\ + )

50




2.9 Sum of a Random Number of r.v.’s

Method. Let X, X5,... beiid and let N be an indep r.v. taking values in N.
Define
S,=X1+--+X,Vn>1

Then
SN:X1+"+XN

means Vw € €,
N (w)
Sn(w) = X1(w) + - + X)) = D Xi(w)
i=1

Let g be the pgf of N and p the pgf of X;.
Then

r(z) = E[z°V]
— E[zX1+"'+XN]

= S E[XH N (N = )]
I
Sy 3 =)
= i (E[z5])"  P(V = n)

— i (p(2))"P(N = n) = q(p(2))
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2.9.1 Another Proof Using Conditional Expectation

| Method.
7"(2) — E[ZX1+"'+XN]
— BB+ ]
E[zX1 T +XN | N = ] = E[zX1++ X0 | N = )
= (E)"
= (p(2))"
So
r(z) = E [(p(2))"] = q(p(2))
So
E[SN] = lim r'(z) =1"(1-)
r'(Z) = q'(p(2)) - P'(2)
So
E[Sn] =4 (p(1-)) - p'(1-)
~—— ——
=1 —E[X1]
= E[N] - E[X}]
E[Sx] = E[N] - E[Xi]
Similarly
Var(Sy) = E[N] - Var(X;) + Var(N) - (E[X,])?

2.10 Branching Processes

[ From Bienaguie/ Gralton-Watson, 1874.
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Method. (X, : n > 0) a random process.
X, = # of individuals in generation n

Xo=1

The individual in generation 0 produces a random number o offspring with distribution

g = P(X, = k) L k=0,1,2,...
—_———
# children of 15 individual

Every individual in gen. 1 produces an indep. number of offspring with the same distribution.
Continue in the same way: every new indiv. produces and indep. number of offspring with the same
number of offspring with the same distribution as X;.

Let Yy, : k> 1,n > 0) be an iid sequence with distribution (gx )

Y%.n is the number of offspring of k-th indiv. in gen. n

X _JYip+--+Yx, n : when X, >1
"7 0 otherwise
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Theorem.

E[Xn] = (E[X1])" Vn>1

Proof.

So

So

Tterating we get

E[Xn+1] = E[E[Xn+1|Xn]]

EXni1|Xn =m] =E[Y1n + -+ + Yx, o Xn =m]

=E[Yin+ -+ Vil Xn = m]

E[X,+1|X,] = X, - E[Xq]

E[Xn41] = E[X,, - E[X1]]
= E[X;] - E[X,,]

E[Xn4] = EX1))" O

Theorem. Set

G(z) = E[z%"]
and
Gn(2) = E[z%]
Then
Grs1(2) = G(G(2))
= G(G(...(G(2))...))
= Gn(G(2))
Proof.
Gnt1(2) = E[z%m+] = E[E[2X"1| X,]]
E[E[z**|X,, = m]] = E[g¥» T HYmn | X, = m]
= (E[zX])™
(G(=)™
So
E[E[z¥"+|X,]] = E[(G(2))*"] = Gn(G(2))
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2.10.1 Extinction Probability

Method.
P(X,, =0 for some n > 1) = extinction prob. =gq
An = {Xn = 0} € {Xn+1 = 0} = An+1

Then (A,) is an increasing sequence of events.
So by continuity of prob meas.

P(A,) = P(|JAn) as n — oo

n

But
UA” = {X,, =0 for some n > 1}
n

Therefore we get ¢, — q as n — oo

Claim.
dn+1 = Glgn) (G(z) = IE[zXl]) and also ¢ = G(q)

Proof.
Gnt1 = P(Xnt1 = 0) = Gny1(0) = G(GR(0)) = G(gn)

Since G is continuous, taking the limit as n — oo and using ¢, — ¢, we get

G(q) =qO
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Claim (same as previous, different proof).

gnt1 = G(qn) (G(2) = E[z*"]) and also ¢ = G(q)

So we can write
Xnt1 :Xr(zl) +...+X7(Lm)

J

So

m
=> PxV =0,...,X™ =0)-P(X; = m)
m

=> | PV =0) P(X;, = m)
= G(qn)

So we have proved
dnt+1 = G(gn) and ¢ = G(q), t = G(t)

1 =P(Xni1 =0) =Y P(Xp41 =0[X; =m) - P(X;

Proof (Alternative). Conditional on X; = m, we get m independent branching processes.

where (X i(j )) are iid branching processes all with the same offspring distribution.

:m)

Qs === 2

1
the tangent to the graph of G at 1 in 15 has slope < 1.

The slope = G'(1-) =E[X;] < 1

In 2", the slope is
G'(1-) =E[X4]] > 1

and we see that ¢ < 1
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Theorem. Assume P(X; = 1) < 1. Then the extinction probability is the minimal non-negative
solution to the equation

t=G(t)

We also have
g<1iff E[X;]>1

Proof (of minimality). Let ¢ be the smallest non-negative solution to z = G(z). We will show
that g = t.
We are going to prove by induction that

Gn <1t Vn

Then taking the limit as n — oo will give us ¢ < t.
Since we know that ¢ is a solution, this will imply ¢ = ¢.

qOZP(XOZO)St

Suppose ¢, <t
dn+1 = G(Qn)

G is an increasing function on [0, 1], and since g,, < t, we get

Gnt1=G(gn) <G(t) =t 0O
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Theorem.

