Probability Summary

Hasan Baig

Lent 2021

Contents

1	Pro	bability Spaces 3
	1.1	Combinatorial Analysis
	1.2	Stirling's Formula
	1.3	Properties of Probability Measures
		1.3.1 Countable subadditivity
		1.3.2 Continuity of Probability Measures
	1.4	Inclusion-Exclusion Formula
		1.4.1 Bonferroni Inequalities 6
	1.5	Independence
	1.6	Conditional Probability
	1.7	Law of Total Probability
	1.8	Bayes' Formula
	1.9	Simpson's Paradox
•	ъ.	
2		crete Random Variables 9
	2.1	Definitions and Examples
	2.2	Expectation
	0.0	2.2.1 Properties of Expectation
	2.3	Another proof of the inclusion-exclusion formula
	0.4	2.3.1 Properties of Indicator Random Variables
	2.4	Terminology
	2.5	Inequalities
		2.5.1 Markov's Inequality
		$2.5.2 \text{Chebyshev's Inequality} \qquad 17$
		2.5.3 Cauchy-Schwarz Inequality
		2.5.4 Cases of Equality
		2.5.5 Jensen's Inequality
		2.5.6 Cases of Equality
		2.5.7 AM-GM Inequality
	2.6	Conditional expectation
		2.6.1 Law of Total Expectation
		2.6.2 Joint Distributions
		2.6.3 Distribution of the sum of independent r.v.'s
	~ -	2.6.4 Properties of Conditional Expectation
	2.7	Random Walks
		2.7.1 Expected time to absorption
	2.8	Probability Generating Functions
	2.9	Sum of a Random Number of r.v.'s
	0.15	2.9.1 Another Proof Using Conditional Expectation
	2.10	Branching Processes

		2.10.1 Extinction Probability	31
3	Con	tinuous Random Variables	34
	3.1	Definitions and Properties	34
	3.2	Expectation	37
	3.3	Exponential as a limit of geometrics	39
	3.4	Multivariate Density Functions	40
	3.5	Density of the Sum of Independent r.v.'s	41
	3.6		42
	3.7	Law of Total Probability	42
	3.8	Transformation of a multidimensional r.v.	43
	3.9	Order Statistics for a Random Sample	43
	3.10	Moment Generating Functions (mgfs)	44
	3.11	Multivariate Moment Generating Function	45
	3.12	Limit Theorems for Sums of iid r.v.'s	46
	3.13	Central limit theorem	48
	3.14	Applications	49
	3.15	Sampling Error via the CLT	49
	3.16	Bertrand's Paradox	50
	3.17	Multidimensional Gaussian r.v.'s	50
	3.18	Bivariate Gaussian	53
	3.19	Rejection Sampling	55

1 Probability Spaces

Definition. Suppose Ω is a set and \mathcal{F} is a collection of subsets of Ω . We call \mathcal{F} a σ -algebra if: (i) $\Omega \in \mathcal{F}$ (ii) if $A \in \mathcal{F}$, then $A^C \in \mathcal{F}$

(iii) for any countable collection $(A_n)_{n\geq 1}$ with $A_n \in \mathcal{F} \,\forall n$, we must also have that $\bigcup_n A_n \in \mathcal{F}$

Definition. Suppose \mathcal{F} is a σ -algebra on Ω . A function $\mathbb{P} : \mathcal{F} \to [0,1]$ is called a **probability** measure if

(i) $\mathbb{P}(\Omega) = 1$

(ii) for any countable disjoint collection $(A_n)_{n\geq 1}$ in \mathcal{F} with $A_n \in \mathcal{F} \ \forall n$, we have

$$\mathbb{P}(\bigcup_{n\geq 1}A_n) = \sum_{n\geq 1}\mathbb{P}(A_n)$$

We call $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space. Ω is the sample space \mathcal{F} a σ -algebra \mathbb{P} the probability measure

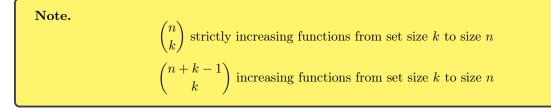
Note. We say $\mathbb{P}(A)$ is the probability of A

Remark. When Ω countable, we take \mathcal{F} to be all subsets of Ω

Definition. The elements of Ω are called **outcomes** and the elements of \mathcal{F} are called events.

Remark. We talk about probability of events and not outcomes.

1.1 Combinatorial Analysis



1.2 Stirling's Formula

Notation. Let (a_n) and (b_n) be 2 sequences. We write: $a_n \sim b_n$ if $\frac{a_n}{b_n} \to 1$ as $n \to \infty$ Theorem (Stirling).

$$n! \sim n^n \sqrt{2\pi n} e^{-n}$$
 as $n \to \infty$

Note. Weaker examinable statement proved below

Proof. Non-examinable.

Claim. Weaker statement of Stirling:

$$\log(n!) \sim n \log n \text{ as } n \to \infty$$

Proof. Define $l_n = \log(n!) = \log 2 + \ldots \log n$ For $x \in \mathbb{R}$, we write $\lfloor x \rfloor$: integer part of x.

$$\log\lfloor x\rfloor \le \log x \le \log\lfloor x+1\rfloor$$

Integrate from 1 to n to reach result

$$\int_{1}^{n} \log \lfloor x \rfloor \, \mathrm{d}x \le \int_{1}^{n} \log x \, \mathrm{d}x \le \int_{1}^{n} \log \lfloor x + 1 \rfloor$$

1.3 Properties of Probability Measures

1.3.1 Countable subadditivity

Claim. Let
$$(A_n)_{n\geq 1}$$
 be a sequence of events in $\mathcal{F} (A_n \in \mathcal{F} \forall n)$
Then
$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$

Proof. Define $B_1 = A_1$ and $B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1}) \forall n \ge 2$. Then $(B_n)_{n\ge 1}$ is a disjoint sequence of events in \mathcal{F} and $\bigcup_{n\ge 1} B_n = \bigcup_{n\ge 1} A_n$. Then apply properties of probability measure

1.3.2 Continuity of Probability Measures

Let $(A_n)_{n\geq 1}$ be an increasing sequence on \mathcal{F} , i.e. $\forall n \ A_n \in \mathcal{F}$ and $A_n \subseteq A_{n+1}$. Then $\mathbb{P}(A_n) \leq \mathbb{P}(A_{n+1})$. So $\mathbb{P}(A_n)$ converges as $n \to \infty$. Claim.

$$\lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_n A_n\right)$$

Proof. Set $B_1 = A_1$ and $\forall n \ge 2$ $B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1})$ Then $\bigcup_{k=1}^n B_k = A_n$ and $\bigcup_{k=1}^n B_k = \bigcup_{k=1}^n A_k$ Then use properties of probability measure.

Note. Similarly, if (A_n) is a decreasing sequence in \mathcal{F} , i.e. $\forall n \ A_n \in \mathcal{F}$ and $A_{n+1} \subseteq A_n$, then

$$\mathbb{P}(A_n) \to \mathbb{P}\left(\bigcap_n A_n\right) \text{ as } n \to \infty$$

1.4 Inclusion-Exclusion Formula

Let $A, B \in \mathcal{F}$. Then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ Let $C \in \mathcal{F}$. Then $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$

Claim. Let $A_1, \ldots, A_n \in \mathcal{F}$. then

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

Proof. By induction. For n = 2 it holds.

Assume it holds for n-1 events. We will prove it for n events.

$$\mathbb{P}(A_1 \cup \dots \cup A_n) = \mathbb{P}((A_1 \cup \dots A_{n-1}) \cup A_n) = \mathbb{P}(A_1 \cup \dots A_{n-1}) + \mathbb{P}(A_n) - \mathbb{P}((A_1 \cup \dots A_{n-1}) \cap A_n) (*)$$

Notice

$$\mathbb{P}((A_1 \cup \ldots A_{n-1}) \cap A_n) = \mathbb{P}((A_1 \cap A_n) \cup \cdots \cup (A_{n-1} \cap A_n))$$

Set $B_i = A_i \cap A_n$. By the inductive hypothesis,

$$\mathbb{P}(A_1 \cup \dots \cup A_{n-1}) = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$
$$\mathbb{P}(B_1 \cup \dots \cup B_{n-1}) = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} \mathbb{P}(B_{i_1} \cap \dots \cap B_{i_k})$$

Plugging these two into back into (*) gives the claim. \Box

Let $(\Omega, \mathcal{F}, \mathbb{P})$ with $|\Omega| < \infty$ and $\mathbb{P}(A) = \frac{|A|}{|\Omega|} \quad \forall A \in \mathcal{F}$. Let $A_1, \ldots, A_n \in \mathcal{F}$. Then

$$|A_1 \cup \dots \cup A_{n-1}| = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} |A_{i_1} \cap \dots \cap A_{i_k}|$$

1.4.1 Bonferroni Inequalities

Claim. Truncating sum in the inclusion-exclusion formula at the r-th term gives an overestimate if r is odd and an underestimate if r is even, i.e.

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{k=1}^{r} (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}}) \text{ if } r \text{ is odd}$$
$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{k=1}^{r} (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}}) \text{ if } r \text{ is even}$$

Proof. By induction. For $n = 2 \mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$ Assume the claim holds for n - 1 events. Will prove for n. Suppose r is odd. Then

$$\mathbb{P}(A_1 \cup \cdots \cup A_n) = \mathbb{P}(A_1 \cup \cdots \cup A_{n-1}) + \mathbb{P}(A_n) - \mathbb{P}(B_1 \cup \cdots \cup B_{n-1}), \text{ where } B_i = A_i \cap A_n (*)$$

Since r is odd, apply the inductive hypothesis to $\mathbb{P}(A_1 \cup \cdots \cup A_n)$ to get:

$$\mathbb{P}\left(\bigcup_{i=1}^{n-1} A_i\right) \le \sum_{k=1}^r (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

Since r-1 is even, apply the inductive hypothesis to $\mathbb{P}(B_1 \cup \cdots \cup B_{n-1})$

$$\mathbb{P}\left(\bigcup_{i=1}^{n-1} B_i\right) \ge \sum_{k=1}^{r-1} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} \mathbb{P}(B_{i_1} \cap \dots \cap B_{i_k})$$

Substitute both bounds in (*) to get an overestimate. In exactly the same way we prove the result for r even. \Box

1.5 Independence

Definition. Let $A, B \in \mathcal{F}$. They are called **independent** $(A \perp B)$ if

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

A countable collection of events (A_n) is said to be **independent** if \forall distinct i_1, i_2, \ldots, i_k we have

$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \prod_{j=1}^k \mathbb{P}(A_{i_j})$$

Remark. Pairwise independent does not imply independent see example below

Claim. If A is independent of B, then A is also independent of B^C

Proof. trivial

1.6 Conditional Probability

Definition. Let $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$ Let $A \in \mathcal{F}$. We define the **conditional probability** of A given B and write $\mathbb{P}(A|B)$ to be

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Note. If A and B are independent, then $\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \cdot \mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$ So in this case $\mathbb{P}(A|B) = \mathbb{P}(A)$

Claim. Suppose (A_n) is a disjoint sequence in \mathcal{F} . Then $\mathbb{P}(\bigcup A_n|B) = \sum \mathbb{P}(A_n|B)$ (countable additivity for conditional probability)

Proof. Apply above formula and use countable additivity

1.7 Law of Total Probability

Claim. Suppose $(B_n)_{n \in \mathbb{N}}$ is a disjoint collection in \mathcal{F} and $\bigcup B_n = \Omega$ and $\forall n \mathbb{P}(B_n) > 0$. Let $A \in \mathcal{F}$. Then $\mathbb{P}(A) = \sum_n \mathbb{P}(A|B_n) \cdot \mathbb{P}(B_n)$

Proof.

$$\mathbb{P}(A) = \mathbb{P}(A \cap \Omega) = \mathbb{P}\left(A \cap \left(\bigcup_{n} B_{n}\right)\right)$$
$$= \mathbb{P}\left(\bigcup_{n} (A \cap B_{n})\right)$$

Then use countable additivity

1.8 Bayes' Formula

Equation. Let (B_n) be a partition of Ω , i.e. (B_n) are disjoint and $\cup B_n = \Omega$

$$\mathcal{A} \in \mathcal{F} \ \mathbb{P}(B_n|A) = \frac{\mathbb{P}(A|B_n) \cdot \mathbb{P}(B_n)}{\sum_k \mathbb{P}(A|B_k) \mathbb{P}(B_k)}$$

Baye's formula

1.9 Simpson's Paradox

4.11 14			
All applicants	Admitted	Rejected	% Admitted
State	25	25	50%
Independent	28	22	56%
Men Only	Admitted	Rejected	% Admitted
State	15	22	41%
Independent	5	8	38%
Women Only	Admitted	Rejected	% Admitted
State	10	3	77%
Independent	23	14	62%

Remark. This phenomenon is called confounding in statistics. It arises when we aggregate data from disparate populations.

