
Probability

Hasan Baig

Lent 2021

Contents
1 Probability Spaces 3

1.1 Examples of Probability Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Combinatorial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Stirling’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Properties of Probability Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Countable subadditivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Continuity of Probability Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Inclusion-Exclusion Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5.1 Bonferroni Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.2 Counting using Inclusion-Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.3 Counting Derangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8 Law of Total Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.9 Bayes’ Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.10 Simpson’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Discrete Random Variables 20
2.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Properties of Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Another proof of the inclusion-exclusion formula . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Properties of Indicator Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Markov’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Chebyshev’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.3 Cauchy-Schwarz Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.4 Cases of Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.5 Jensen’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.6 Cases of Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.7 AM-GM Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Conditional expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.1 Law of Total Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.2 Joint Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.3 Distribution of the sum of independent r.v.’s . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.4 Properties of Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7.1 Expected time to absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 Probability Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1



2.9 Sum of a Random Number of r.v.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.9.1 Another Proof Using Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . 52

2.10 Branching Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.10.1 Extinction Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Continuous Random Variables 59
3.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Exponential as a limit of geometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 Multivariate Density Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Density of the Sum of Independent r.v.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6 Conditional Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.7 Law of Total Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.8 Transformation of a multidimensional r.v. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.9 Order Statistics for a Random Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.10 Moment Generating Functions (mgfs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.11 Multivariate Moment Generating Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.12 Limit Theorems for Sums of iid r.v.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.13 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.14 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.15 Sampling Error via the CLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.16 Buffon’s Needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.17 Bertrand’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.18 Multidimensional Gaussian r.v.’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.19 Bivariate Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.20 Multivariate CLT (non-examinable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.21 Rejection Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2



1 Probability Spaces

Definition. Suppose Ω is a set and F is a collection of subsets of Ω.
We call F a σ-algebra if:
(i) Ω ∈ F
(ii) if A ∈ F , then AC ∈ F
(iii) for any countable collection (An)n≥1 with An ∈ F ∀n, we must also have that

⋃
n
An ∈ F

Definition. Suppose F is a σ-algebra on Ω. A function P : F → [0, 1] is called a probability
measure if
(i) P(Ω) = 1
(ii) for any countable disjoint collection (An)n≥1 in F with An ∈ F ∀n, we have

P(
⋃
n≥1

An) =
∑
n≥1

P(An)

We call (Ω,F ,P) a probability space. Ω is the sample space
F a σ-algebra
P the probability measure

Note. We say P(A) is the probability of A

Remark. When Ω countable, we take F to be all subsets of Ω

Definition. The elements of Ω are called outcomes and the elements of F are called events.

Remark. We talk about probability of events and not outcomes.
Pick a uniform number from [0, 1]

Properties of P (immediate from the definition):
• P(AC) = 1− P(A)
• P(∅) = 0
• if A ⊆ B, then P(A) ≤ P(B)
• P(A ∪B) = P(A) + P(B)− P(A ∩B)

1.1 Examples of Probability Spaces

Example. Rolling a fair die
Ω = {1, 2, . . . , 6}, F = all subsets of Ω.
P({ω}) = 1

6 ∀w ∈ Ω and if A ⊆ Ω, then P(A) = |A|
6

(all outcomes equally likely)

3



Example. Equally likely outcomes
Let Ω be a finite set, Ω = {ω1, . . . , ωn}, F = all subsets.
Define P : F → [0, 1] by P(A) = |A|

|Ω|
In classical probability, this models picking a random element of Ω.
P({ω}) = 1

|Ω| ∀ω ∈ Ω

Example. Picking balls from a bag
Suppose we have n balls with n labels from {1, . . . , n} indistinguishable by touch.
Pick k ≤ n balls at random (all outcomes equally likely) without replacement.
Take Ω = {A ⊆ {1, . . . , n} : |A| − k} |Ω| =

(
n
k

)
P({ω}) = 1

|Ω| .

Example. Deck of cards
Take a well-shuffled (all possible permutations equally likely) deck of 52 cards.
Ω = {all permutations of 52 cards} |Ω| = 52!
P(top 2 cards are aces) = 4×3×50!

52! = 1
221

Example. Largest digit
Consider a string of n random digits from 0, . . . , 9 (every digit can be any from 0, . . . , 9)
Ω = {0, 1, . . . , 9}n |Ω| = 10n

Ak = {no digit exceeds k} and Bk = {largest digit is k}
P(Bk) = |Bk|

|Ω|
Notice Bk = Ak\Ak−1

|Ak| = (k + 1)n =⇒ |Bk| = (k + 1)n − kn

So P(Bk) = (k+1)n−kn
10n
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Example. Birthday problem
There are n people. What is the probability that at least 2 of these share the same birthday.
Assume nobody is born on 29/02. Also assume each birthday is equally likely. So Ω = {1, . . . , 365}n
F = all subsets.
Since all outcomes are equally likely, we take

P({ω})
ω∈Ω

=
1

365n

A = {at least 2 people share same birthday}
AC = {all n birthdays are different}.
Since P(A) = 1− P(AC), it suffices to calculate P(AC)

P(AC) =
|AC |
|Ω|

=
365× 364× · · · × (365− n+ 1)

365n

And hence:
P(A) = 1− 365× 364× · · · × (365− n+ 1)

365n

Note. n = 22 =⇒ P(A) ≈ 0.476
n = 23 =⇒ P(A) ≈ 0.507

1.2 Combinatorial Analysis

Ω finite set & suppose |Ω| = n.

Want to partition Ω into k disjoint subsets Ω1 . . .Ωk with |Ωi| = ni and
k∑
i=1

ni = n.

How many ways are there?
M = # of ways

M =

(
n

n1

)(
n− n1

n2

)
. . .

(
n− (n1 + · · ·+ nk−1)

nk

)
=

n!

n1! · n2! · · · · · nk!

We write (
n

n1, . . . , nk

)
=

n!

n1! · n2! · · · · · nk!
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Strictly increasing and increasing functions f = {1, . . . , k} → {1, . . . , n} is strictly increasing if
whenever x < y, then f(x) < f(y).
f is called increasing if whenever x < y, then f(x) ≤ f(y).

• How many strictly increasing functions f = {1, . . . , k} → {1, . . . , n} exist?
Any such function is uniquely determined by its range which is a subset of {1, 2, . . . , n} of size
k. There are

(
n
k

)
such subsets, and hence

(
n
k

)
strictly increasing

• How many increasing functions f = {1, . . . , k} → {1, . . . , n} exist?
Define a bijection

{f : {1, . . . , k} → {1, . . . , n}| increas.} to {g : {1, . . . , k} → {1, . . . , n+ k − 1}|strict. increas.}

∀f increasing, define g(i) = f(i) + i − 1. Then g is strictly increasing and takes values in
{1, . . . , n+ k − 1}
So total number of increasing functions f = {1, . . . , k} → {1, . . . , n} is

(
n+k−1

k

)
.

1.3 Stirling’s Formula

Notation. Let (an) and (bn) be 2 sequences. We write:

an ∼ bn if
an
bn
→ 1 as n→∞
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Theorem (Stirling).
n! ∼ nn

√
2πne−n as n→∞

Note. Weaker examinable statement proved below

Proof (non-examinable). ∀f : twice differentiable, ∀a < b:∫ b

a

f(x) dx =
f(a) + f(b)

2
(b− a)− 1

2

∫ b

a

(x− a)(b− x)f ′′(x) dx

(can prove by doing IBP twice)
Take f(x) = log x, a = k and b = k + 1∫ k+1

k

log x dx =
log k + log(k + 1)

2
+

1

2

∫ k+1

k

(x− k)(k + 1− x)

x2
dx

=
log k + log(k + 1)

2
+

1

2

∫ 1

0

(x)(1− x)

(x+ k)2
dx

Take the sum for k = 1, . . . , n− 1 of the equality above to get:∫ n

1

log xdx =
log((n− 1)!) + log(n!)

2
+

1

2

n−1∑
k=1

∫ 1

0

x(1− x)

(x+ k)2
dx

n log n− n+ 1 = log(n!)− log n

2
+

n−1∑
k=1

ak, where we set ak =
1

2

∫ 1

0

x(1− x)

(x+ k)2
dx

log n! = n log n− n+
log n

2
+ 1−

n−1∑
k=1

ak

n! = nne−n
√
n exp

(
1−

n−1∑
k=1

ak

)

Note that ak ≤ 1
2

∫ 1

0
x(1−x)
k2 dx = 1

12k2

So
∑
ak <∞. We set A = exp

(
1−

n−1∑
k=1

ak

)
Then:

n! = nn · e−n
√
A · exp

(
n−1∑
k=1

ak

)
︸ ︷︷ ︸
→0

So we proved that
n!

nne−n
√
n
→ A as n→∞

Which means n! ∼ nne−n
√
nA as n→∞.

To finish the proof, need to show A =
√

2π
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Theorem (Continued).

Claim. A =
√

2π knowing that n! ∼ nnw−n
√
n ·A as n→∞

Proof.

2−2n ·
(

2n

n

)
= 2−2n · (2n)!

n! · n!
∼ 2−2n (2n)2n ·

√
2n ·A · e−2n

nn2−n
√
n ·A · nn · e−n ·

√
n ·A

=

√
2

A
√
n

Using a different method we will prove that

2−2n

(
2n

n

)
∼ 1√

πn

Which will then force A =
√

2π

Consier In =
∫ pi

2

0
(cos θ)n dθ, n ≥ 0.

So I0 = π
2 and I1 = 1.

By integration by parts

In =
n− 1

n
In−2

So
I2n =

2n− 1

2n
I2n−2 =

(2n− 1) · (2n− 3) . . . 3 · 1
2n · (2n− 2) . . . 2

I0︸︷︷︸
=π

2

=
(2n)!

22n · n! · n!
· π

2

Achieved by mutiplying numerator and denominator by the even terms 2n(2n− 2) . . . 2.
So I2n = 2−2n ·

(
2n
n

)
π
2

In the same way we get

I2n+1 =
2n . . . 4 · 2

(2n+ 1) . . . 3 · 1
=

1

2n+ 1

(
2−2n ·

(
2n

n

))−1

From In = n−1
n In−2 we get:

In
In−2

→ 1 as n→∞
Want I2n

I2n+1
→ 1 as n→∞

Recall In =
∫ π

2

0
(cos θ)n dθ. We see that In is decreasing as a function of n.

Therefore
I2n
I2n+1

≤ I2n−1

I2n+1
→ 1

And also
I2n
I2n+1

≥ I2n
I2n−2

→ 1

So I2n
I2n+1

→ 1 as n→∞, which means

2−2n ·
(

2n
n

)
· π2(

2−2n ·
(

2n
n

))−1 · 1
2n+1

→ 1

=⇒
(

2−2n ·
(

2n

n

))2
π

2
· (2n+ 1)→ 1 as n→∞

This is saying
(
2−2n ·

(
2n
n

))2 ∼ 2
π(2n+1) ∼

1
πn
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Claim. Weaker statement of Stirling:

log(n!) ∼ n log n as n→∞

Proof. Define ln = log(n!) = log 2 + . . . log n
For x ∈ R, we write bxc: integer part of x.

logbxc ≤ log x ≤ logbx+ 1c

Integrate from 1 to n ∫ n

1

logbxc dx ≤
∫ n

1

log xdx ≤
∫ n

1

logbx+ 1c dx

n−1∑
k=1

log k ≤
∫ n

1

log xdx ≤
n∑
k=1

log k

ln−1 ≤ n log n− n+ 1 ≤ ln

For all n we get

n log n− n+ 1 ≤ ln ≤ (n+ 1) log(n+ 1)− (n+ 1) + 1

Divide through by n log n to get:

ln
n log n

→ 1 as n→∞

=⇒ A =
√

2π

1.4 Properties of Probability Measures

Note. Have (Ω,F ,P) probability space.
P : F → [0, 1] is a probability measure if:
(i) P(Ω) = 1
(ii) (An)n≥1 disjoint

P(
⋃
An) =

∑
P(An) countable additivity
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1.4.1 Countable subadditivity

Claim. Let (An)n≥1 be a sequence of events in F (An ∈ F ∀n)
Then

P

( ∞⋃
n=1

An

)
≤
∞∑
n=1

P(An)

Proof. Define B1 = A1 and Bn = An\(A1 ∪ · · · ∪An−1)∀n ≥ 2.
Then (Bn)n≥1 is a disjoint sequence of events in F and

⋃
n≥1

B2 =
⋃
n≥1

An.

So P(
⋃
An) = P(

⋃
Bn)

By countable additivity for (Bn):

P

⋃
n≥1

Bn

 =
∑
n≥1

P(Bn)

But Bn ⊆ An. So P(Bn) ≤ P(An)∀n.
Therefore:

P
(⋃

An

)
= P

(⋃
Bn

)
=
∑

P (Bn) ≤
∑
n≥1

P (An)

1.4.2 Continuity of Probability Measures

Let (An)n≥1 be an increasing sequence on F , i.e. ∀n An ∈ F andAn ⊆ An+1. Then P(An) ≤ P(An+1).
So P(An) converges as n→∞.

Claim.
lim
n→∞

P(An) = P(
⋃
n

An)

Proof. Set B1 = A1 and ∀n ≥ 2 Bn = An\(A1 ∪ · · · ∪An−1)

Then
n⋃
k=1

Bk = An and
n⋃
k=1

Bk =
n⋃
k=1

Ak

So P(An) = P(
n⋃
k=1

Bk) =
n∑
k=1

P(Bk) →
n→∞

∞∑
k=1

P(Bk) as Bk disjoint sequence of events.

Remains to prove that:
∞∑
k=1

P(Bk) = P
(⋃

An

)
Since

∞⋃
k=1

Bk =
∞⋃
k=1

Ak, we get P(
⋃
An) = P(

⋃
Bn) =

∑
n
P(Bn)

Note. Similarly, if (An) is a decreasing sequence in F , i.e. ∀n An ∈ F and An+1 ⊆ An, then

P(An)→ P

(⋂
n

An

)
as n→∞
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1.5 Inclusion-Exclusion Formula

Let A,B ∈ F . Then P(A ∪B) = P(A) + P(B)− P(A ∩B)
Let C ∈ F . Then P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)

Claim. Let A1, . . . , An ∈ F . then

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P(Ai)

−
∑

1≤i1<i2≤n

P(Ai1 ∩Ai2)

+
∑

1≤i1<i2<i3≤n

P(Ai1 ∩Ai2 ∩Ai3)

...

+ (−1)n+1P(A1 ∩ · · · ∩An)

P

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

P(Ai1 ∩ · · · ∩Aik)

Proof. By induction. For n = 2 it holds.
Assume it holds for n− 1 events. We will prove it for n events.

P(A1∪· · ·∪An) = P((A1∪. . . An−1)∪An) = P(A1∪. . . An−1)+P(An)−P((A1∪. . . An−1)∩An) (∗)

Notice
P((A1 ∪ . . . An−1) ∩An) = P((A1 ∩An) ∪ · · · ∪ (An−1 ∩An))

Set Bi = Ai ∩An. By the inductive hypothesis,

P(A1 ∪ · · · ∪An−1) =

n−1∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n−1

P(Ai1 ∩ · · · ∩Aik)

P(B1 ∪ · · · ∪Bn−1) =

n−1∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n−1

P(Bi1 ∩ · · · ∩Bik)

Plugging these two into back into (∗) gives the claim.

Let (Ω,F ,P) with |Ω| <∞ and P(A) = |A|
|Ω| ∀A ∈ F .

Let A1, . . . , An ∈ F . Then

|A1 ∪ · · · ∪An−1| =
n−1∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n−1

|Ai1 ∩ · · · ∩Aik |

11



1.5.1 Bonferroni Inequalities

Claim. Truncating sum in the inclusion-exclusion formula at the r- th term gives an overestimate if
r is odd and an underestimate if r is even, i.e.