Proof (2"¢ part). Consider the function H(z) = G(z) — z
Assume

got+g1 <1

SO
P(X; < 1)

since if not, then P(X; < 1) = 1 which would imply that
EXi]=P(X;=1)<1
In this case we would have
G(z)=go+ 912 =1—-E[X;] + E[X;1]z

Solving g(z) = z we would get z = 1, since E[X;] < 1

H'(z) = Zr(r ~1)g-2""2>0Vz € (0,1)

This implies that H'(z) is a strictly increasing function in (0, 1).

This implies that H can have at most one root different from 1 in (0, 1), which follows from
Rolle’s theorem.

(If it had more, say 21 < z2 < 1, then H’ would be 0 in 2 points inside (z1, z2) and (22,1) by
Rolle’s theorem. Nut this contradicts that H’ is strictly increasing)

15¢ case: H has no other root apart from 1.

H(1)=0and H(0) =gy >0 = H(z) >0Vze€[0,1]

1) — g BB HO)
z—1 z—1 1

But H'(1-) =G'(1-) —1and H'(1-) <0 = G'(1-) <1 and G'(1-) = E[X4]
So we showed that when ¢ = 1, then E[X;] <1

27d case: H has exactly one other root 7 < 1

H(r)=0and H(1) =0 = by Rolle’s theorem 3z € (r,1) s.t. H'(z) =0 but

H@)=G(x) -1 = G'(2)=1

oo o0
'm):ngTx_ and G (z Zr r—1)grz” 2
=il r=2

under the assumption gg + g1 < 1, we know
G"(z) >0Vzx € (0,1) = G is strictly increasing

Therefore
G(1-)>G'(2)=1 = E[X;]>1

So we proved that if ¢ < 1 then E[X;] > 10O
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3 Continuous Random Variables

3.1 Definitions and Properties

(Q,F,P)
X:Q—=Rst. VzeR

{X<z}={w: X(w) <z} eF

Definition. The probability distribution function is defined to be

F:R —[0,1] with F(z) =P(X < z)
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Properties of F'

(1)

(iii)

(iv)

if x <y then F(z) < F(y)

Proof.
{X <z} c{X <y}

Va <b, a,be RP(a <X <b)=F(b) — F(a)

Proof.

Pla< X <b)=P

P({X < b} N {X <a}

({fa< X} {X <b}
P(X <) -
P(X <b)— P(X < a)

F(b) -

=

F(a)

F is a right continuous function and left limits exists always

F(z—) = lim F(y) < F(x)

Yy—x

Proof. NTP .
lim F <x+—> = F(x)
n

n— oo

Define 1
An={$<X§$+E}

Then (A,) are decreasing events and (), A4, = @
So
P(A,) = 0asn — o

But
P(4) =Plo < XS24 1) =F 2+ 1) = Fl) + 0asn > o0

Left limits exist by the increasing property of F'

Fz—)=P(X < x)

Proof. )
Fz—)= lim F (m - —>
n— 00 n
1 1
F(m——) :IP(XSQL‘——)
n n
Consider

an{ng—l}
n

then (B,,) increasing and |J,, B, = {X <z}

P(B,) = P(X <n) = F(z—)=P(X < z)
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lim F(z) =1

T—>00

and
lim F(z)=0

r—>—00

For a discrete variable, F(z) = P(X < z)

® O
[ -—
L |
[ [ [ T
L1 X2 z3

F is a step function (right continuous with left limits)

Definition. A r.v. X is called continuous if F' is a continuous function, which means that
F(z)=F(z—)Vr = P(X <z)=P(X <z) Vx

In other words, P(X =) =0 Vz € R

Note. In this course, we will further restrict to the case where F' is not only continuous but also
differentiable. (Absolutely continuous)
Set

Fl(z) = f(=)
We call f the probability density function of X.
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Properties of f:

(i) f=0
(i)
fl@)de =1
(iii) Also,
F(z) = f(y)dy
Moral. Intuitive meaning to f:
Suppose Az small. Then
x+Ax
IP’(x<X§x+A:L‘):/ f(y)dyA: 11Ax~f(x)
f
JY f() de = P(a < X <b)
a b T

More generally, for any set S C R
P(X €8) = / f(z)dz
s
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3.2 Expectation
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Claim. Let X > 0. Then

Proof (1%Y).

Proof (2°9).

Taking expectation, we get

Equation.
Var(X) = E[(X ~ E[X])?] = E[X?] — (E[X])?

Example. Uniform distribution

= x € [a,b]

<b, abeR, flz)=<°?
¢ “ f(@) {0 otherwise

we write X ~ Ula, b]
r—a

PO <a) = [ ) dy = 2=

r—

r—a

b—a
for « € [a,b] and F(x) =1 for > b, F(z) = 0 otherwise.

F(x) =




Example. Exponential distribution

f@) =X, A >0, x>0, X ~ Exp()\)

Flz)=P(X <z)= / Ae Mdy =1—e
0

and -
-z 1
E[X] = / Aze " dr = —
0 A

3.3 Exponential as a limit of geometrics

Equation. Let T'~ Exp(\) and set T, = [nT| Vn € N
_ k _ —Xk/n _ —A/n k
P(Tnzk)_IP’<Tzﬁ)—e = ()

So T}, is a geometric of parameter
A
pn=1—e"~Z asn—
n

and T
% 3Rasn— o0
n

So the exponential is the limit of a rescaled geometric

Remark. Memoryless property:
5,t>0P(T>t+s|T>s)=eM=PT >t)

T ~ Exp())
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Prop. Let T be a positive r.v. not identically 0 or co.
Then T has the memoryless property iff 7' is exponential