2 Discrete Random Variables

2.1 Definitions and Examples

Definition (Discrete Probability Distribution).

$$(\Omega, \mathcal{F}, \mathbb{P}) \ \Omega$$
 finite or countable

$$\Omega = \{\omega_1, \omega_2, \ldots, \}$$

$$\mathcal{F} = \{ \text{all subsets of } \Omega \}$$

If we know $\mathbb{P}(\{\omega_i\}) \ \forall i$, then this determines \mathbb{P} . Indeed, let $A \subseteq \Omega$ then

$$\mathbb{P}(A) = \mathbb{P}\left(\bigcup_{i:\omega_i \in A} \{\omega_i\}\right) = \sum_{i:\omega_i \in A} \mathbb{P}(\{\omega_i\})$$

We write $p_i = \mathbb{P}(\{\omega_i\})$ and we call it a **discrete probability distribution**

Note. Properties: • $p_i \ge 0 \ \forall i$ • $\sum_i p_i = 1$

Example (Bernoulli Distribution). Model the outcome of the toss of a coin.

$$\Omega = \{0, 1\} \ p_1 = \mathbb{P}(\{1\}) = p \text{ and } p_0 = \mathbb{P}(\{0\}) = 1 - p$$

 $\mathbb{P}(\text{we see a } H) = p, \ \mathbb{P}(\text{we see a } T) = 1 - p$

Example (Binomial distribution).

 $B(N,p), N \in \mathbb{Z}^+, p \in [0,1]$

Toss a p-coin (prob of H is p) N times independently.

$$\mathbb{P}(\text{we see } k \text{ heads}) = \binom{N}{k} p^k (1-p)^{n-k}$$
$$\Omega = \{0, 1, \dots, N\} \ p_k = \binom{N}{k} \cdot p^k \cdot (1-p)^{n-k}$$
$$\sum_{k=0}^{N} p_k = 1$$

Example (Multinomial Distribution).

$$M(N, p_1, \dots, p_k), \ N \in \mathbb{Z}^+, \ p_1, \dots, p_k \ge 0 \text{ and } \sum_{i=1}^k p_i = 1$$

k boxes and N balls

 $\mathbb{P}(\text{pick box } i) = p_i$

Throw the balls independently.

$$\Omega = \{ (n_1, \dots, n_k) \in N^k : \sum_{i=1}^k n_i = N \}$$

The set of ordered partitions of N.

 $\mathbb{P}(n_1 \text{ balls fall in box } 1, \dots, n_k \text{ fell in box } k) = \binom{N}{n_1, \dots, n_k} \cdot p_1^{n_1} \cdot p_2^{n_1} \dots p_k^{n_k} \sum n_i = N$

Example (Geometric Distribution). Toss a p-coin until the first H appears.

$$\Omega = \{1, 2, \dots\} \mathbb{P}(\text{we tossed } k \text{ times until first } H) = (1-p)^{k-1}p = p_k$$
$$\sum_{k=1}^{\infty} p_k = 1$$
$$\Omega = \{0, 1, \dots\} \mathbb{P}(k \text{ tails before first } H) = (1-p)^k \cdot p = p'_k$$
$$\sum_{k=0}^{\infty} p'_k = 1$$

Example (Poisson Distribution). This is used to model the number of occurences of an event in a given interval of time. For instance, the number of customers that enter a shop in a day.

$$\Omega = \{1, 2, \dots\} \ \lambda > 0$$

$$p_k = e^{-\lambda} \cdot \frac{\lambda^k}{k!}, \ \forall k \in \Omega$$

We call this the Poisson distribution with parameter λ .

$$\sum_{k=0}^{\infty} p_k = e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} \cdot e^{\lambda} = 1$$

So indeed it is a probability distribution.

Suppose customers arise into a shop during [0, 1]. Discretise [0,1], i.e. subdivide [0, 1] into N intervals $\left[\frac{i-1}{N}, \frac{i}{N}\right]$, $i = 1, 2, \ldots, N$ In each interval, a customer arrives with probability p (independently of other intervals and with

In each interval, a customer arrives with probability p (independently of other intervals and with probability (w.p.) 1 - p nobody arrives.

$$\mathbb{P}(k \text{ customers arrived}) = \binom{N}{k} \cdot p^k (1-p)^{N-k}$$

Take $p = \frac{\lambda}{N}, \lambda > 0$:

$$\binom{N}{k} \cdot p^k \cdot (1-p)^{N-k} = \frac{N!}{k!(N-k)!} \left(\frac{\lambda}{N}\right)^k \cdot \left(1-\frac{\lambda}{N}\right)^{N-k} = \frac{\lambda^k}{k!} \frac{N!}{N^k(N-k)!} \left(1-\frac{\lambda}{N}\right)^{N-k}$$

Keep k fixed and send $N \to \infty$ So:

$$\mathbb{P}(k \text{ customers arrived}) \to e^{-\lambda} \cdot \frac{\lambda^k}{k!} \text{ as } N \to \infty$$

This is exactly the Poisson distribution. So we showed that the B(N, p) with $p = \frac{1}{N}$ converges to the Poisson with parameter λ .

Definition. $(\Omega, \mathcal{F}, \mathbb{P})$. A random variable X is a function $X : \Omega \to \mathbb{R}$ satisfying

 $\{\omega: X(\omega) \le x\} \in \mathcal{F} \ \forall x \in \mathbb{R}$

Notation. We will use the shorthand notation: suppose $A \subseteq \mathbb{R}$

$$\{X \in A\} = \{\omega : X(\omega) \in A\}$$

Definition. Given $A \in \mathcal{F}$, define the **indicator** of A to be

$$1(\omega \in A) = 1_A(\omega) = \begin{cases} 1 \text{ if } \omega \in A \\ 0 \text{ otherwise} \end{cases}$$

Because $A \in \mathcal{F}$, 1_A is a random variable.

Definition. Suppose X is a random variable. Define the **probability distribution function** of X to be

$$F_X(x) = \mathbb{P}(X \le x), \ F_X : \mathbb{R} \to [0, 1]$$

Definition. (X_1, \ldots, X_n) is called a random variable in \mathbb{R}^n if

$$(X_1,\ldots,X_n):\Omega\to\mathbb{R}^n$$

and $\forall x_1, \ldots, x_n \in \mathbb{R}$ we have

$$\{X_1 \le x_1, \dots, X_n \le x_n\} \in \mathcal{F}$$

i.e.

$$\omega: X_1(\omega) \le x_1, \dots, X_n(\omega) \le x_n \}$$

Note. This definition is equivalent to saying that X_1, \ldots, X_n are all random variables (in \mathbb{R}). Indeed:

$$\{X_1 \le x_1, \dots, X_n \le x_n\} = \{X_1 \le x_n\} \cap \dots \cap \{X_n \le x_n\} \in \mathcal{F}$$

Definition. A random variable X is called **discrete** if it takes values in a countable set.

Notation. Suppose X takes values in the countable set S. For every $x \in S$ we write

$$p_x = \mathbb{P}(X = x) = \mathbb{P}(\{\omega : X(\omega) = x\})$$

We call $(p_x)_{x \in S}$ the probability mass function of X (pmf) or the distribution of X. If (p_x) is Bernoulli then we say that X is a Bernoulli r.v. or that X has the Bernoulli distribution. If (p_x) is Geometric, similarly say X is a geometric r.v. etc.

Definition. Suppose that X_1, \ldots, X_n are discrete r.v.s taking values in S_1, \ldots, S_n . We say X_1, \ldots, X_n are **independent** if

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_n = x_n) \ x_n \in S_1, \dots, x_n \in S_n$$

2.2 Expectation

 $(\Omega, \mathcal{F}, \mathbb{P})$. Assume Ω is finite or countable. Let $X : \Omega \to \mathbb{R}$ be a r.v. (discrete). We say X is non-negative if $X \ge 0$. **Definition** (Expectation of $X \ge 0$).

$$\mathbb{E}[X] = \sum_{\omega} X(\omega) \cdot \mathbb{P}(\{\omega\})$$
$$\Omega_X = \{X(\omega) : \omega \in \Omega\}$$
$$\Omega = \bigcup_{x \in \Omega_X} \{X = x\}$$
$$\sum_{x \in \Omega_X} X(\omega) \mathbb{P}(\{\omega\}) = \sum_{x \in \Omega_X} \sum_{x \in \Omega_X} X(\omega)$$

So

$$\mathbb{E}[X] = \sum_{\omega} X(\omega) \mathbb{P}(\{\omega\}) = \sum_{x \in \Omega_X} \sum_{\omega \in \{X=x\}} X(\underset{=x}{\omega}) \cdot \mathbb{P}(\{\omega\})$$
$$\mathbb{E}[X] = \sum_{x \in \Omega_X} \sum_{\omega \in \{X=x\}} x \cdot \mathbb{P}(\{\omega\}) = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X=x)$$

So the **expectation** of X (mean of X, average value) is an average of the values taken by X with weights given by $\mathbb{P}(X = x)$. So

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot p_x$$

Definition. Let X be a general r.v. (discrete). We define $X_{+} = \max(X, 0)$ and $X_{-} = \max(-X, 0)$. Then

$$X = X_{+} - X_{-}$$
$$|X| = X_{+} + X_{-}$$

We can define $\mathbb{E}[X_+]$ and $E[X_-]$ since, they are both non-negative. If at least one of $\mathbb{E}[X_+]$ or $\mathbb{E}[X_-]$ is finite, then we define

$$\mathbb{E}[X] = \mathbb{E}[X_+] - \mathbb{E}[X_-]$$

If both are ∞ ($\mathbb{E}[X_+] = \mathbb{E}[X_-] = \infty$), then we say the expectation of X is not defined. Whenever we write $\mathbb{E}[X]$, it is assumed to be well-defined. If $\mathbb{E}[|X|] < \infty$, we say X is integrable.