P

(
n⋃
i=1

Ai

)
≤

r∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

P(Ai1 ∩ · · · ∩Aik) if r is odd

P

(
n⋃
i=1

Ai

)
≥

r∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

P(Ai1 ∩ · · · ∩Aik) if r is even

Proof. By induction. For n = 2 P(A ∪B) ≤ P(A) + P(B)
Assume the claim holds for n− 1 events. Will prove for n.
Suppose r is odd. Then

P(A1 ∪ · · · ∪An) = P(A1 ∪ · · · ∪An−1) +P(An)−P(B1 ∪ · · · ∪Bn−1), where Bi = Ai ∩An (∗)

Since r is odd, apply the inductive hypothesis to P(A1 ∪ · · · ∪An) to get:

P

(
n−1⋃
i=1

Ai

)
≤

r∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n−1

P(Ai1 ∩ · · · ∩Aik)

Since r − 1 is even, apply the inductive hypothesis to P(B1 ∪ · · · ∪Bn−1)

P

(
n−1⋃
i=1

Bi

)
≥

r−1∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n−1

P(Bi1 ∩ · · · ∩Bik)

Substitute both bounds in (∗) to get an overestimate.
In exactly the same way we prove the result for r even.
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1.5.2 Counting using Inclusion-Exclusion

Example. Number of surjections f : {1, . . . , n} → {1, . . . ,m}
Let Ω = {f : {1, . . . , n} → {1, . . . ,m}} and A = {f ∈ Ω : f is a surjection }.
|A| =? ∀i ∈ {1, . . . ,m} define Ai = {f ∈ Ω : i 6∈ {f(1), . . . , . . . , f(n)}}
Then

A = AC1 ∩AC2 ∩ · · · ∩ACm = (A1 ∪ · · · ∪Am)C

|A| = |Ω| − |A1 ∪ · · · ∪Am| = mn − |A1 ∪ · · · ∪Am|

|A1 ∪ · · · ∪Am| =
m∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤m

|Ai1 ∪ · · · ∪Aik |︸ ︷︷ ︸
=(m−k)n

=

m∑
k=1

(−1)k+1

(
m

k

)
(m− k)n

So

|A| = mn −
m∑
k=1

(−1)k+1

(
m

k

)
(m− k)n

=

m∑
k=0

(−1)k
(
m

k

)
(m− k)n

1.5.3 Counting Derangements

Note. A derangement is a permutation with no fixed points

Example.
A = {derangements} = {f ∈ Ω : f(i) 6= i ∀i− 1, . . . , n}

Pick a permutation at random. What is the probability it is in A?
Define Ai = {f ∈ Ω : f(i) = i}

Then A = AC1 ∩AC2 ∩ · · · ∩ACn =

(
n⋃
i=1

Ai

)C
So P(A) = 1− P

(
n⋃
i=1

Ai

)
By inclusion-exclusion

P

(
n⋃
i=1

Ai

)
=

m∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n

P(Ai1 ∩ · · · ∩Aik)︸ ︷︷ ︸
=

(n−k)!
n!

=

m∑
k=1

(−1)k+1

(
n

k

)
· (n− k)!

n!

=

n∑
k=1

(−1)k+1 · 1

k!

So

P(A) = 1− P

(
n⋃
i=1

Ai

)
= 1−

n∑
k=1

(−1)k+1

k!
=

n∑
k=0

(−1)k

k!
−→
n→∞

e−1 ≈ 0.3678
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1.6 Independence

Definition. Let A,B ∈ F . They are called independent (A ⊥⊥ B) if

P(A ∩B) = P(A) · P(B)

A countable collection of events (An) is said to be independent if ∀ distinct i1, i2, . . . , ik we have

P(Ai1 ∩ · · · ∩Aik) =

k∏
j=1

P(Aij )

Remark. Pairwise independent does not imply independent see example below

Example. Toss a fair coin twice

Ω = {(0, 0), (0, 1), (1, 0), (1, 1)} P(ω) =
1

4
∀ω ∈ Ω

Define A = {(0, 0), (0, 1)}, B = {(0, 0), (1, 0)} and C = {(1, 0), (0, 1)}

P(A) = P(B) = P(C) =
1

2

P(A ∩B) = P({(0, 0)}) =
1

4
=

1

2
· 1

2
− P(A) · P(B) =⇒ A ⊥⊥ B

Similarly
P(B ∩ C) = P(B) · P(C) =⇒ B ⊥⊥ C

and
P(A ∩ C) = P(A) · P(C) =⇒ A ⊥⊥ C

P(A ∩B ∩ C) = P(∅) = 0 6= P(A) · P(B) · P(C)

So A,B and C are note independent

Claim. If A is independent of B, then A s also independent of BC

Proof.

P(A ∩BC) = P(A)− P(A ∩B)

= P(A)− P(A) · P(B)

= P(A) · (1− P(B)) = P(A) · P(BC)

14



1.7 Conditional Probability

Definition. Let B ∈ F with P(B) > 0
Let A ∈ F . We define the conditional probability of A given B and write P(A|B) to be

P(A|B) =
P(A ∩B)

P(B)

Note. If A and B are independent, then P(A∩B)
P(B) = P(a)·P(B)

P(B) = P(A)

So in this case P(A|B) = P(A)

Claim. Suppose (An) is a disjoint sequence in F .
Then P(

⋃
An|B) =

∑
n
P(An|B) (countable additivity for conditional probability)

Proof.

P(
⋃
An|B) =

P((
⋃
An) ∩B
P(B)

=
P
⋃
n(An ∩B)

P(B)

=
∑
n

P(An ∩B)

P(B)
countable additivity of P

=
∑
n

P(An|B)

1.8 Law of Total Probability

Claim. Suppose (Bn)n∈N is a disjoint collection in F and
⋃
Bn = Ω and ∀nP(Bn) > 0.

Let A ∈ F . Then P(A) =
∑
n P(A|Bn) · P(Bn)

Proof.

P(A) = P(A ∩ Ω) = P

(
A ∩

(⋃
n

Bn

))

= P

(⋃
n

(A ∩Bn)

)
=
∑
n

P(A ∩Bn) countable additivity of P

=
∑
n

P(A|Bn) · P(Bn)
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1.9 Bayes’ Formula

Claim. (Bn) disjoint events,
⋃
Bn = Ω, P(Bn) > 0 ∀n

P(Bn|A) =
P(A|Bn) · P(Bn)∑
k P(A|Bk) · P(Bk)

Proof.
P(Bn|A) =

P(Bn ∩A)

P(A)
=

P(A|Bn) · P(Bn)

P(A)

and
P (A) =

∑
k

P(A|Bk) · P(Bk) using law of total prob.

Note. This formula is the basis of Bayesian statistics.
We know the probabilities of the events (Bk) and we have a model which gives us P(A|Bn). Bayes’
formula tells us how to calculate the posterior probabilities of Bn given that the event A occurs.

Equation. Let (Bn) be a partition of Ω, i.e. (Bn) are disjoint and ∪Bn = Ω

∀A ∈ F P(Bn|A) =
P(A|Bn) · P(Bn)∑
k P(A|Bk)P(Bk)

Baye’s formula
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Example (False positives for a rare condition). Suppose that condition A affects 0.1% of the popu-
lation. We have medical test which is posititve for 98% of the affected population and 1% of those
unaffected by the disease. Pick an individual at random. What is the probability they suffer from A
given they tested positive?
Define

A = {individual suffers from A}
P = {individual tested positive}

Want P(A|P )
P(A) = 0.001, P(P |A) = 0.98, P(P |AC) = 0.01

P(A|P ) =
P(P |A) · P(A)

P(P |A) · P(A) + P(P |AC) · P(AC)
=

0.98× 0.001

0.98 ∗ 0.001 + 0.01 ∗ 0.999
= 0.089 · · · ' 0.09

So P(A|P ) ' 0.9
The reason why this is low is because P(P |AC) >> P(A)

P(A|P ) =
1

1 + P(P |AC)·P(AC)
P(P |A)·P(A)

But P(AC) ' 1 and P(P |A) ' 1 so can approximate

P(A|P ) =
1

1 + P(P |AC)
P(A)

Suppose there is a population of 1000 people and about 1 suffers from the disease. In the 999 not
suffering from the disease about 10 will test positive. So in total there will be about 11 people testing
positive. Pick an individual at random among these 11 people, then the prob they have the disease
will be 1

11
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Example (Extra knowledge gives surprising results). 3 Statements:
(a) I have 2 children one of whom is a boy
(b) I have 2 children and the eldest one is a boy
(c) I have 2 children one of whom is a boy born on a Thursday

P(I have 2 boys|a) = ?

P(I have 2 boys|b) = ?

P(I have 2 boys|c) = ?

Define
BG = {elder = boy, younger = girl}

GB = {elder = girl, younger = boy}

BB, GG defined similarly
(a)

P(BB|BB ∪BG ∪GB) =
1

3

(b)

P(BB|BB ∪BG) =
1

2

(c)
GT = {elder = girl, younger = boy born on a Thursday

(d)
TN = {elder = boy born on a Thursday, younger = boy not born on a Thursday

TT, TG,NT defined similarly

P(TT ∪ TN ∪NT |GT ∪ TG ∪ TT ∪ TN ∪NT ) =
P(TT ∪ TN ∪NT )

P(TT ∪ TN ∪NT ∪GT ∪ TG)

P(TT ∪ TN ∪NT ) =
1

2
· 1

7
· 1

2
· 1

7
+

1

2
· 1

7
· 1

2
· 6

7
+

1

2
· 6

7
· 1

2
· 1

7
=

13

49× 4

P(TT ∪ TN ∪NT ∪GT ∪ TG) =
13

49× 4
+

1

2
· 1

2
· 1

7
+

1

2
· 1

2
· 1

7
+

1

2
· 1

7
· 1

2

P(TT ∪ TN ∪NT |GT ∪ TG ∪ TT ∪ TN ∪NT ) =
13

27

1.10 Simpson’s Paradox

All applicants Admitted Rejected % Admitted
State 25 25 50%

Independent 28 22 56%
Men Only Admitted Rejected % Admitted

State 15 22 41%
Independent 5 8 38%
Women Only Admitted Rejected % Admitted

State 10 3 77%
Independent 23 14 62%
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Remark. This phenomenon is called confounding in statistics. It arises when we aggregate data
from disparate populations.

Let

A = {individual is admitted}
B = {individual is a man}
Bc = {individual is a woman}
C = {individual comes from a state school}

CC = {individual comes from an independent school}

Here we see that
P(A|B ∩ C) > P(A|B ∩ CC)

P(A|BC ∩ C) > P(A|BC ∩ CC)

However we see that
P(A|CC) > P(A|C)

P(A|C) = P(A ∩B|C) + P(A ∩BC |C) =

=
P(A ∩B ∩ C)

P(C)
+

P(A ∩BC ∩ C)

P(C)
=

= P(A|B ∩ C) · P(B|C) + P(A|BC ∩ C) · P(BC |C)

> P(A|B ∩ CC) · P(B|C) + P(A|BC ∩ CC)P(BC |C)

Assume further that P(B|C) = P(B|CC). Then,

P(A|C) > P(A|B ∩ CC) · P(B|CC) + P(A|BC ∩ CC) · P(BC |CC)

= P(A|CC)

So under this extra assumption
(
P(B|C) = P(B|CC)

)
which is not valid here, we would get that

indeed P(A|C) > P(A|CC)
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2 Discrete Random Variables

2.1 Definitions and Examples

Definition (Discrete Probability Distribution).

(Ω,F ,P) Ωfinite or countable

Ω = {ω1, ω2, . . . , }

F = {all subsets of Ω}

If we know P({ωi}) ∀i, then this determines P.
Indeed, let A ⊆ Ω then

P(A)− P(
⋃

i:ωi∈A
{ωi}) =

∑
i:ωi∈A

P({ωi})

We write pi = P({ωi}) and we call it a discrete probability distribution

Note. Properties:
• pi ≥ 0 ∀i
•
∑
i pi = 1

Example (Bernoulli Distribution). Model the outcome of the toss of a coin.

Ω = {0, 1} p1 = P({1}) = p and p0 = P({0}) = 1− p

P(we see a H) = p, P(we see a T ) = 1− p

Example (Binomial distribution).

B(N, p), N ∈ Z+, p ∈ [0, 1]

Toss a p-coin (prob of H is p) N times independently.

P(we see k heads) =

(
N

k

)
pk(1− p)n−k

Ω = {0, 1, . . . , N} pk =

(
N

k

)
· pk · (1− p)k

N∑
k=0

pk = 1
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Example (Multinomial Distribution).

M(N, p1, . . . , pk), N ∈ Z+, p1, . . . , pk ≥ 0 and
k∑
i=1

pi = 1

. . .

1 2 k

k boxes and N balls
P(pick box i) = pi

Throw the balls independently.

Ω = {(n1, . . . , nk) ∈ Nk :

k∑
i=1

ni = N}

The set of ordered partitions of N .

P(n1 balls fall in box 1, . . . , nk fell in box k) =

(
N

n1, . . . , nk

)
· pn1

1 · p
n1
2 . . . pnkk

∑
ni = N

Example (Geometric Distribution). Toss a p-coin until the first H appears.

Ω = {1, 2, . . . }

pk = P(we tossed k times until first H) = (1− p)k−1p

∞∑
k=1

pk = 1

Ω = {0, 1, . . . } P(k tails before first H = (1− p)k · p = p′k
∞∑
k=1

p′k = 1
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Example (Poisson Distribution). This is used to model the number of occurences of an event in a
given interval of time. For instance, the number of customers that enter a shop in a day.

Ω = {1, 2, . . . } λ > 0

pk = e−λ · λ
k

k!
, ∀k ∈ Ω

We call this the Poisson distribution with parameter λ.

∞∑
k=0

= e−λ
∞∑
k=1

λk

k!
= e−λ · eλ = 1

So indeed it is a probability distribution.
Suppose customers arive into a shop during [0, 1]. Discretise [0,1] , i.e. subdivide [0, 1] into N intervals[
i−1
N , iN

]
, i = 1, 2, . . . , N

In each interval, a customer arrives with probability p (independently of other intervals and with
probability (w.p.) 1− p nobody arrives.

P(k customers arrived) =

(
N

k

)
· pk(1− p)N−k

Take p = λ
N , λ > 0:(

N

k

)
· pk · (1− p)N−k) =

N !

k!(N − k)!

(
λ

N

)k
·
(

1− λ

N

)N−k
=
λk

k!

N !

Nk(N − k)!

(
1− 1

N

)N−k
Keep k fixed and send N →∞
So:

P(k customers arrived)→ e−λ · λ
k

k!
as N →∞

This is exactly the Poisson distribution. So we showed that the B(N, p) with p = 1
N converges to the

Poisson with parameter λ.