Proof. —:
Vs, t P(T >t +s)=P(T > s)P(T > t)
Set
9(t) =B(T > 1)
NTS:
g(t) = e for some A > 0
gt +s) =g(t)g(s) Vs,t >0
t>0,meN g(mt) = (g(t))"
t =1 gives:
vm € N g(m) = g(1)™
m\” m
g(%) =gm) = g(=) = g™, ¥m,neN
9(1) =P(T' > 1) € (0,1)
Set

A=—logP(T >1)>0

So we have proved that
gt) =P(T >t)=e MVt e Q,

Let t € Ry. Then
Ve>0dr,seQ:r<t<sand|r—s|<e

e M =P(T>s)<P(T>t) <P(T>r)e ™
Letting € — 0 finishes the proof [J
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Theorem. Let X be a continuous r.v. with density f. Let G be a continuous function which is
either strictly increasing or strictly decreasing and ¢! is differentiable.
Then g(X) is a continuous r.v. with density

Flg™H(2))-

Proof. g increasing:

SR(g(X) <2)= g~ @) g7 (@) = flg™ @) g7 (@)

g decreasing:

since

TP @)= (g7 @) 797\ @)
— @) | 3507 @)
g~ ! decreasing and so
dixg_l(x) <0
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Example. Normal distribution:
—00 < < 00, 0 >0 are our 2 parameters.

f(z) = M) x €

1
V2mro? P <_ 202
Check if f is a density:

R

s [ el 527)

*° 1 u2 o 1 2
——exp| — ) du=2 e ¥ 2du=1

= g/oo /Oo e (/2 gy do
™ Jo 0

Polar coordinates u = rcos € and v = rsin 0
2 [ [%
I2:—/ / re= ) /2drdg =1 —
™ Jo 0

as desired
So f is a density
Let X have density f

first integral is 0 by u = (x — p)/o
So E[X]| =pu

Var(X) = E[(X — )
_ [T (= p)? (z — p)?
- /_oo V2mo? =P <_ 202
— 52 > u_2€_u2/2 U= o2
= [ =t

So Var(X) = o?

When X has density f, we write X ~ N(u,0?)

(X is normal with parameters y and o?)

When p = 0 and 02 = 1,, we call N(0,1) the standard normal.

If X ~ N(0,1), we write
x
1
O(z) = / — /2 du
—oo V2T

and

Have

I=1

) as
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Method. Let a # 0, b € R. Set g(z) =ax +b
Define Y = g(X). What is the density of Y'?

Y =aX+5b
1, _T—=b
9 (@) =—
and a4 "
— -1 =
oY @)=

y=b _ N2

= 2ra2o? P < 2a20?

So Y ~ N(au +b,a?c?)
o is the ‘standard deviation’.
Suppose X ~ N(u,0?), then

X - X -
IF’(—20<X—,u<20):]P’<—2< “<2>:P(‘ “’<2>:<I>(2)
(o (o2

and ®(2) > 0.95 (using tables for ®)
With prob. > 95%, the normal is within 2 standard deviations of the mean
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Definition. Suppose that X is a continuous r.v. The median of X, denoted by m, is the number
satisfying

In other words

If X ~ N(p,0?), then

X — 1
]P’(X<,u):]P’( “<0>:<I>(0):—
o 2
A
(rough sketch diagram, not perfect)
I I
I I Area = 0.025
| I
I [
I I
I I
I I
| |
| | »
w— 20 Iz w20 Z

3.4 Multivariate Density Functions

Equation. X = (X3,...,X,,) € R" r.v.
We say that X has density f if

X, Xom
P(Xlgxl,...,Xnan):/ / fyis- - s yn)dys - .. dy,
—f(X10 0 X) T
Then

f(X17-.-;Xn) = mF(.’El,,mn)

This generalises: “v” B C R"

P(Xns o1 X) € B) = [ flon,e st .

Definition. We say that X;,..., X, are independent if Vz1,..., x,,
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Theorem. Let X = (X1,...,X,) has density f
(i) Suppose X, ..., X, are independent with densities fi,..., f,. Then

f@y,osen) = fi(an) - fo(zn) *)

(ii) Suppose that f factorises as in (*) for some non-negative functions (f;). Then Xi,..., X, are
independent and have densities proportional to the f;’s

Proof.
(i)

/ fily)dys-- / Fuly) dyn
/mm/mHﬁWNm”@

So the density of (X1,...,X,)is f=]]/f
Let By,...,B, CR then

P(Xl S Bl, 5o .,Xn S / / fl 1171 (iCn) dl’l dl’n
B1
Take B; = RVj # i. Then

P(X; € B;) =P(X; € B;,X; € B; Vj #1) = / fi(wi dyZH/f]
J#i

o0 o0
/ / flzr, ..., zn)day ... do, =1
— o0 — 00

Since f is a density

But f = [ fi, so
H /_ fily)dy =1
1
- Jl;lz/fj W= Je fi(y) dy

> fy, Filw)d

P(X; € B;) = 28709V

(% € B) Je fi(y) dy
This shows that the density of x; is
fi

The X;’s are independent, since

2 A dyr - [77 fa(yindyy,
PX: <z1,....X, <z, = — =P(X; <z1)...PX, <z,)0
( 1> 1 ) fR fl dyl .fR fn(ylndyn ( 1 1) ( )
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Equation. Suppose (X7,...,X,) has density f

, X2 €R,..., X, €R)

<z
/ / flxy, ... xy)dey ... doy,

(xl,...,xn)dx2... dmn) dzq

P(X, < z) = P(X;

/.
[.U

density of X

density of X; = marginal density of X;

fx, (z1) :/O:o---/O;f(xl,...,xn)dxg... dz,,

3.5 Density of the Sum of Independent r.v.’s

Equation. Let X and Y be 2 independent r.v.’s with densities fx and fy respectively.