When $\mathbb{E}[X]$ is well defined, we have again that

$$\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X = x)$$

2.2.1 Properties of Expectation

Claim. Suppose X_1, X_2, \ldots are non-negative radom variables. Then

$$\mathbb{E}\left[\sum_{n} X_{n}\right] = \sum_{n} \mathbb{E}\left[X_{n}\right]$$

Proof. (Ω countable)

$$\mathbb{E}\left[\sum_{n} X_{n}\right] = \sum_{\omega} \sum_{n} X_{n}(\omega) \mathbb{P}(\{\omega\}) = \sum_{n} \sum_{\omega} X_{n}(\omega) \mathbb{P}(\{\omega\}) = \sum_{n} \mathbb{E}[X_{n}]$$

Claim. If $g : \mathbb{R} \to \mathbb{R}$, then define g(X) to be the random variable $g(X)(\omega) = g(X(\omega))$ Then $\mathbb{E}[g(X)] = \sum_{x \in \Omega_X} g(x) \cdot \mathbb{P}(X = x)$

Proof. Set
$$Y = g(X)$$
. Then

$$\mathbb{E}[Y] = \sum_{y \in \Omega_Y} y \cdot \mathbb{P}(Y = y)$$

$$\{Y = y\} = \{\omega : Y(\omega) = y\} = \{\omega : g(X(\omega)) = y\} = \{\omega : X(\omega) \in g^{-1}(\{y\})\} = \{X \in g^{-1}(\{y\})\}$$
So

$$\mathbb{E}[Y] = \sum_{y \in \Omega_Y} y \cdot \mathbb{P}(X \in g^{-1}(\{y\}))$$

$$= \sum_{y \in \Omega_Y} y \cdot \sum_{x \in g^{-1}(\{y\})} \mathbb{P}(X = x)$$

$$= \sum_{y \in \Omega_Y} \sum_{x \in g^{-1}(\{y\})} g(x) \cdot \mathbb{P}(X = x)$$

$$= \sum_{x \in \Omega_X} g(x) \cdot \mathbb{P}(X = x)$$

Claim. If $X \ge 0$ and takes integer values, then

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} \mathbb{P}(X \ge k) = \sum_{k=0}^{\infty} \mathbb{P}(X > k)$$

Proof. We can write since X takes ≥ 0 integer values

$$X = \sum_{k=1}^{\infty} 1(X \ge k) = \sum_{k=0}^{\infty} 1(X > k)$$
(*)

Taking \mathbb{E} in (*) and using that $\mathbb{E}[1(A)] = \mathbb{P}(A)$ and countable additivity for $(1(X \ge k))_k$ gives the statement. \Box

2.3 Another proof of the inclusion-exclusion formula

2.3.1 Properties of Indicator Random Variables

- $1(A^C) = 1 1(A)$
- $1(A \cap B) = 1(A) \cdot 1(B)$
- $1(A \cup B) = 1 (1 1(A))(1 1(B))$

More generally

$$1(A_1 \cup \dots \cup A_n) = 1 - \prod_{i=1}^n (1 - 1(A_i)) = \sum_{i=1}^n 1(A_i) - \sum_{i_1 < i_2} 1(A_{i_1} \cap A_{i_2}) + \dots + (-1)^{n+1} 1(A_1 \cap \dots \cap A_n)$$

Taking \mathbb{E} of both sides we get

$$\mathbb{P}(A_1 \cup \dots \cup A_n) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{i_1 < i_2} \mathbb{P}(A_{i_1} \cap A_{i_2}) + \dots + (-1)^{n+1} \mathbb{P}(A_1 \cap \dots \cap A_n)$$

2.4 Terminology

Definition. Let X be a r.v. and $r \in \mathbb{N}$. We call $\mathbb{E}[X^r]$ as long as it is well-defined) the **r-th moment** of X

Definition. The **variance** of X denoted Var(X) is defined to be

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

The variance is a measure of how concentrated X is around its expectation. The smaller the variance, the more concentrated X is aroudn $\mathbb{E}[X]$. We call $\sqrt{\operatorname{Var}(X)}$ the standard deviation of X

Properties:

• $\operatorname{Var}(X) \ge 0$ and if $\operatorname{Var}(X) = 0$, then

$$\mathbb{P}(X = \mathbb{E}[X]) = 1$$

• $c \in \mathbb{R}$, then $\operatorname{Var}(cX) = c^2 \operatorname{Var}(X)$ and $\operatorname{Var}(X + c) = \operatorname{Var}(X)$

•
$$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

Proof. Just expand out, use properties of expectation

• $\operatorname{Var}(X) = \min_{c \in \mathbb{R}} \mathbb{E}[(X - c)^2]$ and this min is achieved for $c = \mathbb{E}[X]$

Proof. Just expand out RHS

Definition. Let X and Y be 2 random variables. Their **covariance** is defined

 $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

"It is a "measure" of how dependent X and Y are."

Properties (i) Cov(X, Y) = Cov(Y, X)(ii) Cov(X, X) = Var(X)(iii) $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$ **Proof.** Expand LHS (iv) Let $x \in \mathbb{R}$. Then $\operatorname{Cov}(cX, Y) = c\operatorname{Cov}(X, Y)$ and $\operatorname{Cov}((c+X), Y) = \operatorname{Cov}(X, Y)$ (v) Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)**Proof.** Expand out (vi) For all $c \in \mathbb{R}$, Cov(c, X) = 0(vii) X, Y, Z are random variables, then Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)More generally, for $c_1, c_2, \ldots, c_n, d_1, \ldots, c_n \in \mathbb{R}$ and X_1, \ldots, X_n and Y_1, \ldots, Y_N r.v's $\operatorname{Cov}\left(\sum_{i=1}^{n} c_i X_i, \sum_{i=1}^{n} d_i Y_i\right) = \sum_{i=1}^{n} \sum_{i=1}^{n} c_i d_j \operatorname{Cov}(X_i, Y_j)$ In particular $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$ **Remark.** Recall that X and Y are indep, if for all x and y

 $\mathbb{P}(X=x,Y=y)=\mathbb{P}(X=x)\cdot\mathbb{P}(Y=y)$

Claim. Let X and Y be 2 indep. r.v's and let

 $f,g:\mathbb{R}\to\mathbb{R}$

Then

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)] \cdot \mathbb{E}[g(Y)]$$

Proof. Use remark, $\sum_{(x,y)}$

Equation. Suppose that X and Y are independent. Then

$$\operatorname{Cov}(X,Y) = 0$$
, since $\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = 0$

So if X and Y are independent, then

$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$$

Warning.

$$Cov(X, Y) = 0 \implies$$
 independence

2.5 Inequalities

2.5.1 Markov's Inequality

Claim (Markov's Inequality). Let $X \ge 0$ be a random variable. Then $\forall a > 0$,
$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$
Proof. Observe that
$X \ge a \cdot 1 (X \ge a)$
Then take expectations

2.5.2 Chebyshev's Inequality

Claim (Chebyshev's Inequality). Let X be a r.v. with $\mathbb{E}[X] < \infty$. Then $\forall a > 0$ $\mathbb{P}(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}$ Proof. Use Markov on the random variable $Y = (X - \mathbb{E}[X])^2$ and a^2

2.5.3 Cauchy-Schwarz Inequality

Claim (Cauchy-Schwarz Inequality). Let X and Y be 2 r.v's. Then

$$\mathbb{E}[|XY|] \le \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}$$

Proof. Suffices to prove it for X and Y with $\mathbb{E}[X^2] < \infty$ and $\mathbb{E}[Y^2] < \infty$ Also enough to prove it for $X, Y \ge 0$

$$XY \leq \frac{1}{2}(X^2 + Y^2) \implies \mathbb{E}[XY] \leq \frac{1}{2}(\mathbb{E}[X^2] + \mathbb{E}[Y^2]) < \infty$$

Assume $\mathbb{E}[X^2] > 0$ and $\mathbb{E}[Y^2] > 0$, otherwise result is trivial. Let $t \in \mathbb{R}$ and consider

$$0 \le (X - tY)^2 = X^2 - 2tXY + t^2Y^2$$

Take expectations and minimise f by taking $t = \mathbb{E}[XY]/\mathbb{E}[Y^2]$. Sub in and result immediate

2.5.4 Cases of Equality

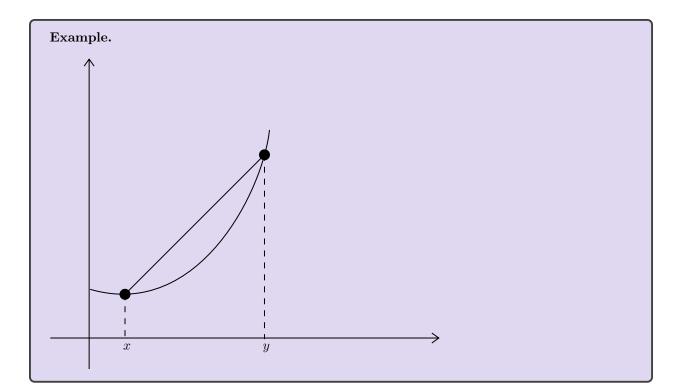
Note. Equality in C-S occurs when

$$\mathbb{E}[(X - tY)^2] = 0 \text{ for } t = \frac{\mathbb{E}[XY]}{\mathbb{E}[Y^2]}$$
$$\mathbb{E}[(X - tY)^2] = 0 \implies \mathbb{P}(X = tY) = 1$$

2.5.5 Jensen's Inequality

Definition. A function $f : \mathbb{R} \to \mathbb{R}$ is called **convex** if $\forall x, y \in \mathbb{R}$ and for all $t \in (0, 1)$

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$



Claim (Jensen's Inequality). Let X be a r.v. and let f be a convex function. Then

 $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$

Proof. Let $m \in \mathbb{R}$. Let x < m < y. Then m = tx + (1 - t)y for some $t \in [0, 1]$. Use the definition of convex to get an inequality which leads to

$$\frac{f(m) - f(x)}{m - x} \le \frac{f(y) - f(m)}{y - m}$$

Then let

$$a = \sup_{x < m} \frac{f(m) - f(x)}{m - x}$$

and use above to get

$$f(x) \ge a(x-m) + f(m)$$
 for all x

Set $m = \mathbb{E}[X]$ and apply last inequality to X then take expectation to get result

Note. A rule to remember the direction:

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] \ge 0$$

implies

$$\mathbb{E}(X^2) \ge (\mathbb{E}[X])^2 \square$$

2.5.6 Cases of Equality

$$\mathbb{E}[f(X)] = f(\mathbb{E}[X]) = a\mathbb{E}[X] + b$$
 where $b = f(\mathbb{E}[X]) - a\mathbb{E}[X]$ so

$$\mathbb{E}[f(X) - (aX + b)] = 0$$
 but

$$f(X) \ge aX + b$$
 from before so this forces $f(X) = aX + b$

from before so this forces f(X) = aX + bBy assumption $f(\mathbb{E}[X]) = a\mathbb{E}[X] + b$ and $\forall x \neq \mathbb{E}[X]$ f(x) > ax + bSo this forces $X = \mathbb{E}[X]$ with probability 1

2.5.7 AM-GM Inequality

Claim (AM-GM Inequality). Let f be a convex function and let $x_1, \ldots, x_n \in \mathbb{R}$. Then

$$\frac{1}{n}\sum_{k=1}^{n}f(x_{k}) \ge f\left(\frac{1}{n}\sum_{k=1}^{n}x_{k}\right)$$
$$\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$$

Proof. Define X to be the r.v. taking values $\{x_1, \ldots, x_n\}$ all with equal prob Apply Jensen's with $f(x) = -\log x$

2.6 Conditional expectation

Note. Recall if $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, we defined

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Definition. Let $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$ and let X be a r.v. We define

 $\mathbb{E}[X|B] = \frac{\mathbb{E}[X \cdot 1(B)]}{\mathbb{P}(B)}$

2.6.1 Law of Total Expectation

Claim (Law of Total Expectation). Suppose X > 0 and let (Ω_n) be a partition of Ω into disjoint events, i.e.