Definition. (Ω,F ,P). A random variable X is a function X : Ω→ R satisfying

{ω : X(ω) ≤ x} ∈ F ∀x ∈ R

Notation. We will use the shorthand notation: suppose A ⊆ R

{X ∈ A} = {ω : X(ω) ∈ A}

Definition. Given A ∈ F , define the indicator of A to be

1(ω ∈ A) = 1A(ω) =

{
1 if ω ∈ A
0 otherwise

Because A ∈ F , 1A is a random variable.
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Definition. Suppose X is a random variable. Define the probability distribution function of X
to be

FX(x) = P(X ≤ x), FX : R→ [0, 1]

Definition. (X1, . . . , Xn) is called a random variable in Rn if

(X1, . . . , Xn) : Ω→ Rn

and ∀x1, . . . , xn ∈ R we have
{X1 ≤ x1, . . . , Xn ≤ xn} ∈ F

i.e.
{ω : X1(ω) ≤ x1, . . . , Xn(ω) ≤ x)n}

Note. This definition is equivalent to saying that X1, . . . , Xn are all random variables (in R).
Indeed:

{X1 ≤ x1, . . . , Xn ≤ xn} = {X1 ≤ xn}
∈F

∩ · · · ∩ {Xn ≤ xn}
∈F

∈ F

Definition. A random variable X is called discrete if it takes values in a countable set.
Suppose X takes values in the countable set S. For every x ∈ D we write px = P(X = x) = P({ω :
X(ω) = x}). We call (px)x∈S the probability mass function of X (pmf) or the distribution of X.
If (px) is Bernoullim then we say that X is a Bernoulli r.v. or that X has the Bernoulli distribution.
If (px) is Geometric, similarly say X is a geometric r.v. etc.

Definition. Suppose that X1, . . . , Xn are discrete r.v.s taking values in S1, . . . , Sn. We say
X1, . . . , Xn are independent if

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) . . .P(Xn = xn) xn ∈ S1, . . . , xn ∈ Sn
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Example. Toss a p-biased coin N times independent.
Take

Ω = {0
T
, 1
H
}N

ω ∈ Ω pω =

N∏
k=1

pωk(1− p)1−ωk ω = (ω1, . . . , ωN ) ∈ Ω

Define
Xk(ω) = ωk ∀k = 1, . . . , N ω ∈ Ω

Then the Xk gives the outcome of the k-th toss and is a discrete r.v.

Xk : Ω→ {0, 1}

P(Xk = 1) = P(wk = 1) = p and P(Xk = 0) = P(wk = 0) = 1− p

So Xk has the Bernoulli distribution with parameter p

Claim. X1, . . . , XN are independent r.v.s

Proof. Let x1, . . . , xN ∈ {0, 1}. Then

P(X1 = x1, . . . , Xn = xn) = P(ω = (x1, . . . , xn))

= p(x1,...,xn) =

N∏
k=2

pXk · (1− p)1−Xk

=

n∏
k=1

P(X − k = xk)

Define
SN (ω=X1(ω) + · · ·+XN (ω) = #textofH in N tosses

SN : Ω→ {0, . . . , N}

And
P(Sn = k) =

(
N

k

)
= pk · (1− p)N−k

So SN has the Binomial distribution of parameters N and p

2.2 Expectation

(Ω,F ,P). Assume Ω is finite or countable.
Let X : Ω→ R be a r.v. (discrete).
We say X is non-negative if X ≥ 0.
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Definition (Expectation of X ≥ 0).

E[X] =
∑
ω

X(ω) · P({ω})

ΩX = {X(ω) : ω ∈ Ω}

So
Ω =

⋃
x∈ΩX

{X = x}

E[X] =
∑
ω

X(ω)P({ω}) =
∑
x∈ΩX

∑
ω∈{X=x}

X( ω
=x

) · P({ω}

E[X] =
∑
x∈ΩX

∑
ω∈{X=x}

x · P({ω}) =
∑
x∈ΩX

x · P(X = x)

So the expectation of X (mean of X, average value) is an average of the values taken by X with
weights given by P(X = x).
So

E[X] =
∑
x∈ΩX

x · pX

Example. Suppose X has the Binomial distribution with N and p.

(X ∼ Bin(N, p))

∀k = 0, . . . , N P(X = k) =

(
N

k

)
pk(1− p)N−k

So

E[X] =

N∑
k=1

k · P(X = k) =

N∑
k=1

k ·
(
N

k

)
· pk · (1− p)N−k

E[X] =

N∑
k=1

k · N !

k! · (N − k)!
· pk · (1− p)N−k

=

N∑
k=1

(N − 1)! ·NP
(k − 1)!(N − k)!

· pk−1 · (1− p)N−k

= Np

N∑
k=

(
N − 1

k − 1

)
· pk−1 · (1− p)(N−1)−(k−1)

= Np

N−1∑
k=1

(
N − 1

k

)
pk · (1− p)N−1−k

= Np · (p+ 1− p)N−1

= Np
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Example. Ket X be a Poisson r.v. of parameter λ > 0, i.e.

P(X = k) = e−λ · λ
k

k!
, k = 0, 1, . . . (X ∼ Poi(λ))

E[X] =

∞∑
k=1

k · e−λ · λ
k

k!
=

∞∑
k=1

e−λ · λ
k−1λ

(k − 1)!
= λ

Definition. Let X be a general r.v. (discrete). We define X+ = max(X, 0) and X− = max(−X, 0).
Then

X = X+ −X−
|X| = X+ +X−

We can define E[X+] and E[Xi] since, they are both non-negative.
If at least one of E[X+] or E[X−] is finite, then we define

E[X] = E[X+]− E[X−]

If both are ∞ (E[X+] = E[X−] =∞), then we say the expectation of X is not defined. Whenever we
write E[x], it is assumed to be well-defined.
If E[|X|] <∞, we say X is integrable.
When E[X] is well defined, we have again that

E[X] =
∑
x∈ΩX

x · P(X = x)

2.2.1 Properties of Expectation

(i) If X ≥ 0, then E[X] ≥ 0
(ii) If X ≥ 0 and E[X] = 0, then P(X = 0) = 1
(iii) If x ∈ R, then E[cX] = cE[X] and E[c+X] = x+ E[X]
(iv) If X and Y are 2 r.v.s, then (X and Y are both integrable)

E[X + Y ] = E[X] + E[Y ]

(v) Let x1, . . . , cn ∈ R and X1, . . . , Xn r.v.s Then (all integrable)

E

[
n∑
i=1

ciXi

]
=

n∑
i=1

ciE[Xi]

(vi) If X = 1(A) with A ∈ F , then E[X] = P(A)

26



Claim. Suppose X1, X2, . . . are non-negative radom variables. Then

E

[∑
n

Xn

]
=
∑
n

E [Xn]

Proof. (Ω countable)

E

[∑
n

Xn

]
=
∑
w

∑
n

Xn(ω)P({ω}) =
∑
n

∑
w

Xn(ω)P({ω}) =
∑
n

E[Xn]

Claim. If g : R→ R, then define g(X) to be the random variable g(X)(ω) = g(X(ω))
Then E[g(X)] =

∑
x∈ΩX

g(x) · P(X = x)

Proof. Set Y = g(X). Then
E[Y ] =

∑
y∈ΩY

y · P(Y = y)

{Y = y} = {ω : Y (ω) = y} = {ω : g(X(ω)) = y} = {ω : X(ω) ∈ g−1({y})} = {X ∈ g−1({y})}

So

E[Y ] =
∑
y∈ΩY

y · P(X ∈ g−1({y}))

=
∑
y∈ΩY

y ·
∑

x∈g−1({y})

P(X = x)

=
∑
y∈ΩY

∑
x∈g−1({y})

g(x) · P(X = x)

=
∑
x∈ΩX

g(x) · P(X = x)

Claim. If X ≥ 0 and takes integer values, then

E[X] =

∞∑
k=1

P(X ≥ k) =

∞∑
k=0

P(X > k)

Proof. We can write since X takes ≥ 0 integer values

X =

∞∑
k=1

1(X ≥ k) =

∞∑
k=0

1(X > k) (*)

Taking E in (*) and using that E[1(A)] = P(A) and countable additivity for (1(X ≥ k))k gives
the statement.
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2.3 Another proof of the inclusion-exclusion formula
2.3.1 Properties of Indicator Random Variables

• 1(AC) = 1− 1(A)
• 1(A ∩B) = 1(A) · 1(B)
• 1(A ∪B) = 1− (1− 1(A))(1− 1(B))

More generally

1(A1 ∪ · · · ∪An) = 1−
n∏
i=1

(1− 1(Ai)) =

n∑
i=1

1(Ai)−
∑
i1<i2

1(Ai1 ∩Ai2) + · · ·+ (−1)n+11(A1 ∩ · · · ∩An)

Taking E of both sides we get

P(A1 ∪ · · · ∪An) =

n∑
i=1

P(Ai)−
∑
i1<i2

P(Ai1 ∩Ai2) + · · ·+ (−1)n+1P(A1 ∩ · · · ∩An)

2.4 Terminology

Definition. Let X be a r.v. and r ∈ N. We call E[Xr] as long as it is well-defined) the r-th moment
of X

Definition. The variance of X denoted Var(X) is defined to be

Var(X) = E[(X − E[X])2]

The variance is a measure of how concentrated X is around its expectation. The smaller the variance,
the more concentrated X is aroudn E[X].
We call

√
Var(X) the standard deviation of X

Properties:
• Var(X) ≥ 0 and if Var(X) = 0, then

P(X = E[X]) = 1

• x ∈ R, then Var(cX) = c2Var(X) and Var(X + c) = Var(X)
• Var(X) = E[X2]− (E[X])2

Proof.
Var(X) = E[(X − E[X])2] = E[X2 − 2XE[X] + (E[X])2]

= E[X2]− 2E[X]E[X] + (E[X])2 = E[X2]− (E[X])2

• Var(X) = min
c∈R

E[(X − c)2] and this min is achieved for c = E[X]

Proof. Call f(c) = E[(X − c)2] = E[X2]− 2cE[X] + c2

Minimise f to get min f(c) = f(E[X]) = Var(X)
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Example.
(i) X ∼ Bin(n, p), E[X] = np

Var(X) = E[X2]− (E[X])2

E(X(X − 1)] =

n∑
k=2

k · (k − 1)

(
n

k

)
· pk · (1− p)n−k

=

n∑
k=1

k · (k − 1) · n! · pk · (1− p)n−k

(k − 2)! · (k − 1) · k · ((n− 2)− (k − 2))!

= n · (n− 1) · p2
∞∑
k=2

(
n− 2

k − 2

)
pk−2 · (1− p)n−k

= n(n− 1)p2

So

Var(X) = E[X(X − 1)] + E[X]− (E[X])2 = n(n− 2)p2 + np− (np)2 = np(1− p)

(ii) X ∼ Poi(λ), λ > 0, E[X] = λ
Var(X) = E[X2]− λ2

E[X(X − 1)] =

∞∑
k=2

k · (k − 1) · e−λ · λ
k

k!
= e−λ

∞∑
k=2

λk−2

(k − 2)!
· λ2 = λ2

So Var(X) = λ2 + E[X]− λ2 = λ

Definition. Let X and Y be 2 random variables. Their covariance is defined

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

“It is a “measure” of how dependent X and Y are.”
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Properties
(i)

Cov(X,Y ) = Cov(Y,X)

(ii)
Cov(X,X) = Var(X)

(iii)
Cov(X,Y ) = E[XY ]− E[X] · E[Y ]

Proof. Expand (X − E[X])(Y − E[Y ]) and use properties of expectation

(iv) Let x ∈ R. Then
Cov(cX, Y ) = cCov(X,Y )

and
Cov(c+X), Y ) = Cov(X,Y )

(v)
Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

Proof.

Var(X + Y ) = E[(X + Y )− E[X]− E[Y ])2]

= E[((X − E[X]) + (Y − E[Y ]))2]

= E[(X − E[X])2] + E[(Y − E[Y ])2] + 2E[(X − E[X])(Y − E[Y ])]

= Var(X) + Var(Y ) + 2Cov(X,Y )

(vi) For all c ∈ R, Cov(c,X) = 0
(vii) X,Y, Z are random variables, then

Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)

More generally, for c1, c2, . . . , cn, d1, . . . , cn ∈ R and X1, . . . , Xn and Y1, . . . , YN r.v’s

Cov

(
n∑
i=1

ciXi,

n∑
i=1

diYi

)
=

n∑
i=1

n∑
j=1

cidjCov(Xi, Yj)

In particular

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj)

Remark. Recall that X and Y are indep, if for all x and y

P(X = x, Y = y) = P(X = x) · P(Y = y)
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Claim. Let X and Y be 2 indep. r.v’s and let

f, g : R→ R

Then
E[f(X)g(Y )] = E[f(X)] · E[g(Y )]

Proof.

E[f(X)g(Y )] =
∑

(

x, y)f(x)g(y)P(X = x, Y = y)

=
∑
(x,y)

f(x)g(y)P(X = x) · P(Y = y)

=
∑
x

f(x)P(X = x)
∑
y

g(y)P(Y = y)

= E[f(X)] · E[g(Y )]

Equation. Suppose that X and Y are independent. Then

Cov(X,Y ) = 0, since Cov(X,Y ) = E[(X − E[X])(Y − E[Y ]) = 0

So if X and Y are independent, then

Var(X + Y ) = Var(X) + Var(Y )

Warning.
Cov(X,Y ) = 0 6=⇒ independence

Example. Let X1, X2, X3 be indep. Ber
(

1
2

)
Define

Y1 = 2X1 − 1, Y2 = 2X2 − 2

Z2 = X3Y1, Z2 = X3Y2

E[Y1] = E[Y2] = E[Z1] = E[Z2] = 0

and
Cov(Z1, Z2) = E[Z1, Z2] = E[X2

3Y1Y2] =
indep.

0

We will show that Z1 and Z2 are not indep.
Indeed,

P(Z1 = 0, Z2 = 0) = P(X3 = 0) =
1

2

but
P(Z1 = 0) · P(Z2 = 0) = P(X3 = 0)2 =

1

4

Hence as not equal, Z1 is not independent of Z2
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2.5 Inequalities
2.5.1 Markov’s Inequality

Claim (Markov’s Inequality). Let X ≥ 0 be a random variable. Then ∀a > 0,

P(X ≥ a) ≤ E[X]

a

Proof. Observe that
X ≥ a · 1(X ≥ a)

Taking expectations we get

E[X] ≥ E[a · 1(X ≥ a)] = a · P(X ≥ a)

So
P(X ≥ a) ≤ E[X]

a

2.5.2 Chebyshev’s Inequality

Claim (Chebyshev’s Inequality). Let X be a r.v. with E[X] <∞. Then ∀a > 0

P(|X − E[X]| ≥ a) ≤ Var(X)

a2

Proof.

P(|X − E[X]| ≥ a) = P(|X − E[X]|2 ≥ a2) ≤
markov

E[(X − E[X])2]

a2
=

Var(X)

a2
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2.5.3 Cauchy-Schwarz Inequality

Claim (Cauchy-Schwarz Inequality). Let X and Y be 2 r.v’s. Then

E[|XY |] ≤
√

E[X2]E[Y 2]

Proof. Suffices to prove it for X and Y with E[X2] <∞ and E[Y 2] <∞
Also enough to prove it for X,Y ≥ 0

XY ≤ 1

2
(X2 + Y 2) =⇒ E[XY ] ≤ 1

2
(E[X2] + E[Y 2] <∞

Assume E[X2] > 0 and E[Y 2] > 0, otherwise result is trivial.
Let t ∈ R and consider

0 ≤ (X − tY )2 = X2 − 2tXY + t2Y 2

=⇒ E[X2]− 2tE[XY ] + t2E[Y 2]︸ ︷︷ ︸
f(t)

≥ 0

Minimising f gives that for t∗ = E[XY ]
E[Y 2] , f achieves its minimum.

f(t∗) ≥ 0 =⇒ E[X2]− 2(E[XY ])2

E[Y 2]
+

(E[XY ])2

E[Y 2]
≥ 0

=⇒ (E[XY ])2 ≤ E[X2] · E[Y 2]

2.5.4 Cases of Equality

Note. Equality in C-S occurs when

E[(X − tY )2] = 0 for t =
E[XY ]

E[Y 2]

E[(X − tY )2] = 0 =⇒ P(X = tY ) = 1

2.5.5 Jensen’s Inequality

Definition. A function f : R→ R is called convex if ∀x, y ∈ R and for all t ∈ (0, 1)

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)
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Example.

x y
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Claim (Jensen’s Inequality). Let X be a r.v. and let f be a convex function. Then

E[f(X)] ≥ f(E[X])

Proof.