PX+Y <2z2)= // fxy(z,y)dedy

{z+y<z}

/ / (y)dzdy
:[m<1wﬁ@—@hmm@dx
— /_; dy (/_o; fy(y — ) fx(z) dm)

/ = oy — ) ) i

We call this function the convolution of fx and fy

So the density of X +Y is

Definition. f,g: 2 densities

f*g(z / f(z —y)g(y) dy = convolution of f and g
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Moral. We can non-rigorously show this

IP’(X+Y§2):/OOP(X+Y§27Y€ dy)
= [ B -yry ey
= [ -y
SRy <= [ SR [ ixe- R0 d

So the density of X +Y is
| sG-nrrw

3.6 Conditional Density

Definition. Let X and Y be continuous variables with joint density fx,y and marginal densities fx
and fy. Then the conditional density of X given Y = y is defined

Ixiy (ely) = hjgfy_%y)

3.7 Law of Total Probability

Equation.
o0

fx@) = | e — [ v tal) e ) dy

oo oo

Remark. Want to define E[X|Y] = g(Y) for some function g.
Define

9(y) = /Oo zfx|y(z|ly) dz

o

Set E[X|Y] = g(Y') = conditional expectation of X given Y.
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3.8 Transformation of a multidimensional r.v.

Theorem. Let X be a r.v. with values in D C R? and with density fx.
Let g be a bijection from D to g(D) which has a continuous derivative on D and

detg'(z) #0Vx € D
Then the r.v. Y = g(X) has density
fr(y) = fx(@)-|J|

where = g~!(y) and J is the determinant of the Jacobian

d
J = det <3$1>
9Y; ) j=1

Proof. We do not prove it here.

Example. Let X and Y be independent N(0,1) r.v.’s

A
(X,Y)
9 | -

Want the density of (R, 6)

X = Rcos @

Y = Rsinf

fro(r,0) = fxy(rcosf,rsind) - |J|
cosf) —rsinf
J = diei [sin@ TCOSO] -
So o .
fro(r,0) = fx(rcosf) - fy(rsind)-r = R TR

Vo ez

1 r
= fro(r,0) = %reT

for all 7 > 0 and 6 € [0, 27]
2
This shows that R and 6 are independent with 6§ ~ U[0, 27] and R has density 7e= on (0, 00)
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3.9 Order Statistics for a Random Sample

Put them in increasing order

fri(z) = % (1-(1-F@)") =n

Density of Y7,...,Y,?

X X2
= L
Ul
by differentiating we get

nlf(zy)... f(an)

lew-an (xl, oo 71'7’7,) = {O

Method. Let Xi,..., X, be iid with distr. function F' and density f.

X1y < X@) < < X

P(Y, <) = (F(z))"
fr. (@) = n(F(2))""" - f(2)

PYy <zy,...,Y, <z,) =nP(X; <z1,..,. X, <zp, X1 < Xo<---

flug)duy ..

when X7 < X5 < ...

otherwise

and set
Y = X@)
Then (Y;) are the order statistics.
P(Y; < z) =P(min(Xy,...,X,) <z)=1-—Pmin(Xy,...,X,) >z)=1— (1 — F(z))"

< X,)

du,,
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Example. Let X ~ Exp(\) and X ~ Exp(u), X 1L Y.
Set Z = min(X,Y)

P(Z>2)=P(X >2Y >z2)=e?. e = A0

So Z ~ Exp(A + u)
Mroe generally, if X7, ..., X, are independent with X; sin Exp()\;) then

min(Xy,...,X,) ~ Exp (Z )\i>
i=1

Let X1,...,X, be iid Exp(\) and let ¥; be their order statistics
Zl :Y17 Z2 :}/2_Y17"',Zn:Yn_Yn—1

Density of (Z1,...,2Z,) =?

Z1 Yi
Z=|:|=4]:
I, Y,
where
1 0O 0 O 0
-1 1 0 0 0
A=10 -1 1 0 0

have det A = 1 and let Z = Ay, then

J
Y; = E Zj
i=1

(21 Z)rzn) = J 1Y) W15 Un) - ]
=nlf(y1)... f(y)n)
=nhe M1 e M

— n!A”e_A(”zl+(”—1)22+---+zn)
= H(n —i+ 1)/\67)‘(n7i+1zi
i=1

So Zi,...,Z, are independent and Z; ~ Exp(A(n —i+ 1))

3.10 Moment Generating Functions (mgfs)

Definition. Let X be a r.v. with density f. The mgf of X is defined to be

m(0) =E [eeX] = /00 % f(z) dz

— 00

whenever this integral is finite

m(0) =1
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Theorem. The mgf uniquely determines the distribution of a r.v. provided it is defined for an open
interval of values of 6.