 $\Omega = \bigcup_n \Omega_n$

Then

$$\mathbb{E}[X] = \sum_{n} \mathbb{E}[X|\Omega_{n}] \cdot \mathbb{P}(\Omega_{n})$$

Proof. Write

$$X = X \cdot 1(\Omega) = \sum_{n} X \cdot 1(\Omega_n)$$

and take expectations

2.6.2 Joint Distributions

Definition. Let X_1, \ldots, X_n be r.v.'s (discrete). Their **joint distribution** is defined to be $\mathbb{P}(X_1 = x_1, \ldots, X_n = x_n) \ \forall x_1 \in \Omega_{X_1}, \ldots, x_n \in \Omega_{X_n}$ $\mathbb{P}(X_1 = x_1) = \mathbb{P}(\{X_1 = x_1\} \cap \bigcup_{i=2}^n \bigcup_{X_i} \{X_i = x_i\})) = \sum_{X_1, \ldots, X_m} \mathbb{P}(X_1 = x_1, \ldots, X_n = x_n)$ $\mathbb{P}(X_i = x_i) = \sum_{X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n} \mathbb{P}(X_1 = x_1, \ldots, X_n = x_n)$

We call $(\mathbb{P}(X_i = x_i))_{x_i}$ the marginal distribution of X_i

Definition. Let X and Y be 2 r.v.'s The **conditional distribution** of X given Y = y ($y \in \Omega_y$) is defined to be

$$\mathbb{P}(X = x | Y = y), \ x \in \Omega_X$$
$$\mathbb{P}(X = x | Y = y) = \frac{\mathbb{P}(X = x, \ Y = y)}{\mathbb{P}(Y = y)}$$

Equation.

$$\mathbb{P}(X=x) = \sum_{y} \mathbb{P}(X=x, Y=y) = \sum_{y} \mathbb{P}(X=x|Y=y) \mathbb{P}(Y=y)$$

(law of total probability)

2.6.3 Distribution of the sum of independent r.v.'s

Definition. Let X and Y be 2 independent r.v.'s (discrete)

$$\mathbb{P}(X+Y=z) = \sum_{y} \mathbb{P}(X=z-y) \cdot \mathbb{P}(Y=y)$$

This last sum is called the convolution of the distribution of X and Y Similarly,

$$\mathbb{P}(X+Y=z) = \sum_{x} \mathbb{P}(X=x)\mathbb{P}(Y=z-x)$$

Example. If $X \sim \text{Poi}(\lambda)$ and $Y \sim \text{Poi}(\mu)$ independent then $X + Y \sim \text{Poi}(\lambda + \mu)$

Definition. Let X and Y be 2 discrete r.v.'s. The **conditional expectation** of X given Y = y is

$$\mathbb{E}[X|Y=y] = \frac{\mathbb{E}[X \cdot 1(Y=y)]}{\mathbb{P}(Y=y)}$$

$$\mathbb{E}[X|Y=y] = \sum_{x} x \mathbb{P}(X=x|Y=y)$$

Note. We observe that for very $y \in \Omega_Y$, $\mathbb{E}[X|Y = y]$ is a function of y only. We set

$$g(y) = \mathbb{E}[X|Y = y]$$

Definition. We define the **conditional expectation** for X given Y and write it as $\mathbb{E}[X|Y]$ for the random variable g(Y)We emphasise that $\mathbb{E}[X|Y]$ is a random variable and it depends only on Y, because it is a function only of Y

Equation.

$$\mathbb{E}[X|Y] = \sum_{y} \mathbb{E}[X|Y = y] \cdot 1(Y = y)$$

2.6.4 Properties of Conditional Expectation

Claim. • $\forall c \in \mathbb{R} \mathbb{E}[cX|Y] = c \cdot \mathbb{E}[X|Y] \text{ and } \mathbb{E}[c|Y] = c$ • $X_1, \dots, X_n \text{ r.v.'s, then}$ $\mathbb{E}\left[\sum_{i=1}^n X_i|Y\right] = \sum_{i=1}^n \mathbb{E}[X_i|Y]$ • $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$ Proof. only prove third: $\mathbb{E}[X|Y] = \sum_y \mathbb{1}(Y = y)\mathbb{E}[X|Y = y]$

Taking expectation of both sides gives result

Proof (Another way).

$$\sum_{y} \mathbb{E}[X|Y=y] \cdot \mathbb{P}(Y=y) = \sum_{x} \sum_{y} x \cdot \mathbb{P}(X=x|Y=y) \cdot \mathbb{P}(Y=y) = \mathbb{E}[X] = 0$$

Claim. • Let X and Y be 2 independent r.v.'s. Then

 $\mathbb{E}[X|Y] = \mathbb{E}[X]$

Proof.

$$\mathbb{E}[X|Y] = \sum_{y} 1(Y=y) \cdot \mathbb{E}[X|Y=y]$$

Expanding the expectation gives result

Claim. Suppose Y and Z are independent r.v.'s. Then

 $\mathbb{E}[\mathbb{E}[X|Y]|Z] = \mathbb{E}[X]$

Proof. We have $\mathbb{E}[X|Y] = g(Y)$ i.e. $\mathbb{E}[X|Y]$ is a function only of Y. If Y and Z are indep., then f(Y) is also independent of Z for any function f. (can show directly) So g(Y) is independent of Z. By the a previous property, we get

$$\mathbb{E}[g(Y)|Z] = \mathbb{E}[g(Y)] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X] \square$$

Claim. Suppose $h : \mathbb{R} \to \mathbb{R}$ is a function. Then

 $\mathbb{E}[h(Y)\cdot X|Y] = h(Y)\cdot \mathbb{E}[X|Y]$

Proof.

$$\mathbb{E}[h(Y) \cdot X | Y = y] = \mathbb{E}[h(y) \cdot X | Y = y]$$
$$= h(y) \cdot \mathbb{E}[X | Y = y]$$

So

$$\mathbb{E}[h(Y) \cdot X|Y] = h(Y) \cdot \mathbb{E}[X|Y] \square$$

Corollary.

 $\mathbb{E}[\mathbb{E}[X|Y]|Y] = \mathbb{E}[X|Y]$

and

 $\mathbb{E}[X|X] = X$

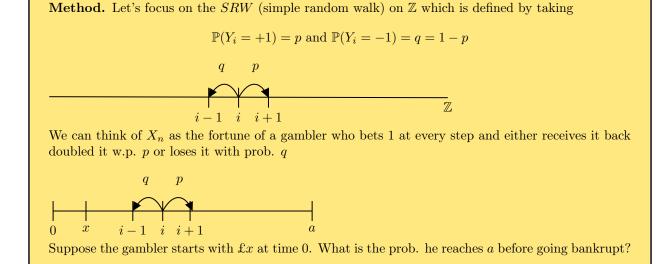
2.7 Random Walks

Definition. A random/ stochastic process is a sequence of random variables $(X_n)_{n \in \mathbb{N}}$

Definition. A random walk is a random process that can be expressed in the following way

 $X_n = x + Y_1 + \dots + Y_n$

where (Y_i) are independent and identically distributed (iid) r.v.'s and x is a deterministic number (fixed).



Notation. We write \mathbb{P}_x for the probability measure $\mathbb{P}(\cdot|X_0 = x)$ i.e.

 $\forall A \in \mathcal{F} \mathbb{P}_x(A) = \mathbb{P}(A | X_0 = x)$

Method. Define

 $h(x) = \mathbb{P}_x((X_n) \text{ hits } a \text{ before hitting } 0)$

By the law of total probability, we have

 $h(x) = \mathbb{P}_x((X_n) \text{ hits } a \text{ before hitting } 0|Y_1 = +1) \cdot \mathbb{P}_x(Y_1 = +1) + \mathbb{P}_x((X_n) \text{ hits } a \text{ before hitting } 0|Y_1 = -1) \cdot \mathbb{P}_x(Y_1 = -1)$

$$h(x) = p \cdot h(x+1) + q \cdot h(x-1) \ 0 < x < a$$
$$h(0) = 0) \text{ while } h(a) = 1$$

• Case $p = q = \frac{1}{2}$:

$$h(x) - h(x+1) = h(x-1) - h(x)$$

In this case,

$$h(x) = \frac{x}{a}$$

• $p \neq q$:

$$h(x) = ph(x+1) + qh(x-1)$$

Solving this recurrence relation with boundary conditions yields:

Equation.

$$h(x) = \frac{\left(\frac{q}{p}\right)^x - 1}{\left(\frac{q}{p}\right)^a - 1}$$

This is the Gambler's Ruin estimate.

2.7.1 Expected time to absorption

Equation. Define

 $T = \min\{n \ge 0 : X_n \in \{0, a\}\}$

i.e. T is the first time X hits either 0 or a. Want to find

 $\mathbb{E}_x[T] = \tau_x$

Conditioning on the first step and using the law of total expectation yields

$$\tau_x = 1 + p \cdot \tau_{x+1} + q \cdot \tau_{x-1} \ 0 < x < a$$

$$\tau_0 = \tau_a = 0$$

• Case $p = \frac{1}{2}$. Guessing quadratic solution and applying boundary conditions gives:

$$\tau_x = x(a-x)$$

• Case $p \neq \frac{1}{2}$. Guessing Cx particular integral and solving recurrence relation gives:

$$\tau_x = \frac{1}{q-p}x - \frac{q}{q-p}\frac{\left(\frac{q}{p}\right)^x - 1}{\left(\frac{q}{p}\right)^a - 1}$$

2.8 Probability Generating Functions

Definition. Let X be a r.v. with values in \mathbb{N} . Let

$$p_r = \mathbb{P}(X = r), \ r \in \mathbb{N}$$

be its prob. mass function. The \mathbf{pgf} of X is defined to be

$$p(z) = \sum_{r=0}^{\infty} p_r \cdot z^r = \mathbb{E}[z^X] \text{ for } |z| \le 1$$

When $|z| \leq 1$, the pgf converges absolutely (trivial check)

Theorem. The pgf uniquely determines the distribution of X

Proof. Suppose (p_r) and (q_r) are 2 prob. mass functions with

$$\sum_{r=0}^{\infty} p_r z^r = \sum_{r=0}^{\infty} q_r z^r \; \forall |z| \le 1$$

Show $p_r=q_r\;\forall r$ by applying induction: cancelling same terms, dividing by power of z and taking limit to zero

Theorem. we have

$$\lim_{z \to 1} p'(z) = p'(1-) = \mathbb{E}[X]$$

Proof. Assume first that $\mathbb{E}[X] < \infty$. Let 0 < z < 1. We can differentiate p(z) term by term and get

$$p'(z) = \sum_{r=0}^{\infty} r p_r z^{r-1} \le \sum_{r=1}^{\infty} r p_r = \mathbb{E}[X]$$

(because z < 1) Then just do analysis, considering the following: Let $\varepsilon > 0$ and N be large enough s.t.

$$\sum_{r=0}^{N} rp_r \ge \mathbb{E}[X] - \varepsilon$$

Also

$$p'(z) \ge \sum_{r=1}^{N} r p_r z^{r-1} \ (0 < z < 1)$$

 So

$$\lim_{z \to 1} p'(z) \ge \sum_{r=1}^{N} r p_r \ge \mathbb{E}[X] - \varepsilon$$

Follow appropriate similar reasoning for $\mathbb{E}[X] = \infty$.