Claim. Let f : R → R be a convex function then f is the supremum of all the lines
lying below it. In other words

∀m ∈ R ∃a, b ∈ R s.t. f(m) = am+ b and f(x) ≥ ax+ b ∀x

So there exists a ∈ R (
a = sup

x<m

f(m)− f(x)

m− x

)
s.t.

f(m)− f(x)

m− x
≤ a ≤ f(y)− f(m)

y −m
for all x < m < y

(take tangent)

Proof. Let m ∈ R. Let x < m < y. Then m = tx + (1 − t)y for some t ∈ [0, 1]. By
convexity

f(m) ≤ tf(x) + (1− t)f(y)

m = tf(m) + (1− t)f(m)

So

t(f(m)− f(x)) ≤ (1− t)(f(y)− f(m)) =⇒ f(m)− f(x)

m− x
≤ f(y)− f(m)

y −m

So there exists a ∈ R
a = sup

x<m

f(m)− f(x)

m− x
s.t.

f(m)− f(x)

m− x
≤ a ≤ f(y)− f(m)

y −m
for all x < m < y

Rearranging this inequality we get

f(x) ≥ a(x−m) + f(m) for all x

Set m = E[X]. Then from the claim, we get ∃a, b ∈ R s.t f(E[X]) = aE[X] + b (∗) and ∀x we
have f(x) ≥ ax+ b Apply this last inequality to X to get

f(x) ≥ aX + b

and taking E
E[f(X)] ≥ aE[X] + b =

(∗)
f(E[X])
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Note. A rule to remember the direction:

Var(X) = E[(X − E[X])2] ≥ 0

implies
E(X2) ≥ (E[X])2

2.5.6 Cases of Equality

Let X be a r.v. and let f be a convex function satisfying if m = E[X], then ∃a, b ∈ R s.t.

f(m) = am+ b and f(x) > ax+ b ∀x 6= m

What is the condition of X in order to have equality in Jensen?
We want

E[f(X)] = f(E[X])

Have:
E[X] = m, f(m) = am+ b and f(x) > ax+ b ∀x 6= m

Consider f(X) ≥ aX + b. Then f(X)− (aX + b) ≥ 0
So taking expectations

E[f(X)− (aX + b)] ≥ 0

But
E[aX + b] = am+ b = f(m) = f(E[X])

We assumed
E[f(X)] = f(E[X])

which means that
E[f(X)− (aX + b)] = 0

But
f(X) ≥ aX + b

so this forces f(X) = aX + b
By assumption f(m) = am+ b and ∀x 6= m f(x) > ax+ b
So this forces X = m with probability 1
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2.5.7 AM-GM Inequality

Claim (AM-GM Inequality). Let f be a convex function and let x1, . . . , xn ∈ R. Then

1

n

n∑
k=1

f(xk) ≥ f

(
1

n

n∑
k=1

sk

)

E[f(X)] ≥ f(E[X])

Proof. Define X to be the r.v. taking values {x1, . . . , xn} all with equal prob

P(X = xi) =
1

n
∀i = 1, . . . , n

f(E[X]) = f

(
n∑
k=1

xk ·
1

n

)
By Jensen’s inequality, we get

1

n

n∑
k=1

f(xk) ≥ f

(
1

n

n∑
k=1

xk

)

Let f(x) = − log x. This is a convex function and so

− 1

n

n∑
k=1

log xk ≥ − log

(
1

n

n∑
k=1

xk

)

=⇒

(
n∏
k=1

xk

)1/n

≤ 1

n

n∑
k=1

xk

i.e. the geometric mean is ≤ the arithmetic mean.

2.6 Conditional expectation

Note. Recall if B ∈ F with P(B) > 0, we defined

P(A|B) =
P(A ∩B)

P(B)

Definition. Let B ∈ F with P(B) > 0 and let X be a r.v.
We define

E[X|B] =
E[X · 1(B)]

P(B)
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2.6.1 Law of Total Expectation

Claim (Law of Total Expectation). Suppose X > 0 and let (Ωn) be a partition of Ω into disjoint
events, i.e.

Ω =
⋃
n

Ωn

Then
E[X] =

∑
n

E[X|Ωn] · P(Ωn)

Proof. Write
X = X · 1(Ω) =

∑
n

X · 1(Ωn)

Taking expectations we get

E[X] = E

∑
n

X · 1(Ωn)︸ ︷︷ ︸
Xn

 =
∑
n

E[X · 1(Ωn)]

By countable additivity of E
So

E[X] =
∑
n

E[Xn · 1(Ωn)] =
∑
n

E[X|Ωn] · P(Ωn)

2.6.2 Joint Distributions

Definition. Let X1, . . . , Xn be r.v.’s (discrete). Their joint distribution is defined to be

P(X1 = x1, . . . , Xn = xn) ∀x1 ∈ ΩX1 , . . . , xn ∈ ΩXn

P(X1 = x1) = P({X1 = x1} ∩
n⋃
i=2

⋃
Xi

{Xi = xi})) =
∑

X1,...,Xm

P(X1 = x1, . . . Xn = xn)

P(Xi = xi) =
∑

X1,...,Xi−1,Xi+1,...,Xn

P(X1 = x1, . . . , Xn = xn)

We call (P(Ci = xi))xi the marginal distribution of Xi

Definition. Let X and Y be 2 r.v.’s
The conditional distribution of X giben Y = y (y ∈ Ωy) is defined to be

P(X = x|Y = y), x ∈ ΩX

P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
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Equation.
P(X = x) =

∑
y

P(X = x, Y = y) =
∑
y

P(X = x|Y = y)P(Y = y)

(law of total probability)

2.6.3 Distribution of the sum of independent r.v.’s

Definition. Let X and Y be 2 independent r.v.’s (discrete)

P(X + Y = z) =
∑
y

P(X + Y = z, Y = y)

=
∑
y

P(X = z − y, Y = y)

=
∑
y

P(X = z − y) · P(Y = y)

This last sum is called the convolution of the distribution of X and Y
Similarly,

P(X + Y = z) =
∑
x

P(X = x)P(Y = z − x)

Example. Let X ∼ Poi(λ) and Y ∼ Poi(µ) independent

P(X + Y = n) =

n∑
r=0

P(X = r)P(Y = n− r)

=

n∑
r=0

e−λ · λ
r

r!
· e−µ · µn−r

(n− r)!

=
e(λ+µ)

n!

n∑
r=0

λr · µn−r · n!

r!(n− r)!

=
(λ+ µ)n

n!
e−(λ+µ)

So X + Y ∼ Poi(λ+ µ)

Definition. Let X and Y be 2 discrete r.v.’s. The conditional expectation of X given Y = y is

E[X|Y = y] =
E[X · 1(Y = y)]

P(Y = y)

E[X|Y = y] =
1

P(Y = y)
E[X · 1(Y = y)]

=
1

P(Y = y)

∑
x

x · P(X = x, Y = y)

=
∑
x

xP(X = x|Y = y)
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Note. We observe that for very y ∈ ΩY , E[X|Y = y] is a function of y only.
We set

g(y) = E[X|Y = y]

Definition. We define the conditional expectation fo X given Y and write it as E[X|Y ] for the
random variable g(Y )
We emphasise that E[X|Y ] is a random variable and it depends only on Y , because it is a function
only of Y

Equation.

E[X|Y ] = g(Y ) · 1

= g(Y ) ·
∑
y

1(Y = y)

=
∑
y

g(Y ) · 1(Y = y)

=
∑
y

g(y) · 1(Y = y)

=
∑
y

E[X|Y = y] · 1(Y = y)
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Example. Toss a p-biased coin n times independently. Write

X1 = 1(i− th toss is a H) for i = 1, . . . , n

and
Yn = X1 + · · ·+Xn

Want E[X1|Yn] =?
Set g(y) = E[X1|Yn = y], then E[X1|Yn] = g(Yn)
Need to find g
Let y ∈ {0, . . . , n}. Then

g(y) = E[X2|Yn = y] = P(X1 = 1|Yn = y)

y = 0:
P(X1 = 1|Yn = 0) = 0

y 6= 0:

P(X1 = 1|Yn = y) =
P(X1 = 1, Yn = y)

P(Yn = y)
=

P(X1 = 1, X2 + · · ·+Xn = y − 1)

P(Yn = y

Since the (Xi) are iid, we get

P(X1 = x1, X2 + · · ·+Xn = y − 1) = P(X1 = 1) · P(X2 + · · ·+Xn = y − 1)

= p ·
(
n− 1

y − 1

)
· py−1 · (1− p)n−y

P(Yn = y) =

(
n

y

)
· py · (1− p)n−y

So

P(X1 = 1|Yn = y) =
p ·
(
n−1
y−1

)
· py−1 · (1− p)n−y(

n
y

)
· py · (1− p)n−y

=
y

n

So g(y) = y
n . Therefore

E[X1|Yn] = g(Yn) =
Yn
n
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2.6.4 Properties of Conditional Expectation

Claim.
•

∀c ∈ R E[cX|Y = x · E[X|Y ] and E[c|Y ] = c

• X1, . . . , Xn r.v.’s, then

E

[
n∑
i=1

Xi|Y

]
=

n∑
i=1

E[Xi|Y ]

•
E[E[X|Y ] = E[X]

Proof. only prove third:

E[X|Y ] =
∑
y

1(Y = y)E[X|Y = y]

By properties of expectation

E[E[X|Y ]] =
∑
y

E[X|Y = y] · E[1(Y = y)]

=
∑
y

E[X|Y = y] · P(Y = y)

=
∑
y

E[X · 1(Y = y)]

P(Y = y)
· P(Y = y)

=
∑
y

E[X · 1(Y = y)]

E[X ·
∑
y

1(Y = y)]

= E[X]

Proof (Another way).∑
y

E[X|Y = y] · P(Y = y) =
∑
x

∑
y

x · P(X = x|Y = y) · P(Y = y) = E[X] = 0

Claim. • Let X and Y be 2 independent r.v.’s. Then

E[X|Y ] = E[X]
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Proof.

E[X|Y ] =
∑
y

1(Y = y) · E[X|Y = y]

=
∑
y

1(Y = y) ·
∑
x

x · P(X = x|Y = y)

=
∑
y

1(Y = y)︸ ︷︷ ︸
1

∑
x

x · P(X = x)︸ ︷︷ ︸
E[X]

= E[X]

Claim. Suppose Y and X are independent r.v.’s. Then

E[E[X|Y ]|Z] = E[X]

Proof. We have E[X|Y ] = g(Y ) i.e. E[X|Y ] is a function only of Y . If Y and Z are indep.,
then f(Y ) is also independent of Z for any function f . (can show directly)
So g(Y ) is independent of Z. By the a previous property, we get

E[g(Y )|Z] = E[g(Y )] = E[E[X|Y ]] = E[X]

Claim. Suppose h R→ R is a function. Then

E[h(Y ) ·X|Y ] = h(Y ) · E[X|Y ]

Proof.

E[h(Y ) ·X|Y = y] = E[h(y) ·X|Y = y]

= h(y) · E[X|Y = y]

So
E[h(Y ) ·X|Y ] = h(Y ) · E[X|Y ]

Corollary.
EE[X|Y ]|Y ] = E[X|Y ]

and
E[X|X] = X
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Remark. Recall Xi = (i-th toss is H) and Yn = X1 + · · ·+Xn

E[X1|Yn] =
Yn
n

By symmetry, for all i
E[Xi|Yn] = E[X1|Yn]

E[

n∑
i=1

Xn︸ ︷︷ ︸
Yn

|Yn] =

n∑
i=1

E[Xi|Yn] = n · E[X1|Yn]

∴ E[X1|Yn] =
1

n
· E[Yn|Yn] =

Yn
n

2.7 Random Walks

Definition. A random/ stochastic process is a sequence of random variables (Xn)n∈N

Definition. A random walk is a random process that can be expressed in the following way

Xn = x+ Y1 + · · ·+ Yn

where (Yi) are independent and identically distributed (iid) r.v.’s and x is a deterministic number
(fixed).

Method. Let’s focus on the SRW (simple random walk) on Z which is defined by taking

P(Yi = +1) = p and P(Yi = −1) = q = 1− p

Z
i i+ 1i− 1

q p

We can think of Xn as the fortune of a gambler who bets 1 at every step and either receives it back
doubled it w.p. p or loses it with prob. q

i i+ 1i− 1

q p

a0 x

Suppose the gambler starts with £x at time 0. What is the prob. he reaches a before going bankrupt?

Notation. We write Px for the probability measure P(·|X0 = x) i.e.

∀A ∈ F Px(A) = P(A|X0 = n)
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Method. Define
h(x) = Px((Xn) hits a before hitting 0) =?

By the law of total probability, we have

h(x) =Px((Xn) hits a before hitting 0|Y1 = +1) · Px(Y1 = +1)

+ Px((Xn) hits a before hitting 0|Y1 = −1) · Px(Y1 = −1)

h(x) = p · h(x+ 1) + q · h(x− 1) 0 < x < a

h(0) = 0) while h(a) = 1

• Case p = q = 1
2 :

h(x)− h(x+ 1) = h(x− 1)− h(x)

In this case,
h(x) =

x

a

• p 6= q:
h(x) = ph(x+ 1)qh(x− 1)

Try a solution of the form λx

Substituting gives
pλ2 − λ+ 1 = 0 =⇒ λ = 1 or

q

p

So the general solution will be of the form

h(x) = A+B ·
(
q

p

)x
Using the boundary conditions, h(a) = 1 and h(0) = 0 yields

h(x) =

(
q
p

)x
− 1(

q
p

)a
− 1

This is the Gambler’s Ruin estimate.

45



2.7.1 Expected time to absorption

Define
T = min{n ≥ 0 : Xn ∈ {0, a}}

i.e. T is the first time X hits either 0 or a.
Want

Ex[T ] = τu =?

Conditioning on the first step and using the law of total expectation

τx = p · Ex[T |Y1 = +1] + q · Ex[T |Y1 = −1] 0 < x < a

=⇒ τx = p · (1 + Ex+1[T ]) + q · (1 + Ex−1[T ])

So
τx = 1 + p · τx+1 + q · τx−1 0 < x < a

τ0 = τa = 0

• Case p = 1
2 . Try a solution of the form Ax2.

Ax2 = 1 + pA(x+ 1)2 + qA(x− 1)2 =⇒ A = −1

General solution will have the form

τx = Ax2 +Bx+ C = −x2 +Bx+ C

τ0 = τa = 0 =⇒ τx = x(a− x)

• Case p 6= 1
2 . Try Cx as a solution.