Theorem. Suppose the mgf is defined for an open interval of values of . Then

m(0) = S m(O)lp—y = EIX']

Example. Gamma distribution:

n, n—1
6—)\m>\ ]

. >
f(z) 1) ,A>0,neN, >0

We denote X with density f as X ~ I'(m, \)
Check f is a density:

I :/Ooo F() dz

o n—1,.n—1
= / Ae A )\—x dz
0

(n—1)!
_ /oo e—Am/\n—l . (n _ 1)1’”_2 dz
0 (n—1)-(n—2)!
=Ih=-=1L

forn=1 f(z) = e ™ = Exp(\). So I; =1
o] )\nxm—l
_ 0 —Ax
m(f) = /0 e’ e =1

[e’S) nn—1
= / =)= A" dz

A n
—(m) fOI')\>O

Claim. Suppose that Xi,...,X,, are independent r.v’s. Then

m(0) =E [eo(xl+.“+xn)] _ ﬁE[eeXi]
=i
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Example. Let X ~T'(n,\) and Y ~ T'(m,\) and X 1l Y. Then

m(f) = [ee(x-s-y)}

E
E[eex]'E[eey]

55) (%)
= (ﬁ)wm for 6 < A

So by the uniqueness theorem we get X +Y ~ T'(n + m, \).
In particular, this implies that if Xq,..., X, are iid Exp(1) (= I'(1,A)) then

X+ + X, ~T(n,N\)

Remark. One could also consider I'(o, A) (o > 0) by replacing (n — 1)! with

o0
INa) = / e g dx
0

Example. Normal distribution. Let X ~ N(u,0?)

f(x):\/%exp (—%) z eR

oz — <_M> = Ou+ 6% _ (&= (p+60%))7

202 2 202
> = (¢ = (u+ 00%))?
_ 9,u+02c72/2 _ r — N"’ g _ 9,u,+920'2/2
m(0) /700 W& exp( 552 dz=e
as
1L (e (et 00
V2o P 202

gives normal distribution
If X ~ N(p,0?), then aX + b ~ N(ap + b,ac?)

So
]E[ee(aX+b)] _ ee(au+b)+92a2g2/2

Suppose X ~ N(p,0%) and Y ~ N(p,72) and X 1 Y
Then

E[eé(x-&-Y)] _ ]E[GHX] . E[GOY]

»,_9 D_%
_ 60p+9 o?/2 ~€0V+9 T/2

— Outv)+6% (% +7%) /2

So X +Y ~ N(u+v,0%+1712)
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Example. Cauchy distribution

e8] e@z
= ——d
/_oo r(l+a%)
=00 V0 #0, (m(0)=1)
Suppose X ~ f. Then X,2X,3X,... all have the same mgf.

However they do not have the same distribution.
So assumption on m(6) being finite for an open interval of values of 6 is essential

3.11 Multivariate Moment Generating Function

Definition. Let X = (X3,...,X,,) be a r.v. with values in R”. Then the mgf of X is defined to be
m(8) = E[e?” X] = E[eh1 X1+ +0nXn]

where
0= (01,...,0,)7

Theorem. In this case, provided mgf is finite for a range for values of 6, it uniquely determines the
distribution of X. also

a"m
——| =E[X/
|, [Xi]
ar+sm s
6=0

m(0) = HE[eOiX"] iff X1,...,X, are indep.

=1l

Definition. Let (X, : n € N) be a sequence of r.v.’s and let X be another r.v.
We say that X,, converges to X in distribution and write X,, 4 x , if

Fx,(z) — Fx(z) Vz € R that are continuity points of Fx

Theorem (Continuity Property for mgf’s). Let X be a r.v. with m(0) < oo for some 6 # 0. suppose
that
mn(0) — m(0) VO € R where m,,(0) = E[e? "] and m(0) = E[e?¥]

Then X,, converges to X in distribution
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3.12 Limit Theorems for Sums of iid r.v.’s

E[X;1] < c0. Set
Sn:X1+...+Xn

Then Ve > 0

n

P(|
n

——,u‘>5)—>0asn—>oo

Theorem (Weak Law of Large Numbers). Let (X,, : n € R) be a sequence of iid r.v.’s with p =

Proof (assuming 02 < oo where (02 = Var(Xy)).

P(‘%—u' >s> =P(|S, —nu > en)

Var(S,) no?

=—— —0asn—
222 22

S, =X1+--+X, = \/'aur(Sn)zno'2

Definition. A sequence (X,,) converges to X in probability and we write

P
X, > Xasn—

ife > 0:
P(|X,—X >¢) > 0asn— o0

Definition. We say (X,,) converges to X with probability 1 or ‘almost surely (a.s.)’ if

P (nlgr;oxn - X) -1

80



Claim. Suppose X,, — 0 a.s. as n — co. Then X, Po0asn— oo

Proof. NTS:
Ve >0 P(|X,| >¢) = 0asn— oo

or equivalently
P(|X,|<e)—1lasn— oo

P(Xa| <) 2P| () {1 Xl S} | An S Auis

m=n
N——
ATL

U A, = {|Xm| < e for all m sufficiently large}

P(A,) — P (U An> as n — 0o

So
lim P(|X,| <e)> lim P(4,) =P (UAn) >P < lim ) =10

n—ro0 n—o00 X,=0
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Theorem (Strong law of large numbers). Let (X,,)nen be an iid sequence of r.v.’s with p = E[X;] <
0.
Then setting
Sv=X1++X,
we have

Sn
— — g as n — 00 a.s.
n

(P(%—)uasn%oo>:1)

Proof (non-examinable). Assume further that E[X}] < oo
Set Y; = X; — u. Then E[Y;] = 0 and

E[¥i'] < 24(E[X1)* + 1*) < oo
It suffices to prove

S, - :
- — 0 where S, = ZXi with E[X;] = 0 and E[X}] < o0

i=1

4
sS4 = (zn:x) :ix;w (;1) > X!X?+R
=1 i=1

1<i<j<n

where R is a sum of terms of the form XfXij or Xf’Xj or X;X; X, X, for i, jk, [ distinct.