Note. In exactly the same way one can prove the following:

Theorem.

$$p''(1-) = \lim_{z \to 1} p''(z) = \mathbb{E}[X(X-1)]$$
$$\forall k > 0, \ p^{(k)}(1-) = \lim_{z \to 1} p^{(k)}(z) = \mathbb{E}[X(X-1)\dots(X-k+1)]$$

In particular

$$Var(X) = p''(1-) + p'(1-) - (p'(1-))^2$$

Moreover

$$\mathbb{P}(X=n) = \frac{1}{n!} \left. \left(\frac{\mathrm{d}}{\mathrm{d}z} \right)^n \right|_{z=0} p(z)$$

Equation. Suppose that X_1, \ldots, X_n are independent r.v.'s with pgf's q_1, \ldots, q_n respectively, i.e.

 $q_i = \mathbb{E}[z^{X_i}]$

Let

$$p(z) = \mathbb{E}[z^{X_1 + \dots + X_n}]$$

 So

$$p(z) = \mathbb{E}[z^{X_1} \cdot z^{X_2} \dots z^{X_n}] = \mathbb{E}[z^{X_1}] \dots \mathbb{E}[z^{X_n}] = q_1(z) \dots q_n(z)$$

If X_i 's are iid, then

$$p(z) = (q(z))^n$$

Example.

(i)

$$X \sim \operatorname{Bin}(n, p)$$

$$p(z) = (pz + 1 - p)^n$$

(ii) Let
$$X \sim \operatorname{Bin}(n, p)$$
 and $Y \sim \operatorname{Bin}(m, p)$ and $X \perp Y$

$$\mathbb{E}[z^{X+Y}] = \mathbb{E}[z^X] \cdot \mathbb{E}[z^Y] = (pz+1-p)^n \cdot (pz+1-p)^m = (pz+1-p)^{n+m}$$
So
 $X + Y \sim \operatorname{Bin}(n+m, p)$
(iii) Let $X \sim \operatorname{Geo}(p)$
 $\mathbb{E}[z^X] = \frac{p}{1-z(1-p)}$
(iv) Let $X \sim \operatorname{Poi}(\lambda)$

$$\mathbb{E}[z^X] = e^{\lambda(z-1)}$$

Let $X \sim \operatorname{Poi}(\lambda), \, Y \sim \operatorname{Poi}(\lambda)$ and $X \perp\!\!\!\perp Y$

$$\mathbb{E}[z^{X+Y}] = e^{\lambda(z-1)} \cdot e^{\mu(z-1)} = e^{(\lambda+\mu)(z-1)} \implies X+Y \sim \operatorname{Poi}(\lambda+\mu)$$

2.9 Sum of a Random Number of r.v.'s

Method. Let X_1, X_2, \ldots be iid and let N be an indep r.v. taking values in N. Define

 $S_n = X_1 + \dots + X_n \ \forall n \ge 1$

Then

$$S_N = X_1 + \dots + X_N$$

means $\forall \omega \in \Omega$,

$$S_N(\omega) = X_1(\omega) + \dots + X_{N(\omega)}(\omega) = \sum_{i=1}^{N(\omega)} X_i(\omega)$$

Let q be the pgf of N and p the pgf of X_1 . Then

$$\begin{aligned} r(z) &= \mathbb{E}[z^{S_N}] \\ &= \mathbb{E}[z^{X_1 + \dots + X_N}] \\ &= \sum_n \mathbb{E}[z^{X_1 + \dots + X_N} \cdot 1(N = n)] \\ &= q(p(z)) \end{aligned}$$

by working through the algebra

2.9.1 Another Proof Using Conditional Expectation

$r(z) = \mathbb{E}[z^{X_1+\dots+X_N}]$ $= \mathbb{E}[\mathbb{E}[z^{X_1+\dots+X_N} N]]$ which leads to $r(z) = \mathbb{E}\left[(p(z))^N\right] = q(p(z))$
which leads to
$I(z) = \mathbb{E}\left[(p(z))] = q(p(z))\right]$
So
$\mathbb{E}[S_N] = \lim_{z \to 1} r'(z) = r'(1-)$
$r'(z) = q'(p(z)) \cdot p'(z)$
Subbing in $z = 1 - $ yields
Equation. $\mathbb{E}[S_N] = \mathbb{E}[N] \cdot \mathbb{E}[X_1]$
Similarly 2
$\operatorname{Var}(S_N) = \mathbb{E}[N] \cdot \operatorname{Var}(X_1) + \operatorname{Var}(N) \cdot (\mathbb{E}[X_1])^2$

2.10 Branching Processes

From Bienaguie/ Gralton-Watson, 1874.

Method. $(X_n : n > 0)$ a random process.

 $X_n = \#$ of individuals in generation n

 $X_0 = 1$

The individual in generation 0 produces a random number of offspring with distribution

 $g_k = \underbrace{\mathbb{P}(X_1 = k)}_{\text{\# children of 1st individual}}, \ k = 0, 1, 2, \dots$

Every individual in gen. 1 produces an indep. number of offspring with the same distribution. Let $Y_{k,n} : k \ge 1, n \ge 0$ be an iid sequence with distribution $(g_k)_{k \in \mathbb{N}}$ $Y_{k,n}$ is the number of offspring of k-th indiv. in gen. n

$$X_{n+1} = \begin{cases} Y_{1,n} + \dots + Y_{X_n,n} & : \text{ when } X_n \ge 1\\ 0 & \text{ otherwise} \end{cases}$$

Theorem.

 $\mathbb{E}[X_n] = \left(\mathbb{E}[X_1]\right)^n \ \forall n \ge 1$

Proof.

$$\mathbb{E}[X_{n+1}] = \mathbb{E}[\mathbb{E}[X_{n+1}|X_n]]$$

$$\mathbb{E}[X_{n+1}|X_n = m] = m \cdot \mathbb{E}[X_1]$$

(trivial to show) So

 $\mathbb{E}[X_{n+1}|X_n] = X_n \cdot \mathbb{E}[X_1]$

Taking expectation and iterating we get

$$\mathbb{E}[X_{n+1}] = \left(\mathbb{E}[X_1]\right)^{n+1} \square$$

Theorem. Set

$$G(z) = \mathbb{E}[z^{X_1}]$$

and

$$G_n(z) = \mathbb{E}[z^{X_n}]$$

Then

$$G_{n+1}(z) = G(G_n(z))$$

= $G(G(\dots(G(z))\dots))$
= $G_n(G(z))$

Proof. Condition on X_n as one would expect and we get:

$$\mathbb{E}[\mathbb{E}[z^{X_{n+1}}|X_n]] = \mathbb{E}[(G(z))^{X_n}] = G_n(G(z))$$

2.10.1 Extinction Probability

Method.

 $\mathbb{P}(X_n = 0 \text{ for some } n \ge 1) = \text{ extinction prob. } = q$ $q_n = \mathbb{P}(X_n = 0)$ $A_n = \{X_n = 0\} \subseteq \{X_{n+1} = 0\} = A_{n+1}$

Then (A_n) is an increasing sequence of events. So by continuity of prob meas.

$$\mathbb{P}(A_n) \to \mathbb{P}\left(\bigcup_n A_n\right)$$
 as $n \to \infty$

But

$$\bigcup_{n} A_n = \{ X_n = 0 \text{ for some } n \ge 1 \}$$

Therefore we get $q_n \to q$ as $n \to \infty$

Claim.

$$q_{n+1} = G(q_n) \ (G(z) = \mathbb{E}[z^{X_1}])$$
 and also $q = G(q)$

Proof.

$$q_{n+1} = \mathbb{P}(X_{n+1} = 0) = G_{n+1}(0) = G(G_n(0)) = G(q_n)$$

Since G is continuous, taking the limit as $n \to \infty$ and using $q_n \to q$, we get

 $G(q)=q\ \square$

Claim (same as previous, different proof).

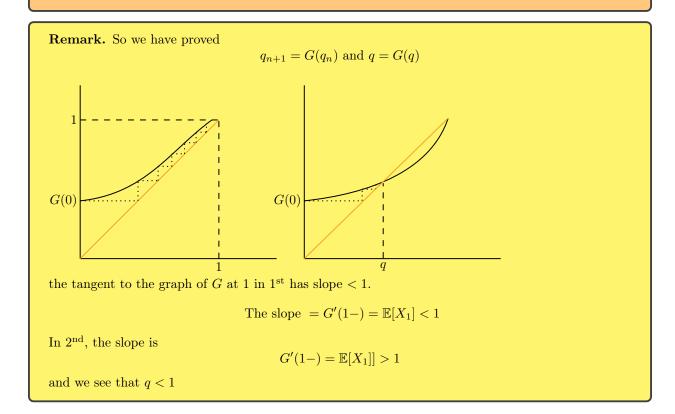
$$q_{n+1} = G(q_n) \ (G(z) = \mathbb{E}[z^{X_1}])$$
 and also $q = G(q)$

Proof (Alternative). Conditional on $X_1 = m$, we get m independent branching processes. So we can write

$$X_{n+1} = X_n^{(1)} + \dots + X_n^{(m)}$$

where $\left(X_{i}^{(j)}\right)$ are iid branching processes all with the same offspring distribution. So

$$q_{n+1} = \mathbb{P}(X_{n+1} = 0) = \sum_{m} \mathbb{P}(X_{n+1} = 0 | X_1 = m) \cdot \mathbb{P}(X_1 = m)$$
$$= \sum_{m} \mathbb{P}(X_n^{(1)} = 0, \dots, X_n^{(m)} = 0) \cdot \mathbb{P}(X_1 = m)$$
$$= \sum_{m} \left(\mathbb{P}(\underbrace{X_n^{(1)} = 0}_{q_n}) \right)^m \cdot \mathbb{P}(X_1 = m)$$
$$= G(q_n)$$



Theorem. Assume $\mathbb{P}(X_1 = 1) < 1$. Then the extinction probability is the minimal non-negative solution to the equation

t=G(t)

We also have

q < 1 iff $\mathbb{E}[X_1] > 1$

Proof (of minimality). Let t be the smallest non-negative solution to x = G(x). We will show that q = t.

We are going to prove by induction that

 $q_n \le t \; \forall n$

Then taking the limit as $n \to \infty$ will give us $q \le t$. Since we know that q is a solution, this will imply q = t.

$$q_0 = \mathbb{P}(X_0 = 0) \le t$$

Suppose $q_n \leq t$

 $q_{n+1} = G(q_n)$

G is an increasing function on [0, 1], and since $q_n \leq t$, we get

$$q_{n+1} = G(q_n) \le G(t) = t \ \Box$$

Proof (2nd part). Consider the function H(z) = G(z) - zHave cases $\mathbb{P}(X_1 \leq 1) = 1$ or $\mathbb{P}(X_1 \leq 1) < 1$. The first is trivial. For the second case, think about the diagrams previous and how to use Rolle's theorem on H to show what we desire.