Substituting gives

C =
1

q − p
So the general solution will be of the form

τx =
1

q − p
· x+A+B

(
q

p

)x
Using τ0 = τa = 0,

τx =
1

q − p
x− q

q − p

(
q
p

)x
− 1(

q
p

)a
− 1
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2.8 Probability Generating Functions

Definition. Let X be a r.v. with values in N. Let

pr = P(X = r), r ∈ N

be its prob. mass function. The pgf of X is defined to be

p(z) =

∞∑
r=0

pr · zr = E[zX ] for |z| ≤ 1

When |z| ≤ 1, the pgf converges absolutely.
Indeed

|
∞∑
r=0

prz
r| ≤

∞∑
r=0

pr · |z|r ≤
∞∑
r=0

pr = 1

So p(z) is well-defined and has a radius of convergence at least 1

Theorem. The pgf uniquely determines the distribution of X

Proof. Suppose (pr) and (qr) are 2 prob. mass functions with

∞∑
r=0

prz
r =

∞∑
r=0

qrz
r ∀|z| ≤ 1

We will show that pr = qr ∀r.
Set z = 0. Then p0 = q0.
Suppose pr = qr ∀r ≤ n.
RTP:

pn+1 = qn+1

Then
∞∑

r=n+1

prz
r =

∞∑
r=n+1

qrz
r

Divide through by zn+1 and then take the limit as z → 0 gives

pn+1 = qn+1
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Theorem. we have
lim
z→1

p′(z) = p′(1−) = E[X]

Proof. Assume first that E[X] <∞.
Let 0 < z < 1. We can differentiate p(z) term by term and get

p′(z) =

∞∑
r=0

rprz
r−1 ≤

∞∑
r=1

rpr = E[X]

(because z < 1)
Since 0 < z < 1, we see that p′(z) is an increasing function of z.
This implies that

lim
z→1

p′(z) ≤ E[X]

Let ε > 0 and N be large enough s.t.

N∑
r=0

rpr ≥ E[X]− ε

Also

p′(z) ≥
N∑
r=1

rprz
r−1 (0 < z < 1)

So

lim
z→1

p′(Z) ≥
N∑
r=1

rpr ≥ E[X]− ε

This si true for any ε > 0. Therefore

lim
z→1

p′(z) = p′(1−) = E[X]

Assume E[X] =∞. For any M , take N large enough s.t.

∞∑
r=0

rpr ≥M

We know from above that

lim
z→1

p′(z) ≥
N∑
r=1

rpr ≥M

This is true for all M > 0 and hence

lim
z→1

p′(z) = p′(1−) = E[X] =∞

Note. In exactly the same way one can prove the following:
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Theorem.
p′′(1−) = lim

z→1
p′′(z) = E[X(X − 1)]

∀k > 0 p(k)(1−) = lim
z→1

p(k)(z) = E[X(X − 1) . . . (X − k + 1)]

In particular
Var(X) = p′′(1−) + p′(1−)− (p′(1−))2

Moreover

P(X = n) =
1

n!

(
d

dz

)n∣∣∣∣
z=0

p(z)

Equation. Suppose that X1, . . . Xn are independent r.v.’s with pgf’s q1, . . . , qn resp., i.e.

qi = E[zX1 ]

p(z) = E[zX1+···+Xn ] =?

So
p(z) = E[zX1 · zX2 . . . zXn = E[zX1 ] . . .E[zXn ] == q1(z) . . . qn(z)

If Xi’s are iid, then
p(z) = (q(z))n
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Example.
(i)

X ∼ Bin(n, p)

p(z) = E[zX ]

=

n∑
r=0

zr ·
(
n

r

)
· pr · (1− pn−r

=

n∑
r=0

(
n

r

)
(pz)r(1− p)n−r

= (pz + 1− p)n

(ii) Let X ∼ Bin(n, p) and Y ∼ Bin(m, p) and X ⊥⊥ Y

E[zX+Y ] = E[zX ] · E[zY ] = (pz + 1− p)n · (pz + 1− p)m = (pz + 1− p)n+m

So
X + Y ∼ Bin(n+m, p)

(iii) Let X ∼ Geo(p)

E[zX ] =

∞∑
r=0

(1− p)r · p · zr =
p

1− z(1− p)

(iv) Let X ∼ Poi(λ)

E[zX ] =

∞∑
r=0

zr · e−λ · λ
r

r!
= e−λe−λz = eλ(z−1)

Let X ∼ Poi(λ), Y ∼ Poi(λ) and X ⊥⊥ Y

E[zX+Y ] = eλ(z−1) · eµ(z−1) = e(λ+µ)(z−1) =⇒ X + Y ∼ Poi(λ+ µ)
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2.9 Sum of a Random Number of r.v.’s

Method. Let X1, X2, . . . be iid and let N be an indep r.v. taking values in N.
Define

Sn = X1 + · · ·+Xn ∀n ≥ 1

Then
SN = X1 + · · ·+XN

means ∀ω ∈ Ω,

SN (ω) = X1(ω) + · · ·+XN(ω)(ω) =

N(ω)∑
i=1

Xi(ω)

Let q be the pgf of N and p the pgf of X1.
Then

r(z) = E[zSN ]

= E[zX1+···+XN ]

=
∑
n

E[zX1+···+XN · 1(N = n)]

=
∑
n

E[zX1+···+Xn · 1(N = n)]

=
∑
n

E[zX1+···+XN · P(N = n)]

=
∑
n

(
E[zX1 ]

)n · P(N = n)

=
∑
n

(p(z))
n P(N = n) = q(p(z))
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2.9.1 Another Proof Using Conditional Expectation

Method.

r(z) = E[zX1+···+XN ]

= E[E[zX1+···+XN |N ]]

E[zX1+···+XN |N = n] = E[zX1+···+Xn |N = n]

=
(
E[zX1 ]

)n
= (p(z))n

So
r(z) = E

[
(p(z))N

]
= q(p(z))

So
E[SN ] = lim

z→1
r′(z) = r′(1−)

r′(Z) = q′(p(z)) · p′(z)

So

E[SN ] = q′(p(1−)︸ ︷︷ ︸
=1

) · p′(1−)︸ ︷︷ ︸
=E[X1]

= E[N ] · E[X1]

E[SN ] = E[N ] · E[X1]

Similarly
Var(SN ) = E[N ] ·Var(X1) + Var(N) · (E[X1])

2

2.10 Branching Processes

From Bienaguie/ Gralton-Watson, 1874.
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Method. (Xn : n > 0) a random process.

Xn = # of individuals in generation n

X0 = 1

The individual in generation 0 produces a random number o offspring with distribution

gk = P(X1 = k)︸ ︷︷ ︸
# children of 1st individual

, k = 0, 1, 2, . . .

Every individual in gen. 1 produces an indep. number of offspring with the same distribution.
Continue in the same way: every new indiv. produces and indep. number of offspring with the same
number of offspring with the same distribution as X1.
Let Yk,n : k ≥ 1, n ≥ 0) be an iid sequence with distribution (gk)k
Yk,n is the number of offspring of k-th indiv. in gen. n

Xn+1 =

{
Y1,n + · · ·+ YXn,n : when Xn ≥ 1

0 otherwise
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Theorem.
E[Xn] = (E[X1])

n ∀n ≥ 1

Proof.
E[Xn+1] = E[E[Xn+1|Xn]]

E[Xn+1|Xn = m] = E[Y1,n + · · ·+ YXn,n|Xn = m]

= E[Y1,n + · · ·+ Ym,n|Xn = m]

= m · E[X1]

So
E[Xn+1|Xn] = Xn · E[X1]

So

E[Xn+1] = E[Xn · E[X1]]

= E[X1] · E[Xn]

Iterating we get
E[Xn+1] = (E[X1])

n+1

Theorem. Set
G(z) = E[zX1 ]

and
Gn(z) = E[zXn ]

Then

Gn+1(z) = G(Gn(z))

= G(G(. . . (G(z)) . . . ))

= Gn(G(z))

Proof.
Gn+1(z) = E[zXn+1 ] = E[E[zXn+1 |Xn]]

E[E[zXn+1 |Xn = m]] = E[zY1,n+···+Ym,n |Xn = m]

=
(
E[zX1 ]

)m
= (G(z))

m

So
E[E[zXn+1 |Xn]] = E[(G(z))Xn ] = Gn(G(z))
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2.10.1 Extinction Probability

Method.
P(Xn = 0 for some n ≥ 1) = extinction prob. = q

qn = P(Xn = 0)

An = {Xn = 0} ⊆ {Xn+1 = 0} = An+1

Then (An) is an increasing sequence of events.
So by continuity of prob meas.

P(An)→ P(
⋃
n

An) as n→∞

But ⋃
n

An = {Xn = 0 for some n ≥ 1}

Therefore we get qn → q as n→∞

Claim.
qn+1 = G(qn) (G(z) = E[zX1 ]) and also q = G(q)

Proof.
qn+1 = P(Xn+1 = 0) = Gn+1(0) = G(Gn(0)) = G(qn)

Since G is continuous, taking the limit as n→∞ and using qn → q, we get

G(q) = q
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Claim (same as previous, different proof).

qn+1 = G(qn) (G(z) = E[zX1 ]) and also q = G(q)

Proof (Alternative). Conditional on X1 = m, we get m independent branching processes.
So we can write

Xn+1 = X(1)
n + · · ·+X(m)

n

where
(
X

(j)
i

)
are iid branching processes all with the same offspring distribution.

...
...

...
...

...

. . .

So

qn+1 = P(Xn+1 = 0) =
∑
m

P(Xn+1 = 0|X1 = m) · P(X1 = m)

=
∑
m

P(X(1)
n = 0, . . . , X(m)

n = 0) · P(X1 = m)

=
∑
m

P(X(1)
n = 0︸ ︷︷ ︸
qn

)

m

· P(X1 = m)

= G(qn)

So we have proved
qn+1 = G(qn) and q = G(q), t = G(t)

1

1

G(0)

q

G(0)

the tangent to the graph of G at 1 in 1st has slope < 1.

The slope = G′(1−) = E[X1] < 1

In 2nd, the slope is
G′(1−) = E[X1]] > 1

and we see that q < 1
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Theorem. Assume P(X1 = 1) < 1. Then the extinction probability is the minimal non-negative
solution to the equation

t = G(t)

We also have
q < 1 iff E[X1] > 1

Proof (of minimality). Let t be the smallest non-negative solution to x = G(x). We will show
that q = t.
We are going to prove by induction that

qn ≤ t ∀n

Then taking the limit as n→∞ will give us q ≤ t.
Since we know that q is a solution, this will imply q = t.

q0 = P(X0 = 0) ≤ t

Suppose qn ≤ t
qn+1 = G(qn)

G is an increasing function on [0, 1], and since qn ≤ t, we get

qn+1 = G(qn) ≤ G(t) = t
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Theorem.

Proof (2nd part). Consider the function H(z) = G(z)− z
Assume

g0 + g1 < 1

so
P(X1 ≤ 1)

since if not, then P(X1 ≤ 1) = 1 which would imply that

E[X1] = P(X1 = 1) < 1

In this case we would have

G(z) = g0 + g1z = 1− E[X1] + E[X1]z

Solving g(z) = z we would get z = 1, since E[X1] < 1.

H ′′(z) =
∑

r(r − 1)grz
r−2 > 0 ∀z ∈ (0, 1)

This implies that H ′(z) is a strictly increasing function in (0, 1).
This implies that H can have at most one root different from 1 in (0, 1), which follows from
Rolle’s theorem.
(If it had more, say z1 < z2 < 1, then H ′ would be 0 in 2 points inside (z1, z2) and (z2, 1) by
Rolle’s theorem. Nut this contradicts that H ′ is strictly increasing)
1st case: H has no other root apart from 1.
H(1) = 0 and H(0) = g0 ≥ 0 =⇒ H(z) ≥ 0 ∀z ∈ [0, 1]

H ′(1−) = lim
z→1

H(z)−H(1)

z − 1
=
H(z)

z − 1
≤ 0

But H ′(1−) = G′(1−)− 1 and H ′(1−) ≤ 0 =⇒ G′(1−) ≤ 1 and G′(1−) = E[X1]
So we showed that when q = 1, then E[X1] ≤ 1
2nd case: H has exactly one other root r < 1
H(r) = 0 and H(1) = 0 =⇒ by Rolle’s theorem ∃z ∈ (r, 1) s.t. H ′(z) = 0 but

H ′(x) = G′(x)− 1 =⇒ G′(z) = 1

G′(x) =

∞∑
r=1

rgrx
r−1 and G′′(x) =

∞∑
r=2

r(r − 1)grx
r−2

under the assumption g0 + g1 < 1, we know

G′′(x) > 0 ∀x ∈ (0, 1) =⇒ G′ is strictly increasing

Therefore
G′(1−) > G′(z) = 1 =⇒ E[X1] > 1

So we proved that if q < 1 then E[X1] > 1
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3 Continuous Random Variables

3.1 Definitions and Properties

(Ω,F ,P)
X : Ω→ R s.t. ∀x ∈ R

{X ≤ x} = {ω : X(ω) ≤ x} ∈ F

Definition. The probability distribution function is defined to be

F : R→ [0, 1] with F (x) = P(X ≤ x)
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Properties of F
(i) if x < y then F (x) ≤ F (y)

Proof.
{X ≤ x} ⊆ {X ≤ y}

(ii)
∀a < b, a, b ∈ R P(a < X ≤ b) = F (b)− F (a)

Proof.

P(a < X ≤ b) = P({a < X} ∩ {X ≤ b}
= P(X ≤ b)− P({X ≤ b} ∩ {X ≤ a}
= P(X ≤ b)− P(X ≤ a)

= F (b)− F (a)

(iii) F is a right continuous function and left limits exists always

F (x−) = lim
y→x

F (y) ≤ F (x)

Proof. NTP
lim
n→∞

F

(
x+

1

n

)
= F (x)

Define
An = {x < X ≤ x+

1

n
}

Then (An) are decreasing events and
⋂
nAn = ∅

So
P(An)→ 0 as n→∞

But
P(An) = P(x < X ≤ x+

1

n
) = F

(
x+

1

n

)
− F (x)→ 0 as n→∞

Left limits exist by the increasing property of F

(iv) F (x−) = P(X < x)

Proof.
F (x−) = lim

n→∞
F

(
x− 1

n

)
F

(
x− 1

n

)
= P

(
X ≤ x− 1

n

)
Consider

Bn =

{
X ≤ x− 1

n

}
then (Bn) increasing and

⋃
nBn = {X < x}

P(Bn)→ P(X < n) =⇒ F (x−) = P(X < x)
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(v)
lim
x→∞

F (x) = 1

and
lim

x→−∞
F (x) = 0

For a discrete variable, F (x) = P(X ≤ x)

x
x1 x2 x3

F is a step function (right continuous with left limits)

Definition. A r.v. X is called continuous if F is a continuous function, which means that

F (x) = F (x−) ∀x =⇒ P(X ≤ x) = P(X < x) ∀x

In other words, P(X = x) = 0 ∀x ∈ R

x

1

Note. In this course, we will further restrict to the case where F is not only continuous but also
differentiable. (Absolutely continuous)
Set

F ′(x) = f(x)

We call f the probability density function of X.
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Properties of f :
(i) f ≥ 0
(ii) ∫ ∞

−∞
f(x) dx = 1

(iii) Also,

F (x) =

∫ x

−∞
f(y) dy

Moral. Intuitive meaning to f :
Suppose ∆x small. Then

P(x < X ≤ x+ ∆x) =

∫ x+∆x

x

f(y) dy '
∆x small

∆x · f(x)

x

f

a b

∫ b
a
f(x) dx = P(a < X ≤ b)

More generally, for any set S ⊆ R
P(X ∈ S) =

∫
S

f(x) dx
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3.2 Expectation

Definition. Let X ≥ 0 with density f . We define its expectation

E[X] =

∫ ∞
0

xf(x) dx

Suppose g > 0. Then

E[g(X)] =

∫ ∞
−∞

g(x)f(x) dx

for any variable X
Let X be a general r.v.
Define

X+ = max(X, 0)

and
X− = max(−X, 0)

and if at least one of E[X+] or E[X−] is finite, then we set

E[X] = E[X+]− E[X−] =

∫ ∞
−∞

xf(x) dx

since
E[X+] =

∫ ∞
0

xf(x) dx

and

E[X−] =

∫ 0

−∞
(−x)f(x) dx

Easy to check that the expectation is again a linear function
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Claim. Let X ≥ 0. Then

E[X] =

∫ ∞
0

P(X ≥ x) dx

Proof (1st).