E[S2] = nE[X{] + (4) wE[XfX%] + E[R]

2 2 —~—
=0
So
E[S%] < n-E[X{] + 3n(n — 1)E[X}]
E[S2] < 3n’E[X{]
So

which implies that

— 2 30asn—oow.p. 10
n
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3.13 Central limit theorem

Theorem. Let (X,,)nen be an iid sequence of rv.’s with E[X;] = p and Var(X;) = 2. Set
Then

S, —nu T emy?/2

VeeR, P| ——— < P(x) = d
z € R, (aﬁ _m)—) (z) /_Oo\/% y as m — 0o

In other words,

where Z ~ N(0,1)
CLT says that for n large enoguh

Sn —np
— "~ =7 Z~N(0,1
e 0.1)

— S, ~nu+ovnZ ~ N(nu,on) for n large

Proof. Consider Y7 = (X; — u)/o. Then E[Y;] = 0 and Var(Y;) = 1.
It suffices to prove the CLT when

Sp=X1 + -+ X, with E[X;] =0 and Var(X;) =1
Assume further that 36 > 0 s.t.
E[e?*1] < 0o and E[e~°%] < oo
NTS
5
vn

By the continuity property of mgf’s, it suffices to show V6 € R

— N(0,1) as n — o0

E [easd\/ﬁ] 2%, Blef?] = /2

Set
m(6 = E[eX1]
Then 0 n
0Sn/vn| — ox1/vn|\" _ v

B [or5: ] = (£ [0 7])" = (m (72 )

NTS .
<m<\/eﬁ>) —>692/2 as n — o0
) g =y
0] < 5 m(9) =E [eX] =E |1+ 60X, + 2!1 +kz k!ll
=1
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Theorem (cont.).

Proof (cont.). So

0° oFXF
m(f) =1+ +E [Z o

k>3

Claim. It suffices to prove that

and hence

ok X}
E [Z Ml] =0(|0]*) as § — 0
k>3
Once we prove this bound, then
m 0 1+92 1+92+ |9|2
Vn Voo 2n n

Proof (of claim).

as |0] < 3.

SO

k>3

ok XF
e

kyk kyk
E Zelj'(l <E Z|9|X1
k>3 k>3
|9X1
=E ||6X1
| i Z (k+3))
s 10X
<E |«9X1| Z )
L k=0
<E[|6%;[2 - 3151
|0X1‘3€%‘X1‘ — |9|3M . 3_' . 31Xl
513
(3)
31163

Ribey

G

3
3!. (2%1) 91X

6X1

A%l < 0X1 4 o

3
<3l (@) E[e?X] 4 e=01%0 = ((10]?) as § — 0 O

<oo
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3.14 Applications

Example. Normal approximation to the binomia distr.
Let S, ~ Bin(n,p)

S = ZXi’ (X;) iid ~ Ber(p) E[S,] = np, Var(S,) = np(1 — p)
i=1

So by the CLT
_Snomp i>N(0,1) as n — 0o
np(l —p)

So
Sp = N(np,np(1 — p)) for n large

Bin (n, é) — Poi(A) A >0
n

Example. Normal approx. to the Poisson distribution:
Let S, ~ Poi(n).

Sp=>_ X, (X;)iid ~ Poi(l)
=1

Sy —
\/ﬁn i>N((),1) as n — 00
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3.15 Sampling Error via the CLT

Example. Pick N individuals at random. Let

5 — SN
PN—N

where Sy is the number of yes voters.
How large should N be so that

4
pn —p| £ — w.p. >0.99?

= 100
By the CLT
Sy ~ Np++/Np(1—p) - Z, where Z ~ N(0,1)
So
ﬁzv:SWNNer W'Z = IﬁN—pI%\/W-IZI
Find N s.t.

P(|pn — p| < 0.04) > 0.99

or equivalently
1—
P ( w |z| < 0.04> > 0.99

z =258 P(|Z] > 2.58) = 0.01
So we need

0.04, |- > 9258 = N > 1040
p(1—p)
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3.16 Buffon’s Needle

Example.

parallel lines at distance L apart

needle length [ < L

Throw the needle at random. What is the probability it intersects at least one line?
6 ~U[0, 7], X ~U[0, L] indep.

It intersects a line iff X < [sinf.

L ™
1 2
P(intersection) = P(X < lsinf) = / / —1(z < lsinf)dxdf = 20
0 0 L L
Sop= %
— T = 2l
=1

Want to use this experiment to approximate w. Throw n needles indep. and let p,, be the proportion
intersecting a line. Then p,, approximates p and so

2
T, = — L approximates m
Pn

Suppose
P(|7, — 7| < 0.001) > 0.99

How large should n be?
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Example (cont.). S, = number of needles intersecting a line
Sp ~ Bin(n,p)

By the CLT, S,, ~np + \/np(1 —p) - Z,Z ~ N(0,1)

B = ~p+

Sn
n
So
b p(l—p)

n
Define f(z) = 2L. Then f(p) = m and f'(p) = —7/p and 7, = f(pn).
By Taylor expansion, #,, = f(pn) = f(p) + (bn — p)f' (D)

—-p=

. s
= ﬂnzw—(pn—p)-—

/D 1— /1—
= M, — TR —
I—p
]P’(m/—n 12| go.oo1> > 0.99

Have P(|Z| > 2.58) = 0.01 and 7* on =P decreasing in p. Minimise 72 p by taking | =L — p=
and

We want

w2 /7
Vi :—(_—1
a n \2 )

w2 s 7
;(5_1) 258 = 0.001 => n =3.75 x 10

Taking
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3.17 Bertrand’s Paradox

Example.