3 Continuous Random Variables

3.1 Definitions and Properties

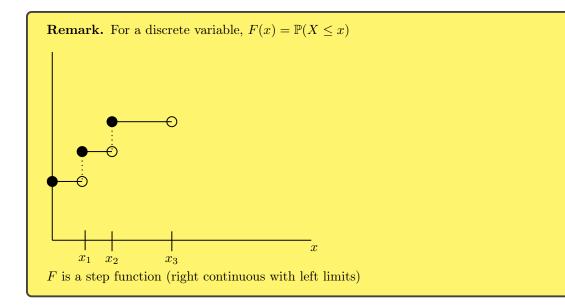
 $(\Omega, \mathcal{F}, \mathbb{P})$

$$X: \Omega \to \mathbb{R} \text{ s.t. } \forall x \in \mathbb{R}$$
$$\{X \le x\} = \{\omega: X(\omega) \le x\} \in \mathcal{F}$$

The probability distribution function is defined to be

 $F: \mathbb{R} \to [0,1]$ with $F(x) = \mathbb{P}(X \le x)$

Properties of F(i) if x < y then $F(x) \le F(y)$ Proof. $\{X \le x\} \subseteq \{X \le y\}$ (ii) $\forall a < b, a, b \in \mathbb{R} \ \mathbb{P}(a < X \le b) = F(b) - F(a)$ Proof. $\mathbb{P}(a < X \le b) = \mathbb{P}(\{a > X\} \cap \{X \le b\})$ $= \mathbb{P}(X < b) - \mathbb{P}(\{X < b\} \cap \{X < a\})$ (iii) F is a right continuous function and left limits exists always $F(x-) = \lim_{y \to x} F(y) \le F(x)$ Proof. NTP $\lim_{n \to \infty} F\left(x + \frac{1}{n}\right) = F(x)$ Define $A_n = \{x < X \le x + \frac{1}{n}\}$ and use that $\bigcap_n A_n = \emptyset$. Left limits exist by the increasing property of F(iv) $F(x-) = \mathbb{P}(X < x)$ **Proof.** $F(x-) = \lim_{n \to \infty} F\left(x - \frac{1}{n}\right)$ Consider $B_n = \left\{ X \le x - \frac{1}{n} \right\}$ then (B_n) increasing and $\bigcup_n B_n = \{X < x\}$ $\mathbb{P}(B_n) \to \mathbb{P}(X < n) \implies F(x-) = \mathbb{P}(X < x)$ (v) $\lim_{x \to \infty} F(x) = 1$ and $\lim_{x \to -\infty} F(x) = 0$ **Proof.** Exercise



Definition. A r.v. X is called **continuous** if F is a continuous function, which means that

$$F(x) = F(x-) \ \forall x \implies \mathbb{P}(X \le x) = \mathbb{P}(X < x) \ \forall x$$

In other words, $\mathbb{P}(X = x) = 0 \ \forall x \in \mathbb{R}$

Equation.

$$F'(x) = f(x)$$

 ${\cal F}$ differentiable so say it is absolutely continuous

3.2 Expectation

Definition. Let $X \ge 0$ with density f. We define its **expectation**

$$\mathbb{E}[X] = \int_0^\infty x f(x) \, \mathrm{d}x$$

Suppose g > 0. Then

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \,\mathrm{d}x$$

for any variable XLet X be a general r.v. Define

and

 $X_+ = \max(X, 0)$

 $X_{-} = \max(-X, 0)$

and if at least one of $\mathbb{E}[X_+]$ or $\mathbb{E}[X_-]$ is finite, then we set

$$\mathbb{E}[X] = \mathbb{E}[X_+] - \mathbb{E}[X_-] = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x$$

since

$$\mathbb{E}[X_+] = \int_0^\infty x f(x) \,\mathrm{d}x$$

and

$$\mathbb{E}[X_{-}] = \int_{-\infty}^{0} (-x)f(x) \,\mathrm{d}x$$

Easy to check that the expectation is again a linear function

Claim. Let $X \ge 0$. Then

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge x) \,\mathrm{d}x$$

Proof (1^{st}) .

$$\mathbb{E}[X] = \int_0^\infty x f(x) \, \mathrm{d}x$$

= $\int_0^\infty \left(\int_0^x 1 \, \mathrm{d}y \right) f(x) \, \mathrm{d}x$
= $\int_0^\infty \, \mathrm{d}y \, \int_y^\infty f(x) \, \mathrm{d}x$
= $\int_0^\infty \, \mathrm{d}y(1 - F(y))$
= $\int_0^\infty \mathbb{P}(X \ge y) \, \mathrm{d}y \ \Box$

Proof (2^{nd}) .

$$\forall \omega, \ X(\omega) = \int_0^\infty \mathbb{1}(X(\omega) \ge x) \, \mathrm{d}x$$

Taking expectation, we get

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge x) \,\mathrm{d}x \ \Box$$

Example. Uniform distribution is defined as you expect, write $X \sim U[a, b]$

Example. Exponential distribution

$$f(x) = \lambda e^{-\lambda x}, \ \lambda > 0, \ x > 0, \ X \sim \ \text{Exp}(\lambda)$$
$$F(x) = 1 - e^{-\lambda x}$$
$$\mathbb{E}[X] = \frac{1}{\lambda}$$

and

38

3.3 Exponential as a limit of geometrics

Equation. Let $T \sim \operatorname{Exp}(\lambda)$ and set $T_n = \lfloor nT \rfloor \quad \forall n \in \mathbb{N}$

$$\mathbb{P}(T_n \ge k) = \mathbb{P}\left(T \ge \frac{k}{n}\right) = e^{-\lambda k/n} = \left(e^{-\lambda/n}\right)^k$$

So T_n is a geometric of parameter

$$p_n = 1 - e^{-\lambda/n} \sim \frac{\lambda}{n}$$
 as $n \to \infty$

and

$$\frac{T_n}{n} \to T \text{ as } n \to \infty$$

So the exponential is the limit of a rescaled geometric

Remark. Memoryless property:

$$s, t > 0 \mathbb{P}(T > t + s | T > s) = e^{-\lambda t} = \mathbb{P}(T > t)$$

 $T \sim \operatorname{Exp}(\lambda)$

Prop. Let T be a positive r.v. not identically 0 or ∞ . Then T has the memoryless property iff T is exponential

Proof. \Longrightarrow :

 $\forall s, t \ \mathbb{P}(T > t + s) = \mathbb{P}(T > s)\mathbb{P}(T > t)$

Sub t = 1, then t = m/n. Then let $\mathbb{P}(t = 1) = e^{-\lambda}$ so we have proved that

 $g(t) = \mathbb{P}(T > t) = e^{-\lambda t} \ \forall t \in \mathbb{Q}_+$

And for $t \in \mathbb{R}^+$. We can bound $r \leq t < s$ with $r, s \in \mathbb{Q}^+$ and $|r - s| \leq \varepsilon$ then take limit

Theorem. Let X be a continuous r.v. with density f. Let g be a continuous function which is either strictly increasing or strictly decreasing and g^{-1} is differentiable. Then g(X) is a continuous r.v. with density

$$f(g^{-1}(x)) \cdot \left| \frac{\mathrm{d}}{\mathrm{d}x} g^{-1}(x) \right|$$

Proof. Treat increasing and decreasing cases separately

Example. Normal distribution: $-\infty < \mu < \infty, \ \sigma > 0$ are our 2 parameters.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \ x \in \mathbb{R}$$

Can show expectation and variance are what we expect. When X has density f, we write $X \sim N(\mu, \sigma^2)$ (X is normal with parameters μ and σ^2) When $\mu = 0$ and $\sigma^2 = 1$,, we call N(0, 1) the standard normal. If $X \sim N(0, 1)$, we write

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} \,\mathrm{d}u$$

and

$$\varphi(x) = \Phi'(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Have

$$\varphi(x) = \varphi(-x) \implies \Phi(x) + \Phi(-x) = 1 \implies \mathbb{P}(X \le x) = 1 - \mathbb{P}(X \le -x)$$

Method. Let $a \neq 0$, $b \in \mathbb{R}$. Set g(x) = ax + bDefine Y = g(X). We can show that $Y \sim N(a\mu + b, a^2\sigma^2)$ by considering density of $Y \sigma$ is the 'standard deviation'. Suppose $X \sim N(\mu, \sigma^2)$, then $X - \mu$

$$\frac{X-\mu}{\sigma} \sim N(0,1)$$

3.4 Multivariate Density Functions

Equation. $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ r.v. We say that X has density f if

$$\underbrace{\mathbb{P}(X_1 \leq x_1, \dots, X_n \leq x_n)}_{=F(X_1, \dots, X_n)} = \int_{-\infty}^{X_1} \cdots \int_{-\infty}^{X_m} f(y_1, \dots, y_n) \, \mathrm{d}y_1 \dots \, \mathrm{d}y_n$$

Then

$$f(X_1, \dots, X_n) = \frac{\partial^n}{\partial x_1 \dots \partial x_n} F(x_1, \dots, x_n)$$

This generalises: " \forall " $B \subseteq \mathbb{R}^n$

$$\mathbb{P}((X_1,\ldots,X_n)\in B)=\int_B f(y_1,\ldots,y_n)\,\mathrm{d} y_1\ldots\,\mathrm{d} y_n$$

Definition. We say that X_1, \ldots, X_n are independent if $\forall x_1, \ldots, x_n$,

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \dots \mathbb{P}(X_n \le x_n)$$

Theorem. Let $X = (X_1, \ldots, X_n)$ have density f

(i) Suppose X_1, \ldots, X_n are independent with densities f_1, \ldots, f_n . Then

$$f(x_1, \dots, x_n) = f_1(x_1) \dots f_n(x_n) \tag{(*)}$$

(ii) Suppose that f factorises as in (*) for some non-negative functions (f_i) . Then X_1, \ldots, X_n are independent and have densities proportional to the f_i 's

Proof.

- (i) Apply definitions
- (ii) Let $B_1, \ldots, B_n \subseteq \mathbb{R}$ then

$$\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \int_{B_1} \cdots \int_{B_n} f_1(x_1) \dots f_n(x_n) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n$$

Factorise this appropriately and let $B_j = \mathbb{R}$ for $j \neq i$ to get:

$$\mathbb{P}(X_i \in B_i) = \frac{\int_{B_i} f_i(y) \, \mathrm{d}y}{\int_{\mathbb{R}} f_i(y) \, \mathrm{d}y}$$

This shows that the density of X_i is

$$\frac{f_i}{\int_{\mathbb{R}} f_i(y) \,\mathrm{d}y}$$

Then we can check independence

Equation. Suppose (X_1, \ldots, X_n) has density f

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) \, \mathrm{d}x_2 \dots \, \mathrm{d}x_n$$

3.5 Density of the Sum of Independent r.v.'s

Equation. Let X and Y be 2 independent r.v.'s with densities f_X and f_Y respectively.

$$\mathbb{P}(X+Y\leq z) = \int_{-\infty}^{z} \mathrm{d}y \left(\int_{-\infty}^{\infty} f_{Y}(y-x)f_{X}(x)\,\mathrm{d}x\right)$$

So the density of X + Y is

$$\int_{-\infty}^{\infty} f_Y(y-x) f_X(x) \, \mathrm{d}x$$

We call this function the convolution of f_X and f_Y

Definition. f, g: 2 densities

$$f * g(x) = \int_{-\infty}^{\infty} f(x - y)g(y) \, dy =$$
 convolution of f and g

Moral. We can non-rigorously show this

$$\mathbb{P}(X+Y \le z) = \int_{-\infty}^{\infty} \mathbb{P}(X+Y \le z, Y \in dy)$$
$$= \int_{-\infty}^{\infty} \mathbb{P}(X \le z - y) \mathbb{P}(Y \in dy)$$
$$= \int_{\infty}^{\infty} F_X(z-y) f_Y(y) \, dy$$
$$\frac{d}{dz} \mathbb{P}(X+Y \le z) = \int_{-\infty}^{\infty} \frac{d}{dz} F_X(z-y) f_Y(y) \, dy = \int_{-\infty}^{\infty} f_X(z-y) F_Y(y) \, dy$$
the density of $X+Y$ is
$$\int_{-\infty}^{\infty} f_X(z-y) F_Y(y) \, dy$$

3.6 Conditional Density

Definition. Let X and Y be continuous variables with joint density $f_{X,Y}$ and marginal densities f_X and f_Y . Then the conditional density of X given Y = y is defined

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

3.7 Law of Total Probability

Equation.