E[X] =

∫ ∞
0

xf(x) dx

=

∫ ∞
0

(∫ x

0

1 dy

)
f(x) dx

=

∫ ∞
0

dy

∫ ∞
y

f(x) dx

=

∫ ∞
0

dy(1− F (y))

=

∫ ∞
0

P(X ≥ y) dy

Proof (2nd).

∀ω, X(ω) =

∫ ∞
0

1(X(ω) ≥ x) dx

Taking expectation, we get

E[X] =

∫ ∞
0

P(X ≥ x) dx

Equation.
Var(X) = E[(X − E[X])2] = E[X2]− (E[X])2

Example. Uniform distribution

a < b, a, b ∈ R, f(x) =

{
1
b−a x ∈ [a, b]

0 otherwise

we write X ∼ U [a, b]

P(X ≤ x) =

∫ x

a

f(y) dy =
x− a
b− a

a b

[ ]

x−a︷ ︸︸ ︷
x

F (x) =
x− a
b− a

for x ∈ [a, b] and F (x) = 1 for x > b, F (x) = 0 otherwise.

E[X] =

∫ b

a

x

b− a
dx =

a+ b

2
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Example. Exponential distribution

f(x) = λe−λx, λ > 0, x > 0, X ∼ Exp(λ)

F (x) = P(X ≤ x) =

∫ x

0

λe−λy dy = 1− e−λx

and
E[X] =

∫ ∞
0

λxe−λx dx =
1

λ

3.3 Exponential as a limit of geometrics

Equation. Let T ∼ Exp(λ) and set Tn = bnT c ∀n ∈ N

P(Tn ≥ k) = P
(
T ≥ k

n

)
= e−λk/n =

(
e−λ/n

)k
So Tn is a geometric of parameter

pn = 1− e−λ/n ∼ λ

n
as n→∞

and
Tn
n
→ R as n→∞

So the exponential is the limit of a rescaled geometric

Remark. Memoryless property:

s, t > 0 P(T > t+ s|T > s) = e−λt = P(T > t)

T ∼ Exp(λ)
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Prop. Let T be a positive r.v. not identically 0 or ∞.
Then T has the memoryless property iff T is exponential

Proof. =⇒ :
∀s, t P(T > t+ s) = P(T > s)P(T > t)

Set
g(t) = P(T > t)

NTS:
g(t) = e−λt for some λ > 0

g(t+ s) = g(t)g(s) ∀s, t > 0

t ≥ 0,m ∈ N g(mt) = (g(t))m

t = 1 gives:
∀m ∈ N g(m) = g(1)m

g
(m
n

)n
= g(m) =⇒ g

(m
n

)
= g(1)m/n, ∀m,n ∈ N

g(1) = P(T > 1) ∈ (0, 1)

Set
λ = − logP(T > 1) > 0

So we have proved that
g(t) = P(T > t) = e−λt ∀t ∈ Q+

Let t ∈ R+. Then
∀ε > 0∃r, s ∈ Q : r ≤ t < s and |r − s| < ε

e−λs = P(T > s) ≤ P(T > t) ≤ P(T > r)e−λr

Letting ε→ 0 finishes the proof
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Theorem. Let X be a continuous r.v. with density f . Let G be a continuous function which is
either strictly increasing or strictly decreasing and g−1 is differentiable.
Then g(X) is a continuous r.v. with density

f(g−1(x)) ·
∣∣∣∣ d

dx
g−1(x)

∣∣∣∣
Proof. g increasing:

P(g(X) ≤ x) = P(X ≤ g−1(x)) = F (g−1(x))

d

dx
P(g(X) ≤ x) = F ′(g−1(x)) · d

dx
g−1(x) = f(g−1(x)) · d

dx
g−1(x)

g decreasing:

P(g(X) ≤ x) = P(X ≥ g−1(x)) = 1− P(X < g−1(x)) = 1− F (g−1(x))

since
P(X = g−1(x)) = 0

d

dx
P(g(x) ≤ x) = −f(g−1(x)) · d

dx
g−1(x)

= f(g−1(x)) ·
∣∣∣∣ d

dx
g−1(x)

∣∣∣∣
g−1 decreasing and so

d

dx
g−1(x) < 0

67



Example. Normal distribution:
−∞ < µ <∞, σ > 0 are our 2 parameters.

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
x ∈ R

Check if f is a density: ∫ ∞
−∞

f(x) dx =

∫ ∞
−∞

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
dx

∫ ∞
−∞

1√
2π

exp

(
u2

2

)
du = 2

∫ ∞
0

1√
2π
e−u

2/2 du = I

I2 =
2

π

∫ ∞
0

∫ ∞
0

e−(u2+v2)/2 dudv

Polar coordinates u = r cos θ and v = r sin θ

I2 =
2

π

∫ ∞
0

∫ π
2

0

re−(r2)/2 dr dθ = 1 =⇒ I = 1

as desired
So f is a density
Let X have density f

E[X] =

∫ ∞
−∞

x√
2πσ2

exp

(
− (x− µ)2

2σ2

)
dx

=

∫ ∞
−∞

x− µ√
2πσ2︸ ︷︷ ︸

0

+µ

∫ ∞
−∞

1√
2πσ2︸ ︷︷ ︸

1

first integral is 0 by u = (x− µ)/σ
So E[X] = µ

Var(X) = E[(X − µ)2]

=

∫ ∞
−∞

(x− µ)2

√
2πσ2

exp

(
− (x− µ)2

2σ2

)
dx

= σ2

∫ ∞
−∞

u2

√
2π
e−u

2/2 du = σ2

So Var(X) = σ2

When X has density f , we write X ∼ N(µ, σ2)
(X is normal with parameters µ and σ2)
When µ = 0 and σ2 = 1„ we call N(0, 1) the standard normal.
If X ∼ N(0, 1), we write

Φ(x) =

∫ x

−∞

1√
2π
e−u

2/2 du

and
ϕ(x) = Φ′(x) =

1√
2π
e−x

2/2

Have
ϕ(x) = ϕ(−x) =⇒ Φ(x) + Φ(−x) = 1 =⇒ P(X ≤ x) = 1− P(X ≤ −x)
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Method. Let a 6= 0, b ∈ R. Set g(x) = ax+ b
Define Y = g(X). What is the density of Y ?

Y = aX + b

g−1(x) =
x− b
a

and
d

dx
g−1(x) =

1

a

fY (y) = fX(g−1(x)) ·
∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ =
1√

2πσ2
exp

(
−

(y−ba − µ)2

2σ2

)
· 1

|a|

=
1

2πa2σ2
exp

(
(y − (aµ+ b))2

2a2σ2

)
So Y ∼ N(aµ+ b, a2σ2)
σ is the ‘standard deviation’.
Suppose X ∼ N(µ, σ2), then

X − µ
σ

∼ N(0, 1)

P(−2σ < X − µ < 2σ) = P
(
−2 <

X − µ
σ

< 2

)
= P

(∣∣∣∣X − µσ

∣∣∣∣ < 2

)
= Φ(2)

and Φ(2) ≥ 0.95 (using tables for Φ)
With prob. ≥ 95%, the normal is within 2 standard deviations of the mean
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Definition. Suppose that X is a continuous r.v. The median of X, denoted by m, is the number
satisfying

P(X ≤ m) = P(X ≥ m) =
1

2

In other words ∫ m

−∞
f(x) dx =

∫ ∞
0

f(x) dx =
1

2

If X ∼ N(µ, σ2), then

P(X ≤ µ) = P
(
X − µ
σ

≤ 0

)
= Φ(0) =

1

2

xµ+ 2σµ− 2σ

Area ≈ 0.025

(rough sketch diagram, not perfect)

µ

3.4 Multivariate Density Functions

Equation. X = (X1, . . . , Xn) ∈ Rn r.v.
We say that X has density f if

P(X1 ≤ x1, . . . , Xn ≤ xn)︸ ︷︷ ︸
=f(X1,...,Xn)

=

∫ X1

−∞
· · ·
∫ Xm

−∞
f(y1, . . . , yn) dy1 . . . dyn

Then
f(X1, . . . , Xn) =

∂n

∂x1 . . . ∂xn
F (x1, . . . , xn)

This generalises: “∀” B ⊆ Rn

P((Xn, . . . , Xn) ∈ B) =

∫
B

f(y1, . . . , yn) dy1 . . . dyn

Definition. We say that X1, . . . , Xn are independent if ∀x1, . . . , xn,

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn)
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Theorem. Let X = (X1, . . . , Xn) has density f
(i) Suppose X1, . . . , Xn are independent with densities f1, . . . , fn. Then

f(x1, . . . , xn) = f1(x1) . . . fn(xn) (*)

(ii) Suppose that f factorises as in (*) for some non-negative functions (fi). Then X1, . . . , Xn are
independent and have densities proportional to the fi’s

Proof.
(i)

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn)

=

∫ x1

−∞
f1(y) dy1· · ·

∫ xn

−∞
fn(y) dyn

=

∫ x1

−∞
· · ·
∫ xn

−∞

n∏
i=1

fi(yi) dy1 . . . dyn

So the density of (X1, . . . , Xn) is f =
∏
fi

Let B1, . . . , Bn ⊆ R then

P(X1 ≤ B1, . . . , Xn ≤ Bn) =

∫
B1

· · ·
∫
Bn

f1(x1) . . . fn(xn) dx1 . . . dxn

Take Bj = R ∀j 6= i. Then

P(Xi ∈ Bi) = P(Xi ∈ Bi, Xj ∈ Bj ∀j 6= i) =

∫
Bi

fi(yi) dyi
∏
j 6=i

∫
R
fj(y) dy

Since f is a density ∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xn) dx1 . . . dxn = 1

But f =
∏
fi, so ∏

j

∫ ∞
−∞

fj(y) dy = 1

=⇒
∏
j 6=i

∫
R
fj(y) dy =

1∫
R fi(y) dy

So

P(Xi ∈ Bi) =

∫
Bi
fi(y) dy∫

R fi(y) dy

This shows that the density of xi is
fi∫

R fi(y) dy

The Xi’s are independent, since

P(X1 ≤ x1, . . . , Xn ≤ xn) =

∫ x1

−∞ f1(y1) dy1· · ·
∫ xn
−∞ fn(y1n dyn∫

R f1(y1) dy1· · ·
∫
R fn(y1ndyn

= P(X1 ≤ x1) . . .P(Xn ≤ xn)
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Equation. Suppose (X1, . . . , Xn) has density f

P(X1 ≤ x) = P(X1 ≤ x,X2 ∈ R, . . . , Xn ∈ R)

=

∫ x

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xn) dx1 . . . dxn

=

∫ x

−∞

(∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xn) dx2 . . . dxn

)
︸ ︷︷ ︸

density of X1

dx1

density of X1 = marginal density of X1

fX1(x1) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xn) dx2 . . . dxn

3.5 Density of the Sum of Independent r.v.’s

Equation. Let X and Y be 2 independent r.v.’s with densities fX and fY respectively.

P(X + Y ≤ z) =

∫ ∫
{x+y≤z}

fX,Y (x, y) dxdy

=

∫ ∞
−∞

∫ z−x

−∞
fX(x)fY (y) dxdy

=

∫ ∞
−∞

(∫ z

−∞
fY (y − x)fX(x) dy

)
dx

=

∫ z

−∞
dy

(∫ ∞
−∞

fY (y − x)fX(x) dx

)
So the density of X + Y is ∫ ∞

−∞
fY (y − x)fX(x) dx

We call this function the convolution of fX and fY

Definition. f, g: 2 densities

f ∗ g(x) =

∫ ∞
−∞

f(x− y)g(y) dy = convolution of f and g
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Moral. We can non-rigorously show this

P(X + Y ≤ z) =

∫ ∞
−∞

P(X + Y ≤ z, Y ∈ dy)

=

∫ ∞
−∞

P(X ≤ z − y)P(Y ∈ dy)

=

∫ ∞
∞

FX(z − y)fY (y) dy

d

dz
P(X + Y ≤ z) =

∫ ∞
−∞

d

dz
FX(z − y)fY (y) dy =

∫ ∞
−∞

fX(z − y)FY (y) dy

So the density of X + Y is ∫ ∞
−∞

fX(z − y)FY (y) dy

3.6 Conditional Density

Definition. Let X and Y be continuous variables with joint density fX,Y and marginal densities fX
and fY . Then the conditional density of X given Y = y is defined

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

3.7 Law of Total Probability

Equation.

fX(x) =

∫ ∞
∞

fX,Y (x, y) dy =

∫ ∞
∞

fX|Y (x|y)fY (y) dy

Remark. Want to define E[X|Y ] = g(Y ) for some function g.
Define

g(y) =

∫ ∞
∞

xfX|Y (x|y) dx

Set E[X|Y ] = g(Y ) = conditional expectation of X given Y .
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3.8 Transformation of a multidimensional r.v.

Theorem. Let X be a r.v. with values in D ⊆ Rd and with density fX .
Let g be a bijection from D to g(D) which has a continuous derivative on D and

det g′(x) 6= 0 ∀x ∈ D

Then the r.v. Y = g(X) has density

fY (y) = fX(x) · |J |

where x = g−1(y) and J is the determinant of the Jacobian

J = det

((
∂xi
∂yj

)d
i,j=1

)

Proof. We do not prove it here.

Example. Let X and Y be independent N(0, 1) r.v.’s

(X,Y )

θ

Want the density of (R, θ)
X = R cos θ

Y = R sin θ

fR,θ(r, θ) = fX,Y (r cos θ, r sin θ) · |J |

J = det

[
cos θ −r sin θ
sin θ r cos θ

]
= r

So
fR,θ(r, θ) = fX(r cos θ) · fY (r sin θ) · r =

1√
2π
e−(r2 cos2 θ)/2 · 1√

2π
e−(r2 sin2 θ)/2 · r

=⇒ fR,θ(r, θ) =
1

2π
re

r2

2

for all r > 0 and θ ∈ [0, 2π]

This shows that R and θ are independent with θ ∼ U [0, 2π] and R has density re
r2

2 on (0,∞)
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3.9 Order Statistics for a Random Sample

Method. Let X1, . . . , Xn be iid with distr. function F and density f .
Put them in increasing order

X(1) ≤ X(2) ≤ · · · ≤ X(n)

and set
Yi = X(i)

Then (Yi) are the order statistics.

P(Y1 ≤ x) = P(min(X1, . . . , Xn) ≤ x) = 1− P(min(X1, . . . , Xn) > x) = 1− (1− F (x))n

fY1
(x) =

d

dx
(1− (1− F (x))n) = n · (1− F (x))n−1 · f(x)

P(Yn ≤ x) = (F (x))n

fYn(x) = n(F (x))n−1 · f(x)

Density of Y1, . . . , Yn?

P(Y1 ≤ x1, . . . , Yn ≤ xn) = n!P(X1 ≤ x1, . . . , Xn ≤ xn, X1 < X2 < · · · < Xn)

= n!

∫ X!

−∞

∫ X2

u1

· · ·
∫ xn

un−1

f(u1) . . . f(un) du1 . . . dun

by differentiating we get

fY1,...,Yn(x1, . . . , xn) =

{
n!f(x1) . . . f(xn) when X1 < X2 < . . .Xn

0 otherwise
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Example. Let X ∼ Exp(λ) and X ∼ Exp(µ), X ⊥⊥ Y .
Set Z = min(X,Y )

P(Z ≥ z) = P(X ≥ z, Y ≥ z) = e−λz · e−µz = e−(λ+µ)z

So Z ∼ Exp(λ+ µ)
Mroe generally, if X1, . . . , Xn are independent with Xi sinExp(λi) then

min(X1, . . . , Xn) ∼ Exp

(
n∑
i=1

λi

)

Let X1, . . . , Xn be iid Exp(λ) and let Yi be their order statistics

Z1 = Y1, Z2 = Y2 − Y1, . . . , Zn = Yn − Yn−1

Density of (Z1, . . . , Zn) =?