1% interpretation: Let X ~ U[0,r]

A

Let C' = |AB|. What is P(C < r)?

Draw a chord at random.
What is the probability it has length < r?7

N ¢
C=2/m=X?
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Example (cont.). 2" interpretation: Let 6 ~ [0, 27]
Let C = |AB]|

If 0 € [0, 7]:
2]
2
‘B
0
— 2rsin —
C rsm2
If 0 € [m,27]:
A
\ 27 — 0
B
C = 2rsin — = 2rsin -
0
P(C<r):P(2r51n§§r)
P(si <1)
=P(sin- < =
SMo =3
T T
=PO<=)+P0H > —
(< T)+PE> D)
1,1
6 6
_1
3
~ 0.333.
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3.18 Multidimensional Gaussian r.v.’s

Definition. A r.v. X with values in R is called Gaussian/ normal if
X=p+0Z peR, oe0,00] and Z ~ N(0,1)

The density of X is

f(z) = L exp(—M>,xeR

V2ro? 202
X—A'A“N»U%
Definition. Let X = (X,...,X,,)? with values in R". Then X is a Gaussian vector or is just
called Gaussian if Vu = (uy,...,u,)T € R®

n
uTX = E w; X; 1s a Gaussian r.v. in R
i=1

Example. Suppose X is Gaussian in R™. Suppose A is an m X n matrix and b € R™. Then AX +b
is also Guassian in R™.

Proof. Let u € R™. THen

u'(AX +b) = (T A)X +u'd

Set v = ATu. Then .
u(AX +b) =v"X +u"b=0"X + > uib;

=l

Since X is Gaussian, we get v7 X is Gaussian, and also v7 X + u”'b is Gaussian.

Definition.
E[X1]
p=EX]=] 1 | p=EX]
E[X,)
V= Var(X) =E[(X — (X - )] = | El(Xi—pm)(X;—p) | =|  Cov(Xi,Xy)

nx1 1xn
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Equation. V is a symmetric matrix

E[uTX] =FE [Z uiXi] = Zui,ui =uTp
i=1 i=1

n

Var(u? X) = Var <Z uiX¢> = Z u;Cov(X; X;)uj = v’ Vu
i=1

4,j=1

So uT' X ~ N(uT p,uTVu)

Claim. V is a non-negative definite matrix/ (Vu € R, u"Vu > 0)

Proof. Let u € R™. Then
Var(u” X) = uTVu

Since Var(u? X) > 0, we have
uTVu >00

Method. Finding mgf of X:
m(\) =E[eX X]VA€R™, A= (A1,..., )T
m(\) = ]E[eATx] — AT HATVA/2

We know
M X ~ NOATpu, ATV )

So m(A) is characterised by p and V. Since the mgf uniquely characterises the distribution, we see
that a Gaussian vector is uniquely characterised by its mean p and variance V.
In this case we write X ~ N (p, V)
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Claim. Let Z,,...,Z, iid N(0,1) r.v.’s .
Set Z = (Zy,...,Z,)T. Then Z is a Gaussian vector.

Proof. Vu € R" uTZ is Gaussian.
=il

n

NTS > w;Z; is normal.
i=1

Let A € R.

So uT'Z ~ N (0, |u[?)O

So Z ~ N(0,1,)
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Method. Let p € R™ and V a non-negative definite matrix.

We want to construct a Gaussian vector with mean p and variance V using Z.
n=1: p,0% If Z~ N(0,1) then p+0Z ~ N(u + c?)

Since V is non-negative, definite, V = U7 DU with U~! = U” and

A1
D =
An
and \; > 0 Vi
We define the square root of V' to be the matrix
oc=UTVDU

where

VAL

VD=
VAn

Indeed

o-0=UTVDUUTVDU =UTDU =V

Let Z = (Z4,...,2Z,) with (Z;) iidd N(0,1) r.v.’s
Set X =u+oZ

Claim. X ~ N(p, V)

Proof. X is Gaussian, since it is a linear transformation of the Gaussian vector Z.

and




Method. Finding density of X ~ N(u, V)

1 (z — p)?
= . ~ 2 = —_—
n=1:X~ N(u,oc°) fx(z) s exp( 52
Case V is positive definite (A; > 0 Vi):
X=p+0Z, Z~N(0,1I,)

fx(@)=fz(2)-|J|x=p+oz

Since V is positive definite, o is invertible

So
t=p+oz = z=0 '(z—p
So . .
fx(@) = fz(2) - |J| = H (6\/% ) “|deto™ |
s fx() = 2L 1 e
YT @ VdetV  J/@m)rdetV
Zoz= (0" e —w) (07 (& — )
=@=—pe )T  (@=—p)
=(@—po o™ (z—p)
=@-pw" -V (@—p)
Therefore ) R . (_ (X - )T - V-i(z - M))
* Jenrdety P 2

Case V is non-negative definite, so some eigenvalues could be 0.
By an orthogonal change of basis, we can assume that

V= [(é 8] where U is an m x n (m < n) positive definite matrix

We can write X = {z] where Y has density

_ v (=N Uy =)
fY(y) = (27r)mdetUe P( B )

Claim. If the X;’s are independent, then V is a diagonal matrix

Proof. Since the X;’s are independent, it follows that Cov(X;, X;) = 0 whenever ¢ # j. So
V' is diagonal.
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Lemma. Suppose that X is a Gaussian vector. Then if V' is a diagonal matrix, then the X;’s are
independent

Proof (1%%). If V is diagonal, then the density fx(x) factorises into a product. Indeed,

(x—H)TV_l(x_M):ZLM?) —— A >0

Hence the X;’s are indep.