So

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \,\mathrm{d}y = \int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) \,\mathrm{d}y$$

Remark. Want to define $\mathbb{E}[X|Y] = g(Y)$ for some function g. Define

$$g(y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) \, \mathrm{d}x$$

Set $\mathbb{E}[X|Y] = g(Y) =$ conditional expectation of X given Y.

3.8 Transformation of a multidimensional r.v.

Theorem. Let X be a r.v. with values in $D \subseteq \mathbb{R}^d$ and with density f_X . Let g be a bijection from D to g(D) which has a continuous derivative on D and

 $\det g'(x) \neq 0 \ \forall x \in D$

Then the r.v. Y = g(X) has density

$$f_Y(y) = f_X(x) \cdot |J|$$

where $x = g^{-1}(y)$ and J is the determinant of the Jacobian

$$\det J_{ij} = \det \left(\frac{\partial x_i}{\partial y_j}\right)$$

Proof. We do not prove it here.

3.9 Order Statistics for a Random Sample

Equation. Let X_1, \ldots, X_n be iid with distr. function F and density f. Put them in increasing order

 $X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$

and set

$$Y_i = X_{(i)}$$

Then (Y_i) are the order statistics. We can show:

$$\mathbb{P}(Y_n \le x) = (F(x))^n$$

$$f_{Y_n}(x) = n(F(x))^{n-1} \cdot f(x)$$

We can show the density of Y_1, \ldots, Y_n is:

$$f_{Y_1,\ldots,Y_n}(x_1,\ldots,x_n) = \begin{cases} n!f(x_1)\ldots f(x_n) & \text{when } X_1 < X_2 < \ldots X_n \\ 0 & \text{otherwise} \end{cases}$$

Equation. If X_1, \ldots, X_n are independent with $X_i \sim \text{Exp}(\lambda_i)$ then

$$\min(X_1,\ldots,X_n) \sim \operatorname{Exp}\left(\sum_{i=1}^n \lambda_i\right)$$

Example. Let X_1, \ldots, X_n be iid $\text{Exp}(\lambda)$ and let Y_i be their order statistics

$$Z_1 = Y_1, \ Z_2 = Y_2 - Y_1, \dots, Z_n = Y_n - Y_{n-1}$$

So Z_1, \ldots, Z_n are independent and $Z_i \sim \text{Exp}(\lambda(n-i+1))$. We can show this by considering the bijection with the values of Y_i and applying a previous equation.

3.10 Moment Generating Functions (mgfs)

Definition. Let X be a r.v. with density f. The **mgf** of X is defined to be

$$m(\theta) = \mathbb{E}\left[e^{\theta X}\right] = \int_{-\infty}^{\infty} e^{\theta x} f(x) \, \mathrm{d}x$$

whenever this integral is finite

m(0) = 1

Theorem. The mgf uniquely determines the distribution of a r.v. provided it is defined for an open interval of values of θ .

Theorem. Suppose the mgf is defined for an open interval of values of θ . Then

$$m^{(r)}(0) = \frac{\mathrm{d}^r}{\mathrm{d}\theta^r} \left. m(\theta) \right|_{\theta=0} = \mathbb{E}[X^r]$$

Example. Gamma distribution:

$$f(x) = \frac{e^{-\lambda x} \lambda^n x^{n-1}}{(n-1)!}, \ \lambda > 0, \ n \in \mathbb{N}, \ x \ge 0$$

We denote X with density f as $X \sim \Gamma(n, \lambda)$ Check f is a density by showing integral over \mathbb{R} is 1 (can use reduction $I_n = I_{n-1}$)

$$m(\theta) = \left(\frac{\lambda}{\lambda - \theta}\right)^n \text{ for } \lambda > 0$$

Claim. Suppose that X_1, \ldots, X_n are independent r.v's. Then

$$m(\theta) = \mathbb{E}\left[e^{\theta(X_1 + \dots + X_n)}\right] = \prod_{i=1}^n \mathbb{E}[e^{\theta X_i}]$$

Example. Let $X \sim \Gamma(n, \lambda)$ and $Y \sim \Gamma(m, \lambda)$ and $X \perp Y$. Then we can show

$$m(\theta) = \left(\frac{\lambda}{\lambda - \theta}\right)^{n+m}$$
 for $\theta < \lambda$

So by the uniqueness theorem we get $X + Y \sim \Gamma(n + m, \lambda)$.

Equation. In particular, this implies that if X_1, \ldots, X_n are iid $Exp(1) (= \Gamma(1, \lambda))$ then

 $X_1 + \dots + X_n \sim \Gamma(n, \lambda)$

Remark. One could also consider $\Gamma(\alpha, \lambda)$ ($\alpha > 0$) by replacing (n-1)! with

$$\Gamma(\alpha) = \int_0^\infty e^{-x} \cdot x^{\alpha - 1} \, \mathrm{d}x$$

Example. Normal distribution. Let $X \sim N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \ x \in \mathbb{R}$$

We can show that

$$m(\theta) = e^{\theta \mu + \theta^2 \sigma^2/2}$$

by rewriting the integral in the form of constant times integral over a normal distribution. If $X \sim N(\mu, \sigma^2)$, then $aX + b \sim N(a\mu + b, a^2\sigma^2)$ So

$$\mathbb{E}[e^{\theta(aX+b)}] = e^{\theta(a\mu+b) + \theta^2 a^2 \sigma^2/2}$$

Suppose $X \sim N(\mu, \sigma^2)$ and $Y \sim N(\mu, \tau^2)$ and $X \perp Y$ Then $X + Y \sim N(\mu + \nu, \sigma^2 + \tau^2)$ (we can show this by considering the mgfs)

Example. Cauchy distribution

$$f(x) = \frac{1}{\pi(1+x^2)} \ x \in \mathbb{R}$$

$$m(\theta) = \infty \ \forall \theta \neq 0, \ (m(0) = 1)$$

Moral. Suppose $X \sim f$. Then $X, 2X, 3X, \ldots$ all have the same mgf. However they do not have the same distribution. So assumption on $m(\theta)$ being finite for an open interval of values of θ is essential

3.11 Multivariate Moment Generating Function

Definition. Let $X = (X_1, \ldots, X_n)$ be a r.v. with values in \mathbb{R}^n . Then the **mgf** of X is defined to be

$$m(\theta) = \mathbb{E}[e^{\theta^T X}] = \mathbb{E}[e^{\theta_1 X_1 + \dots + \theta_n X_n}]$$

where

$$\theta = (\theta_1, \ldots, \theta_n)^T$$

Theorem. In this case, provided mgf is finite for a range for values of θ , it uniquely determines the distribution of X. Also

$$\frac{\partial^{r} m}{\partial \theta_{i}^{r}}\Big|_{\theta=0} = \mathbb{E}[X_{i}^{r}]$$
$$\frac{\partial^{r+s} m}{\partial \theta_{i}^{r} \partial \theta_{j}^{s}}\Big|_{\theta=0} = \mathbb{E}[X_{i}^{r} X_{j}^{s}]$$
$$m(\theta) = \prod_{i=1}^{n} \mathbb{E}[e^{\theta_{i} X_{i}}] \text{ iff } X_{1}, \dots, X_{n} \text{ are indep}$$

Definition. Let $(X_n : n \in \mathbb{N})$ be a sequence of r.v.'s and let X be another r.v. We say that X_n converges to X in distribution and write $X_n \xrightarrow{d} X$, if

$$F_{X_n}(x) \to F_X(x) \ \forall x \in \mathbb{R}$$
 that are continuity points of F_X

Theorem (Continuity Property for mgf's). Let X be a r.v. with $m(\theta) < \infty$ for some $\theta \neq 0$. suppose that

$$m_n(\theta) \to m(\theta) \ \forall \theta \in \mathbb{R} \text{ where } m_n(\theta) = \mathbb{E}[e^{\theta X_n}] \text{ and } m(\theta) = \mathbb{E}[e^{\theta X}]$$

Then X_n converges to X in distribution

Note. This is just saying if the mgf's of the X_n converge to some mgf then $X_n \xrightarrow{d} X$

3.12 Limit Theorems for Sums of iid r.v.'s

Theorem (Weak Law of Large Numbers). Let $(X_n : n \in \mathbb{R})$ be a sequence of iid r.v.'s with $\mu = \mathbb{E}[X_1] < \infty$. Set

$$S_n = X_1 + \dots + X_n$$

Then $\forall \varepsilon > 0$

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) \to 0 \text{ as } n \to \infty$$

Proof (assuming $\sigma^2 < \infty$ where $(\sigma^2 = \operatorname{Var}(X_1))$.

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) = \mathbb{P}(|S_n - n\mu| > \varepsilon n)$$

then apply Chebyshev's inequality

Definition. A sequence (X_n) converges to X in probability and we write

 $X_n \xrightarrow{\mathbb{P}} X$ as $n \to \infty$

if $\varepsilon > 0$:

$$\mathbb{P}(|X_n - X| > \varepsilon) \to 0 \text{ as } n \to \infty$$

Definition. We say (X_n) converges to X with probability 1 or 'almost surely (a.s.)' if

$$\mathbb{P}\left(\lim_{n \to \infty} X_n = X\right) = 1$$

Note.

$$\mathbb{P}(\forall \varepsilon > 0 \; \exists n_0 : |X_n - X| < \varepsilon \; \forall n > n_0) = 1$$

Intuitively, 'pretty much all' events have $|X_n(\omega) - X(\omega)| < \varepsilon$ happening after a certain point. E.g. We can take X_n to be 1 if we have had a head after n tosses with our sample space being the set of sequences of tosses. $X(\omega) = 1$.

Claim. Suppose $X_n \to 0$ almost surely as $n \to \infty$. Then $X_n \xrightarrow{\mathbb{P}} 0$ as $n \to \infty$

Proof. NTS:

$$\forall \varepsilon > 0 \ \mathbb{P}(|X_n| > \varepsilon) \to 0 \text{ as } n \to \infty$$

We do this by considering

$$A_n = \bigcap_{m=n}^{\infty} \{ |X_m| \le \varepsilon \}$$

and then considering $\bigcup A_n$

Theorem (Strong law of large numbers). Let $(X_n)_{n \in \mathbb{N}}$ be an iid sequence of r.v.'s with $\mu = \mathbb{E}[X_1] < \infty$.