Z =

Z1

...
Zn

 = A

Y1

...
Yn


where

A =


1 0 0 0 . . . 0
−1 1 0 0 . . . 0
0 −1 1 0 . . . 0

...


have detA = 1 and let Z = Ay, then

yj =

j∑
i=1

zi

f(Z1,...,Zn)(z1,...,zn) = f(Y1,...,Yn)(y1, . . . , yn) · |J |
= n!f(y1) . . . f(y)n)

= n!λe−λy1 . . . λe−λyn

= n!λne−λ(nz1+(n−1)z2+···+zn)

=

n∏
i=1

(n− i+ 1)λe
−λ(n−i+1zi

So Z1, . . . , Zn are independent and Zi ∼ Exp(λ(n− i+ 1))

3.10 Moment Generating Functions (mgfs)

Definition. Let X be a r.v. with density f . The mgf of X is defined to be

m(θ) = E
[
eθX

]
=

∫ ∞
−∞

eθxf(x) dx

whenever this integral is finite
m(0) = 1
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Theorem. The mgf uniquely determines the distribution of a r.v. provided it is defined for an open
interval of values of θ.

Theorem. Suppose the mgf is defined for an open interval of values of θ. Then

m(r)(0) =
dr

dθr
m(θ)|θ=0 = E[Xr]

Example. Gamma distribution:

f(x) =
e−λxλ

nxn−1

(n− 1)!
, λ > 0, n ∈ N, x ≥ 0

We denote X with density f as X ∼ Γ(m,λ)
Check f is a density:

In =

∫ ∞
0

f(x) dx

=

∫ ∞
0

λe−λx · λ
n−1xn−1

(n− 1)!
dx

=

∫ ∞
0

e−λxλn−1 · (n− 1)xn−2

(n− 1) · (n− 2)!
dx

= In−1 = · · · = I1

for n = 1 f(x) = λe−λx =⇒ Exp(λ). So I1 = 1

m(θ) =

∫ ∞
0

eθx · e−λx · λ
nxm−1

(n− 1)!

=

∫ ∞
0

e(λ−θ)x λ
nxn−1

(n− 1)!
dx

=

(
λ

λ− θ

)n
for λ > 0

Claim. Suppose that X1, . . . , Xn are independent r.v’s. Then

m(θ) = E
[
eθ(X1+···+Xn)

]
=

n∏
i=1

E[eθXi ]
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Example. Let X ∼ Γ(n, λ) and Y ∼ Γ(m,λ) and X ⊥⊥ Y . Then

m(θ) = E
[
eθ(X+Y )

]
= E[eθX ] · E[eθY ]

=

(
λ

λ− θ

)n
·
(

λ

λ− θ

)m
=

(
λ

λ− θ

)n+m

for θ < λ

So by the uniqueness theorem we get X + Y ∼ Γ(n+m,λ).
In particular, this implies that if X1, . . . , Xn are iid Exp(1) (= Γ(1, λ)) then

X1 + · · ·+Xn ∼ Γ(n, λ)

Remark. One could also consider Γ(α, λ) (α > 0) by replacing (n− 1)! with

Γ(α) =

∫ ∞
0

e−x · xα−1 dx

Example. Normal distribution. Let X ∼ N(µ, σ2)

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
x ∈ R

m(θ) =

∫ ∞
−∞

eθx
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
dx

θx−
(
− (x− µ)2

2σ2

)
= θµ+

θ2σ2

2
− (x− (µ+ θσ2))2

2σ2

So

m(θ) =

∫ ∞
−∞

1√
2πσ2

eθµ+θ2σ2/2 exp

(
− (x− (µ+ θσ2))2

2σ2

)
dx = eθµ+θ2σ2/2

as
1√

2πσ2
exp

(
− (x− (µ+ θσ2))2

2σ2

)
gives normal distribution
If X ∼ N(µ, σ2), then aX + b ∼ N(aµ+ b, a2σ2)
So

E[eθ(aX+b)] = eθ(aµ+b)+θ2a2σ2/2

Suppose X ∼ N(µ, σ2) and Y ∼ N(µ, τ2) and X ⊥⊥ Y
Then

E[eθ(X+Y )] = E[eθX ] · E[eθY ]

= eθµ+θ2σ2/2 · eθν+θ2τ2/2

= eθ(µ+ν)+θ2(σ2+τ2)/2

So X + Y ∼ N(µ+ ν, σ2 + τ2)
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Example. Cauchy distribution

f(x) =
1

π(1 + x2)
x ∈ R

m(θ) = E[eθX ]

=

∫ ∞
−∞

eθx

π(1 + x2)
dx

=∞ ∀θ 6= 0, (m(0) = 1)

Suppose X ∼ f . Then X, 2X, 3X, . . . all have the same mgf.
However they do not have the same distribution.
So assumption on m(θ) being finite for an open interval of values of θ is essential

3.11 Multivariate Moment Generating Function

Definition. Let X = (X1, . . . , Xn) be a r.v. with values in Rn. Then the mgf of X is defined to be

m(θ) = E[eθ
TX ] = E[eθ1X1+···+θnXn ]

where
θ = (θ1, . . . , θn)T

Theorem. In this case, provided mgf is finite for a range for values of θ, it uniquely determines the
distribution of X. also

∂rm

∂θri

∣∣∣∣
θ=0

= E[Xr
i ]

∂r+sm

∂θri ∂θ
s
j

∣∣∣∣∣
θ=0

= E[Xr
iX

s
j ]

m(θ) =

n∏
i=1

E[eθiXi ] iff X1, . . . , Xn are indep.

Definition. Let (Xn : n ∈ N) be a sequence of r.v.’s and let X be another r.v.
We say that Xn converges to X in distribution and write Xn

d−→ X, if

FXn(x)→ FX(x) ∀x ∈ R that are continuity points of FX

Theorem (Continuity Property for mgf’s). Let X be a r.v. with m(θ) <∞ for some θ 6= 0. suppose
that

mn(θ)→ m(θ) ∀θ ∈ R where mn(θ) = E[eθXm ] and m(θ) = E[eθX ]

Then Xn converges to X in distribution
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3.12 Limit Theorems for Sums of iid r.v.’s

Theorem (Weak Law of Large Numbers). Let (Xn : n ∈ R) be a sequence of iid r.v.’s with µ =
E[X1] <∞. Set

Sn = X1 + · · ·+Xn

Then ∀ε > 0

P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
→ 0 as n→∞

Proof (assuming σ2 <∞ where (σ2 = Var(X1)).

P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
= P(|Sn − nµ > εn)

≤ Var(Sn)

ε2n2
=

nσ2

ε2n2
→ 0 as n→∞

Sn = X1 + · · ·+Xn =⇒ Var(Sn) = nσ2

Definition. A sequence (Xn) converges to X in probability and we write

Xn
P−→ X as n→∞

if ε > 0:
P(|Xn −X > ε)→ 0 as n→∞

Definition. We say (Xn) converges to X with probability 1 or ‘almost surely (a.s.)’ if

P
(

lim
n→∞

Xn = X
)

= 1
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Claim. Suppose Xn → 0 a.s. as n→∞. Then Xn
P−→ 0 as n→∞

Proof. NTS:
∀ε > 0 P(|Xn| > ε)→ 0 as n→∞

or equivalently
P(|Xn| ≤ ε)→ 1 as n→∞

P(|Xn| ≤ ε) ≥ P


∞⋂
m=n

{|Xm| ≤ ε}︸ ︷︷ ︸
An

 An ⊆ An+1

⋃
n

An = {|Xm| ≤ ε for all m sufficiently large}

So

P(An)→ P

(⋃
n

An

)
as n→∞

So
lim
n→∞

P(|Xn| ≤ ε) ≥ lim
n→∞

P(An) = P
(⋃

An

)
> P

(
lim
Xn=0

)
= 1
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Theorem (Strong law of large numbers). Let (Xn)n∈N be an iid sequence of r.v.’s with µ = E[X1] <
∞.
Then setting

SN = X1 + · · ·+Xn

we have
Sn
n
→ µ as n→∞ a.s.(

P
(
Sn
n
→ µ as n→∞

)
= 1

)

Proof (non-examinable). Assume further that E[X4
1 ] <∞

Set Yi = Xi − µ. Then E[Yi] = 0 and

E[Y 4
1 ] ≤ 24(E[X1]4 + µ4) <∞

It suffices to prove

Sn
n
→ 0 where Sn =

n∑
i=1

Xi with E[Xi] = 0 and E[X4
i ] <∞

S4
n =

(
n∑
i=1

Xi

)4

=

n∑
i=1

X4
i +

(
4

2

) ∑
1≤i<j≤n

X2
iX

2
j +R

where R is a sum of terms of the form X2
iXjXk or X3

iXj or XiXjXkXl for i, jk, l distinct.

E[S4
n] = nE[X4

1 ] +

(
4

2

)
n · (n− 1)

2
E[X2

1X
2
2 ] + E[R]︸︷︷︸

=0

So
E[S4

n] ≤ n · E[X4
1 ] + 3n(n− 1)E[X4

1 ]

E[S4
n] ≤ 3n2E[X4

1 ]

So

E

[ ∞∑
n=1

(
Sn
n

)4
]
≤
∞∑
n=1

∞ 3

n2
E[X4

1 ] <∞

which implies that
∞∑
n=1

(
Sn
n

)4

<∞ w.p. 1

=⇒ Sn
n
→ 0 as n→∞ w.p. 1
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Equation. Suppose E[X1] = µ and Var(X1) = σ2 <∞

Var
(
Sn
n
− µ

)
=
σ2

n

Sn
n − µ√

Var
(
Sn
n − µ

) =
Sn
n − µ
σ√
n

=
Sn − nµ
σ
√
n
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3.13 Central limit theorem

Theorem. Let (Xn)n∈N be an iid sequence of rv.’s with E[X1] = µ and Var(X1) = σ2. Set

Sn = X1 + · · ·+Xn

Then

∀x ∈ R, P
(
Sn − nµ
σ
√
n
≤ x

)
→ Φ(x) =

∫ x

−∞

e−y
2/2

√
2π

dy as n→∞

In other words,
Sn − nµ
σ
√
n

n→∞−−−−→ Z

where Z ∼ N(0, 1)
CLT says that for n large enoguh

Sn − nµ
σ
√
n
≈ Z Z ∼ N(0, 1)

=⇒ Sn ≈ nµ+ σ
√
nZ ∼ N(nµ, σ2n) for n large

Proof. Consider Y1 = (Xi − µ)/σ. Then E[Y1] = 0 and Var(Yi) = 1.
It suffices to prove the CLT when

Sn = X1 + · · ·+Xn with E[Xi] = 0 and Var(Xi) = 1

Assume further that ∃δ > 0 s.t.

E[eδX1 ] <∞ and E[e−δX1 ] <∞

NTS
Sn√
n
→ N(0, 1) as n→∞

By the continuity property of mgf’s, it suffices to show ∀θ ∈ R

E
[
eθSn/

√
n
]
n→∞−−−−→ E[eθZ ] = eθ

2/2

Set
m(θ = E[eθX1 ]

Then

E
[
eθSn/

√
n
]

=
(
E
[
eθX1/

√
n
])n

=

(
m

(
θ√
n

))n
NTS (

m

(
θ√
n

))n
→ eθ

2/2 as n→∞

|θ| ≤ δ

2
m(θ) = E

[
eθX1

]
= E

[
1 + θX1 +

θ2X2
1

2!
+

∞∑
k=1

θkXk
1

k!

]

84



Theorem (cont.).

Proof (cont.). So

m(θ) = 1 +
θ2

2
+ E

∑
k≥3

θkXk
1

k!


Claim. It suffices to prove that∣∣∣∣∣∣E

∑
k≥3

θkXk
1

k!

∣∣∣∣∣∣ = o(|θ|2) as θ → 0

Once we prove this bound, then

m

(
θ√
n

)
= 1 +

θ2

√
n

= 1 +
θ2

2n
+ o

(
|θ|2

n

)
and hence (

m

(
θ√
n

))m
→ eθ

2/2 as n→∞

Proof (of claim). ∣∣∣∣∣∣E
∑
k≥3

θkXk
1

k!

∣∣∣∣∣∣ ≤ E

∑
k≥3

|θ|kXk
1

k!


= E

[
|θX1|3

∞∑
k=0

|θX1|k

(k + 3)!)

]

≤ E

[
|θX1|3

∞∑
k=0

|θX1|k

k!)

]
≤ E

[
|θX1|3 · e

δ
2 |X1|

]
as |θ| ≤ δ

2 .

|θX1|3e
δ
2 |X1| = |θ|3

(
δ
2 |X1|

)3
3!

· 3!(
δ
2

)3 · e δ2 |X1|

≤ 3!|θ|3(
δ
2

)3 eδ|X1|

= 3! ·
(

2|θ|
δ

)3

eδ|X1|

eδ|X1| ≤ eδX1 + e−δX1

so ∣∣∣∣∣∣E
∑
k≥3

θkXk
1

k!

∣∣∣∣∣∣ ≤ 3! ·
(

2|θ|
δ

)3

E[eδ|X1| + e−δ|X1|]︸ ︷︷ ︸
<∞

= o((|θ|2) as θ → 0
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3.14 Applications

Example. Normal approximation to the binomia distr.
Let Sn ∼ Bin(n, p)

Sn =

n∑
i=1

Xi, (Xi) iid ∼ Ber(p) E[Sn] = np,Var(Sn) = np(1− p)

So by the CLT
Sn − np√
np(1− p)

d−→ N(0, 1) as n→∞

So
Sn ≈ N(np, np(1− p)) for n large

Bin
(
n,
λ

n

)
→ Poi(λ) λ > 0

Example. Normal approx. to the Poisson distribution:
Let Sn ∼ Poi(n).

Sn =

n∑
i=1

Xi, (Xi) iid ∼ Poi(1)

Sn − n√
n

d−→ N(0, 1) as n→∞
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3.15 Sampling Error via the CLT

Example. Pick N individuals at random. Let

p̂N =
SN
N

where SN is the number of yes voters.
How large should N be so that

|p̂N − p| ≤
4

100
w.p. ≥ 0.99?

By the CLT
SN ≈ Np+

√
Np(1− p) · Z, where Z ∼ N(0, 1)

So

p̂N =
SN
N
∼ p+

√
p(1− p)
N

· Z =⇒ |p̂N − p| ≈
√
p(1− p)
N

· |Z|

Find N s.t.
P(|p̂N − p| ≤ 0.04) ≥ 0.99

or equivalently

P

(√
p(1− p)
N

· |Z| ≤ 0.04

)
≥ 0.99

z = 2.58 P(|Z| ≥ 2.58) = 0.01
So we need

0.04

√
N

p(1− p)
≥ 2.58 =⇒ N ≥ 1040
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3.16 Buffon’s Needle

Example.

L

θ

X
l sin θ

parallel lines at distance L apart

needle length l ≤ L

Throw the needle at random. What is the probability it intersects at least one line?

θ ∼ U [0, π], X ∼ U [0, L] indep.

It intersects a line iff X ≤ l sin θ.