Proof (2°9).
m(6) = E[e? X] = f #HTVO/2 = (i (T 6:0i/2

So m(#) factorises into the mgf’s of Gaussian r.v.’s in R [

Moral. So for Gaussian vectors we have

(X1,...,X,) are independent iff Cov(X;, X;) = 0 whenever i # j

3.19 Bivariate Gaussian

Definition. n =2
Let X = (X3, X5) be a Gaussian vector in R?.
Set up = E[Xy], k=1,2. Set 02 = Var(Xy)

= Corr(Xy, X5) = CoviXy, X»)
P b \/Var(X;)Var(X2)

Claim. p € [-1,1]

Proof. Immediate from the Cauchy-Schwartz ineq. [

2
V = Var(X) = { o1 '001202]
pPoO102 g5




Claim. For all o3, > 0 and p € [-1,1]

2
_ |: o7 pPO102

0010 o2 ] is non-negative definite
192 2

Proof. Let u € R?

w'Vu=(1-p)(otu} + o2 4 03) + p(oruy + o2uz)?

= (1 + p)(o7uf + o5u3) — p(orur — opuz)® O

>0 Vpe[-1,1]

Equation. When p =0 and 01,05 > 0, then

le’XQ(x,xz):ﬁ L oo (—M>

So X7 and X5 are independent in this case.

More generally, suppose (X1, X2) is a Gaussian vector.
want to find E[X5|X;].

Let a € R. Consider X5 — aX;.

COV(X2 — aXl,Xl) = COV(XQ,Xl) — (I,COV(Xl,Xl)
= Cov(C1, X2) — aVar(X;)
= po102 — ao%

Take a = (poz)/o1. Then Cov(Xy —aXq, X;1) = 0.
Set Y = Xg — G,Xl

Claim. (X;,Y) is a Gaussian vector

%1 9

] where [?1] is a Gaussian vector. [
2

So X1Y is of the form A [Xl
Xo
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Equation. From the criterion of independence, we get X; is independent of Y, since (X1,Y) is
Gaussian and Cov(X;,Y) = 0. Have Y = X5 — aX; so we can express

Xo=Xo —aX;+aX;i =Y +aXy

and
E[X2|X1] = E[Y + G.X1|X1] = E[Y|X1] +GE[X1|X1]
——— N——
=E[Y] =X,]
using Y 1l X;.
So

IE[X2|X1] = E[Y] I (LXl
(X1, X3) Gaussian, (X5 —aX;, X1) is Gaussian and X — aX; 1l X;.

X2=X2—aX1 +X1

So given X7,
Xo ~ N(aXy + ps — ap, Var(Xs — aX;)

where
Var(Xs — aX;) = Var(Xs) + a*Var(X;) — 2aCov(X1, X3)

3.20 Multivariate CLT (non-examinable)

Equation. Let X be a random vector in R* with = E[X] and covariance matrix . Let X1, Xo,...
be iid with same distribution as X. Then

R U - P )
Sn = \/ﬁ;(‘xl E[X;]) — N(u,0) as n — oo

Convergence distribution means that “v” B C RF

P(S, € B) — P(N(u,%) € B)

n—oo

Example. Let U ~ UJ0,1]. Set X = —logU
PX <z)=P(—logU <z)=PU >e *)=1—e"

So X ~ Exp(1)

Theorem. Let X be a continuous r.v. with distribution function F. Then if U ~ U[0, 1] we have
that F~Y(U) ~ F

Proof. Set Y = F~1(U)
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3.21 Rejection Sampling

Example. Suppose A C [0, 1]%. Define

1 A
f(z) = %, |A| = volume of A

Let X have density f. How can we simulate X?
Let (U, )nen be an iid sequence of d-dimensional uniforms, i.e.

Uy = (Uk,n ke {1, 5o 7d})7 (Uk,n)(k,n) iid ~ U[O, 1]

Let N =min{n >1:U, € A}

Claim. Uy ~ f

Proof. We want to show that VB C [0, 1]¢

P(UNEB)Z/ f(X dx

P(Uy € B) = Z (Uy € B,N =n)

PU,€e ANB,U,_1 ¢ A,...,U £ A)

||F”18

i]P’(Un €ANB) PUn_1 ¢ A)...P(Us ¢ A)

U;s indep

=3 14N Bl - 4!

n=1

_ |AnB|
Al

|A|2|B|:/A xeB /f

and we have:
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Example. Suppose f is a density on [0, 1]9~! which is bounded, i.e.
IA>0s.t. f(z) < AVze (0,191

Want to sample X ~ f.
Consider
A={(z1,...,29) €[0,1]¢: zg < f(21,...,2a-1)/\}

From the above we know how to generate a uniform random variable on A.
Let Y = (Xy,...,X4) be this r.v.
Set X = (Xl, 500 7Xd—1)

Claim. X ~ f

Proof. We need to show that VB C [0,1]4~!

P(X € B) :/Bf(:zc) i

Have:

(B x [0,1]) N A
|A]

P(X € B) = P((X1, ..., X4-1) € B) = P((X1, ..., Xa) € (B x [0,1]) N A) =
o 7 S it @ A
(B x [0,1])OA|:/~~~/1((x1,...,9cd)€B><[0,1]ﬂA)d:1:1...dxd
:/~-~/1((9L‘1,...,xd_1) eB)l(xdg M) das ... dzg_y
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