P(intersection) = P(X ≤ l sin θ) =

∫ L

0

∫ π

0

1

πL
1(x ≤ l sin θ) dxdθ =

2l

πL

So p = 2l
πL

=⇒ π =
2l

pL

Want to use this experiment to approximate π. Throw n needles indep. and let p̂n be the proportion
intersecting a line. Then p̂n approximates p and so

π̂n =
2l

p̂n
L approximates π

Suppose
P(|π̂n − π| ≤ 0.001) ≥ 0.99

How large should n be?
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Example (cont.). Sn = number of needles intersecting a line

Sn ∼ Bin(n, p)

By the CLT, Sn ∼ np+
√
np(1− p) · Z,Z ∼ N(0, 1)

p̂n =
Sn
n
≈ p+

√
p(1− p)

n
· Z

So

p̂n − p ≈
√
p(1− p)

n
·

Define f(x) = 2l
xL . Then f(p) = π and f ′(p) = −π/p and π̂n = f(p̂n).

By Taylor expansion, π̂n = f(p̂n) ≈ f(p) + (p̂n − p)f ′(p)

=⇒ π̂n ≈ π − (p̂n − p) ·
π

p

=⇒ π̂n − π ≈ −
π

p

√
p(1− p)

n
= −π

√
1− p
pn

· Z

We want

P
(
π

√
1− p
pn

· |Z| ≤ 0.001

)
≥ 0.99

Have P(|Z| ≥ 2.58) = 0.01 and π2 · 1−ppn decreasing in p. Minimise π2 · 1−ppn by taking l = L =⇒ p = 2
π

and

Var =
π2

n

(π
2
− 1
)

Taking √
π2

n

(π
2
− 1
)
· 2.58 = 0.001 =⇒ n = 3.75× 107
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3.17 Bertrand’s Paradox

Example.

A

B

r

Draw a chord at random.
What is the probability it has length ≤ r?

1st interpretation: Let X ∼ U [0, r]

B

A

r
C = 2

√
r2 −X2

X √
r2 −X2

Let C = |AB|. What is P(C ≤ r)?

C = 2
√
r2 −X2

P(C ≤ r) = P(2
√
r2 −X2 ≤ r)

= P(4(r2 −X2) ≤ r2)

= P(4X2 ≥ 3r2)

= P(X ≥
√

33/2)

= 1−
√

3

2
≈ 0.134
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Example (cont.). 2nd interpretation: Let θ ∼ [0, 2π]
Let C = |AB|
If θ ∈ [0, π]:

B

A

θ
θ
2

C = 2r sin
θ

2

If θ ∈ [π, 2π]:

B

A

θ

2π − θ

C = 2r sin
2π − θ

2
= 2r sin

θ

2

P(C ≤ r) = P(2r sin
θ

2
≤ r)

= P(sin
θ

2
≤ 1

2
)

= P(θ ≤ π

3
) + P(θ ≥ π

3
)

=
1

6
+

1

6

=
1

3
≈ 0.333 . . .
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3.18 Multidimensional Gaussian r.v.’s

Definition. A r.v. X with values in R is called Gaussian/ normal if

X = µ+ σZ, µ ∈ R, σ ∈ [0,∞] and Z ∼ N(0, 1)

The density of X is

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, x ∈ R

X ∼ N(µ, σ2)

Definition. Let X = (X1, . . . , Xn)T with values in Rn. Then X is a Gaussian vector or is just
called Gaussian if ∀u = (u1, . . . , un)T ∈ Rn

uTX =

n∑
i=1

uiXi is a Gaussian r.v. in R

Example. Suppose X is Gaussian in Rn. Suppose A is an m× n matrix and b ∈ Rm. Then AX + b
is also Guassian in Rm.

Proof. Let u ∈ Rm. THen

uT (AX + b) = (uTA)X + uT b

Set v = ATu. Then

uT (AX + b) = vTX + uT b = vTX +

m∑
i=1

uibi

Since X is Gaussian, we get vTX is Gaussian, and also vTX + uT b is Gaussian.

Definition.

µ = E[X] =

E[X1]
...

E[Xn]

 µi = E[Xi]

V = Var(X) = E[(X − µ)
n×1

·(X − µ)T

1×n
] =


. . .

...
E[(Xi − µi)(Xj − µj)

...
. . .

 =


. . .

...
Cov(Xi, Xj)]

...
. . .



92



Equation. V is a symmetric matrix

E[uTX] = E

[
n∑
i=1

uiXi

]
=

n∑
i=1

uiµi = uTµ

Var(uTX) = Var

(
n∑
i=1

uiXi

)
=

n∑
i,j=1

uiCov(XiXj)uj = uTV u

So uTX ∼ N(uTµ, uTV u)

Claim. V is a non-negative definite matrix/ (∀u ∈ Rn, uTV u ≥ 0)

Proof. Let u ∈ Rn. Then
Var(uTX) = uTV u

Since Var(uTX) ≥ 0, we have
uTV u ≥ 0

Method. Finding mgf of X:

m(λ) = E[eλ
TX ] ∀λ ∈ Rn, λ = (λ1, . . . , λn)T

m(λ) = E[eλ
TX ] = eλ

Tµ+λTV λ/2

We know
λTX ∼ N(λTµ, λTV λ)

So m(λ) is characterised by µ and V . Since the mgf uniquely characterises the distribution, we see
that a Gaussian vector is uniquely characterised by its mean µ and variance V .
In this case we write X ∼ N(µ, V )
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Claim. Let Zq, . . . , Zn iid N(0, 1) r.v.’s .
Set Z = (Z1, . . . , Zn)T . Then Z is a Gaussian vector.

Proof. ∀u ∈ Rn uTZ is Gaussian.

uTZ =

n∑
i=1

uiZi

NTS
n∑
i=1

uiZi is normal.

Let λ ∈ R.

E[e
λ

n∑
i=1

uiZi
] = E[

n∏
i=1

eλuiZi ]

=

n∏
i=1

E[eλuiZi ]

=

n∏
i=1

e(λui)
2/2

= eλ
2|u|2/2

So uTZ ∼ N(0, |u|2)

E[Z] = 0 Var(Z) = In =

1
. . .

1


So Z ∼ N(0, In)
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Method. Let µ ∈ Rn and V a non-negative definite matrix.
We want to construct a Gaussian vector with mean µ and variance V using Z.
n = 1 : µ, σ2: If Z ∼ N(0, 1) then µ+ σZ ∼ N(µ+ σ2)
Since V is non-negative, definite, V = UTDU with U−1 = UT and

D =

λ1

. . .
λn


and λi ≥ 0 ∀i
We define the square root of V to be the matrix

σ = UT
√
DU

where

√
D =


√
λ1

. . . √
λn


Indeed

σ · σ = UT
√
DUUT

√
DU = UTDU = V

Let Z = (Z1, . . . , Zn) with (Zi) iid N(0, 1) r.v.’s
Set X = µ+ σZ

Claim. X ∼ N(µ, V )

Proof. X is Gaussian, since it is a linear transformation of the Gaussian vector Z.

E[X] = µ

and

Var(X) = E[(X − µ)(X − µ)T

= E[(σZ) · (σZ)T ]

= E[σZ · ZT · σT ]

= σ · E[Z · ZT ]σ

= σInσ

= σσ

= V
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Method. Finding density of X ∼ N(µ, V )

n = 1 : X ∼ N(µ, σ2) fX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
Case V is positive definite (λi > 0 ∀i):

X = µ+ σZ, Z ∼ N(0, In)

fX(x) = fZ(z) · |J | x = µ+ σz

Since V is positive definite, σ is invertible
So

x = µ+ σz =⇒ z = σ−1(x− µ)

So

fX(x) = fZ(z) · |J | =
n∏
i=1

(
e−z

2
i /2

√
2π

)
· | detσ−1|

=⇒ fX(c) =
1

(2π)n/2
e−|z|

2/2 1√
detV

=
1√

(2π)n detV
ez
T z/2

zT · z = (σ−1(x− µ))T (σ−1(x− µ))

= (x− µ)T (σ−1)T

σ−1

σ−1(x− µ)

= (x− µ)Tσ−1σ−1 · (x− µ)

= (x− µ)T · V −1 · (x− µ)

Therefore

fX(x) =
1√

(2π)n detV
· exp

(
− (X − µ)T · V −1(x− µ)

2

)
Case V is non-negative definite, so some eigenvalues could be 0.
By an orthogonal change of basis, we can assume that

V =

[
U 0
0 0

]
where U is an m× n (m < n) positive definite matrix

We can write X =

[
Y
ν

]
where Y has density

fY (y) =
1√

(2π)m detU
exp

(
− (y − λ)T · U−1(y − λ)

2

)

Claim. If the Xi’s are independent, then V is a diagonal matrix

Proof. Since the Xi’s are independent, it follows that Cov(Xi, Xj) = 0 whenever i 6= j. So
V is diagonal.
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Lemma. Suppose that X is a Gaussian vector. Then if V is a diagonal matrix, then the Xi’s are
independent

Proof (1st). If V is diagonal, then the density fX(x) factorises into a product. Indeed,

(x− µ)TV −1(x− µ) =

n∑
i=1

(xi − µ2
i )

λi
V ==

λ1

. . .
λn

 λi > 0

so

fX(x) =
1√

(2π)n detV
exp

(
−

n∑
i=1

(xi − µi)2

2λi

)
Hence the Xi’s are indep.

Proof (2nd).
m(θ) = E[eθ

TX ] = eθ
Tµ+θTV θ/2 = e

∑
θiµi · e

∑
θiλi/2

So m(θ) factorises into the mgf’s of Gaussian r.v.’s in R

Moral. So for Gaussian vectors we have

(X1, . . . , Xn) are independent iff Cov(Xi, Xj) = 0 whenever i 6= j

3.19 Bivariate Gaussian

Definition. n = 2
Let X = (X1, X2) be a Gaussian vector in R2.
Set µk = E[Xk], k = 1, 2. Set σ2

k = Var(Xk)

ρ = Corr(X1, X2) =
Cov(X1, X2)√
Var(X1)Var(X2)

Claim. ρ ∈ [−1, 1]

Proof. Immediate from the Cauchy-Schwartz ineq.

V = Var(X) =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
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Claim. For all σk > 0 and ρ ∈ [−1, 1]

V =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
is non-negative definite

Proof. Let u ∈ R2

uTV u = (1− ρ)(σ2
1u

2
1 + σ2

2 + σ2
2) + ρ(σ1u1 + σ2u2)2

= (1 + ρ)(σ2
1u

2
1 + σ2

2u
2
2)− ρ(σ1u1 − σ2u2)2︸ ︷︷ ︸

≥0 ∀ρ∈[−1,1]

Equation. When ρ = 0 and σ1, σ2 > 0, then

fX1,X2
(x,x2) =

2∏
k=1

1√
2πσ2

k

exp

(
− (xk − µk)2

2σ2
k

)
So X1 and X2 are independent in this case.
More generally, suppose (X1, X2) is a Gaussian vector.
want to find E[X2|X1].
Let a ∈ R. Consider X2 − aX1.

Cov(X2 − aX1, X1) = Cov(X2, X1)− aCov(X1, X1)

= Cov(C1, X2)− aVar(X1)

= ρσ1σ2 − aσ2
1

Take a = (ρσ2)/σ1. Then Cov(X2 − aX1, X1) = 0.
Set Y = X2 − aX1

Claim. (X1, Y ) is a Gaussian vector

Proof. [
X1

Y

]
=

[
1 0
−a 1

] [
X1

X2

]
So X1Y is of the form A

[
X1

X2

]
where

[
X1

X2

]
is a Gaussian vector.
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Equation. From the criterion of independence, we get X1 is independent of Y , since (X1, Y ) is
Gaussian and Cov(X1, Y ) = 0. Have Y = X2 − aX1 so we can express

X2 = X2 − aX1 + aX1 = Y + aX1

and
E[X2|X1] = E[Y + aX1|X1] = E[Y |X1]︸ ︷︷ ︸

=E[Y ]

+ aE[X1|X1]︸ ︷︷ ︸
=X1]

using Y ⊥⊥ X1.
So

E[X2|X1] = E[Y ] + aX1

(X1, X2) Gaussian, (X2 − aX1, X1) is Gaussian and X2 − aX1 ⊥⊥ X1.

X2 = X2 − aX1 +X1

So given X1,
X2 ∼ N(aX1 + µ2 − aµ1,Var(X2 − aX1)

where
Var(X2 − aX1) = Var(X2) + a2Var(X1)− 2aCov(X1, X2)

3.20 Multivariate CLT (non-examinable)

Equation. Let X be a random vector in Rk with µ = E[X] and covariance matrix σ. Let X1, X2, . . .
be iid with same distribution as X. Then

Sn =
1√
n

n∑
i=1

(X1 − E[Xi])
(d)−−→ N(µ, σ) as n→∞

Convergence distribution means that “∀” B ⊆ Rk

P(Sn ∈ B) →
n→∞

P(N(µ,Σ) ∈ B)

Example. Let U ∼ U [0, 1]. Set X = − logU

P(X ≤ x) = P(− logU ≤ x) = P(U ≥ e−x) = 1− e−x

So X ∼ Exp(1)

Theorem. Let X be a continuous r.v. with distribution function F . Then if U ∼ U [0, 1] we have
that F−1(U) ∼ F

Proof. Set Y = F−1(U)

P(Y ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x)
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3.21 Rejection Sampling

Example. Suppose A ⊂ [0, 1]d. Define

f(x) =
1(x ∈ A)

|A|
, |A| = volume of A

Let X have density f . How can we simulate X?
Let (Un)n∈N be an iid sequence of d-dimensional uniforms, i.e.

Un = (Uk,n : k ∈ {1, . . . , d}), (Uk,n)(k,n) iid ∼ U [0, 1]

Let N = min{n ≥ 1 : Un ∈ A}

Claim. UN ∼ f

Proof. We want to show that ∀B ⊆ [0, 1]d

P(UN ∈ B) =

∫
B

f(X) dx

P(UN ∈ B) =

[n]∞∑
i=1

P(UN ∈ B,N = n)

=

∞∑
n=1

P(Un ∈ A ∩B,Un−1 6∈ A, . . . , U1 6∈ A)

=
Uis indep

∞∑
n=1

P(Un ∈ A ∩B) · P(Un−1 6∈ A) . . .P(U1 6∈ A)

=

∞∑
n=1

|A ∩B|(1− |A|)n−1

=
|A ∩B|
|A|

and we have:
|A ∩B|
|A|

=

∫
A

1(x ∈ B)

|A|
dx =

∫
B

f(x) dx
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Example. Suppose f is a density on [0, 1]d−1 which is bounded, i.e.

∃λ > 0 s.t. f(x) ≤ λ ∀x ∈ [0, 1]d−1

Want to sample X ∼ f .
Consider

A = {(x1, . . . , xd) ∈ [0, 1]d : xd ≤ f(x1, . . . , xd−1)/λ}

From the above we know how to generate a uniform random variable on A.
Let Y = (X1, . . . , Xd) be this r.v.
Set X = (X1, . . . , Xd−1)

Claim. X ∼ f

Proof. We need to show that ∀B ⊆ [0, 1]d−1

P(X ∈ B) =

∫
B

f(x) dx

Have:

P(X ∈ B) = P((X1, . . . , Xd−1) ∈ B) = P((X1, . . . , Xd) ∈ (B × [0, 1]) ∩A) =
|(B × [0, 1]) ∩A|

|A|

as Y is uniform on A

|(B × [0, 1]) ∩A| =
∫
· · ·
∫

1((x1, . . . , xd) ∈ B × [0, 1] ∩A) dx1 . . . dxd

=

∫
· · ·
∫

1((x1, . . . , xd−1) ∈ B)1

(
xd ≤

f(X1, . . . , xd−1

λ

)
dx1 . . . dxd−1

=
1

λ

∫
B

f(x) dx

|A| = 1

λ

∫
[0,1]d−1

f(x) dx

=
1

λ

So
P(X ∈ B) =

∫
B

f(X) dx
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