Then setting

$$S_N = X_1 + \dots + X_n$$

we have

$$\frac{S_n}{n} \to \mu \text{ as } n \to \infty \text{ a.s.}$$
$$\left(\mathbb{P}\left(\frac{S_n}{n} \to \mu \text{ as } n \to \infty\right) = 1\right)$$

Proof. non-examinable

Equation. Suppose
$$\mathbb{E}[X_1] = \mu$$
 and $\operatorname{Var}(X_1) = \sigma^2 < \infty$
 $\operatorname{Var}\left(\frac{S_n}{n} - \mu\right) = \frac{\sigma^2}{n}$
 $\frac{\frac{S_n}{n} - \mu}{\sqrt{\operatorname{Var}\left(\frac{S_n}{n} - \mu\right)}} = \frac{\frac{S_n}{n} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{S_n - n\mu}{\sigma\sqrt{n}}$

3.13 Central limit theorem

Theorem. Let $(X_n)_{n \in \mathbb{N}}$ be an iid sequence of rv.'s with $\mathbb{E}[X_1] = \mu$ and $\operatorname{Var}(X_1) = \sigma^2$. Set

$$S_n = X_1 + \dots + X_n$$

Then

$$\forall x \in \mathbb{R}, \ \mathbb{P}\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right) \to \Phi(x) = \int_{-\infty}^x \frac{e^{-y^2/2}}{\sqrt{2\pi}} \,\mathrm{d}y \text{ as } n \to \infty$$

In other words,

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow[n \to \infty]{} Z$$

where $Z \sim N(0, 1)$ CLT says that for *n* large enough:

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \approx Z \ Z \sim N(0, 1)$$

 $\implies S_n \approx n\mu + \sigma \sqrt{n} Z \sim N(n\mu, \sigma^2 n)$ for n large

Proof. Consider $Y_i = (X_i - \mu)/\sigma$. Then $\mathbb{E}[Y_1] = 0$ and $\operatorname{Var}(Y_i) = 1$. It suffices to prove the CLT when

$$S_n = X_1 + \dots + X_n$$
 with $\mathbb{E}[X_i] = 0$ and $\operatorname{Var}(X_i) = 1$

Assume further that $\exists \delta > 0$ s.t.

$$\mathbb{E}[e^{\delta X_1}] < \infty \text{ and } \mathbb{E}[e^{-\delta X_1}] < \infty$$
$$m(\theta) = \mathbb{E}\left[e^{\theta X_1}\right] = \mathbb{E}\left[1 + \theta X_1 + \frac{\theta^2 X_1^2}{2!} + \sum_{k=3}^{\infty} \frac{\theta^k X_1^k}{k!}\right]$$

Bound the series appropriately to show that it is $o(|\theta|^2)$ by showing it is $O(|\theta|^3)$ Then

$$m\left(\frac{\theta}{\sqrt{n}}\right) = 1 + \frac{\theta^2}{2n} + o\left(\frac{|\theta|^2}{n}\right)$$

and hence

$$\left(m\left(\frac{\theta}{\sqrt{n}}\right)\right)^n \to e^{\theta^2/2} \text{ as } n \to \infty$$

3.14 Applications

Example. Normal approximation to the Binomial distribution: Let $S_n \sim Bin(n, p)$

$$S_n = \sum_{i=1}^n X_i, \ (X_i) \text{ iid } \sim \text{ Ber}(p) \ \mathbb{E}[S_n] = np, \text{Var}(S_n) = np(1-p)$$

and apply CLT to get

$$S_n \approx N(np, np(1-p))$$
 for n large
Bin $\left(n, \frac{\lambda}{2}\right) \rightarrow \text{Poi}(\lambda)$ $\lambda > 0$

 $\binom{n}{n}$

Example. Normal approximation to the Poisson distribution: Let $S_n \sim \operatorname{Poi}(n)$.

$$S_n = \sum_{i=1}^n X_i, \ (X_i) \text{ iid } \sim \text{ Poi}(1)$$
$$\frac{S_n - n}{\sqrt{n}} \xrightarrow{d} N(0, 1) \text{ as } n \to \infty$$

3.15 Sampling Error via the CLT

Example. Pick N individuals at random. Let

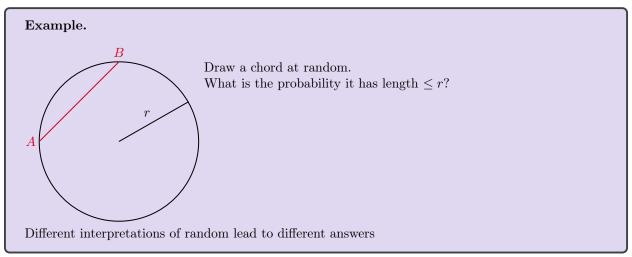
$$\hat{p}_N = \frac{S_N}{N}$$

where S_N is the number of yes voters. How large should N be so that

$$|\hat{p}_N - p| \le \frac{4}{100}$$
 w.p. ≥ 0.99 ?

Apply CLT to get an approximate normal for S_N and use that

3.16 Bertrand's Paradox



3.17 Multidimensional Gaussian r.v.'s

Definition. A r.v. X with values in \mathbb{R} is called **Gaussian**/ normal if

 $X = \mu + \sigma Z, \ \mu \in \mathbb{R}, \ \sigma \in [0, \infty] \text{ and } Z \sim N(0, 1)$

The density of X is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ x \in \mathbb{R}$$

 $X \sim N(\mu, \sigma^2)$

Definition. Let $X = (X_1, \ldots, X_n)^T$ with values in \mathbb{R}^n . Then X is a **Gaussian vector** or is just called **Gaussian** if $\forall u = (u_1, \ldots, u_n)^T \in \mathbb{R}^n$

$$u^T X = \sum_{i=1}^n u_i X_i$$
 is a Gaussian r.v. in \mathbb{R}

Example. Suppose X is Gaussian in \mathbb{R}^n . Suppose A is an $m \times n$ matrix and $b \in \mathbb{R}^m$. Then AX + b is also Gaussian in \mathbb{R}^m .

Proof. Work with definition and set $v = A^T u$

Definition. $\mu = \mathbb{E}[X] = \begin{bmatrix} \mathbb{E}[X_1] \\ \vdots \\ \mathbb{E}[X_n] \end{bmatrix} \quad \mu_i = \mathbb{E}[X_i]$ $V = \operatorname{Var}(X) = \mathbb{E}[(X - \mu) \cdot (X - \mu)^T] = \begin{bmatrix} \ddots & \vdots \\ \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)] \\ \vdots & \ddots \end{bmatrix} = \begin{bmatrix} \ddots & \vdots \\ \operatorname{Cov}(X_i, X_j)] \\ \vdots & \ddots \end{bmatrix}$ $V_{ij} = \operatorname{Cov}(X_i, X_j)$

Equation. We can show that:

$$\mathbb{E}[u^T X] = u^T \mu$$
$$\operatorname{Var}(u^T X) = u^T V u$$

so $u^T X \sim N(u^T \mu, u^T V u)$

laim. V is a non-negative definite matrix $(\forall u \in \mathbb{R}^n, u^T V u \ge 0)$	
Proof. Let $u \in \mathbb{R}^n$. Then	$\operatorname{Var}(u^T X) = u^T V u$
Since $\operatorname{Var}(u^T X) \ge 0$, we have	$u^T V u \ge 0$ \Box

Method. Finding mgf of X:

$$m(\lambda) = \mathbb{E}[e^{\lambda^T X}] \ \forall \lambda \in \mathbb{R}^n, \ \lambda = (\lambda_1, \dots, \lambda_n)^T$$

We know

Cl

 $\lambda^T X \sim N(\lambda^T \mu, \lambda^T V \lambda)$

So $m(\lambda)$ is characterised by μ and V. Since the mgf uniquely characterises the distribution, we see that a Gaussian vector is uniquely characterised by its mean μ and variance V.

$$m(\lambda) = \mathbb{E}[e^{\lambda^T X}] = e^{\lambda^T \mu + \lambda^T V \lambda/2}$$

In this case we write $X \sim N(\mu, V)$

Claim. Let Z_1, \ldots, Z_n iid N(0, 1) r.v.'s. Set $Z = (Z_1, \ldots, Z_n)^T$. Then Z is a Gaussian vector.

Proof. We can show that $u^T Z \sim N(0, |u|^2)$ by considering the moment generating of Z.

$$\mathbb{E}[Z] = 0 \text{ Var}(Z) = I_n = \begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{bmatrix}$$

So $Z \sim N(0, I_n)$

Method. Let $\mu \in \mathbb{R}^n$ and V a non-negative definite matrix.

We want to construct a Gaussian vector with mean μ and variance V using Z. Let $V = U^T DU$ where D diagonal (possible as V symmetric). Then we set $\sigma = U^T \sqrt{D}U$ (diagonal entries in \sqrt{D} are the root of those in D). Let $Z = (Z_1, \ldots, Z_n)$ with (Z_i) iid N(0, 1) r.v.'s Set $X = \mu + \sigma Z$

Claim. $X \sim N(\mu, V)$

Proof. X is Gaussian, since it is a linear transformation of the Gaussian vector Z. Then we can easily check mean and variance are as desired

Method. Finding density of $X \sim N(\mu, V)$ In the case that V is positive definite:

$$f_X(x) = f_Z(z) \cdot |J| = \prod_{i=1}^n \left(\frac{e^{-z_i^2/2}}{\sqrt{2\pi}}\right) \cdot |\det \sigma^{-1}|$$
$$\implies f_X(x) = \frac{1}{\sqrt{(2\pi)^n \det V}} e^{z^T z/2}$$

Subbing in for $z^t \cdot z$ gives:

$$f_X(x) = \frac{1}{\sqrt{(2\pi)^n \det V}} \cdot \exp\left(-\frac{(x-\mu)^T \cdot V^{-1} \cdot (x-\mu)}{2}\right)$$

In the case V is non-negative definite, some eigenvalues could be 0. By an orthogonal change of basis, we can assume that

 $V = \begin{bmatrix} U & 0 \\ 0 & 0 \end{bmatrix}$ where U is an $m \times m \ (m < n)$ positive definite matrix

We can write $X = \begin{bmatrix} Y \\ \nu \end{bmatrix}$ where Y has density

$$f_Y(y) = \frac{1}{\sqrt{(2\pi)^m \det U}} \exp\left(-\frac{(y-\lambda)^T \cdot U^{-1}(y-\lambda)}{2}\right)$$

Claim. If the X_i 's are independent, then V is a diagonal matrix

Proof. Since the X_i 's are independent, it follows that $Cov(X_i, X_j) = 0$ whenever $i \neq j$. So V is diagonal.

Lemma. Suppose that X is a Gaussian vector. Then if V is a diagonal matrix, then the X_i 's are independent

Proof (1st). If V is diagonal, then the density $f_X(x)$ factorises into a product. Indeed,

$$(x-\mu)^T V^{-1}(x-\mu) = \sum_{i=1}^n \frac{(x_i - \mu_i)^2}{\lambda_i}$$

 \mathbf{SO}

$$f_X(x) = \frac{1}{\sqrt{(2\pi)^n \det V}} \exp\left(-\sum_{i=1}^n \frac{(x_i - \mu_i)^2}{2\lambda_i}\right)$$

Hence the X_i 's are indep.

Proof (2^{nd}) .

$$n(\theta) = \mathbb{E}[e^{\theta^T X}] = e^{\theta^T \mu + \theta^T V \theta/2} = e^{\sum \theta_i \mu_i} \cdot e^{\sum \theta_i^2 \lambda_i/2}$$

So $m(\theta)$ factorises into the mgf's of Gaussian r.v.'s in \mathbb{R}

Moral. So for Gaussian vectors we have

 (X_1, \ldots, X_n) are independent iff $Cov(X_i, X_j) = 0$ whenever $i \neq j$

3.18 Bivariate Gaussian

Definition. n = 2Let $X = (X_1, X_2)$ be a Gaussian vector in \mathbb{R}^2 . Set $\mu_k = \mathbb{E}[X_k], \ k = 1, 2$. Set $\sigma_k^2 = \operatorname{Var}(X_k)$ $a = \operatorname{Corr}(X_k, X_k) = \frac{\operatorname{Cov}(X_1, X_2)}{2}$

$$\rho = \operatorname{Corr}(X_1, X_2) = \frac{1}{\sqrt{\operatorname{Var}(X_1)\operatorname{Var}(X_2)}}$$

Claim. $\rho \in [-1, 1]$

Proof. Immediate from the Cauchy-Schwartz ineq. (Consider definition of Cov)

$$V = \operatorname{Var}(X) = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

Claim. For all $\sigma_k > 0$ and $\rho \in [-1, 1]$

$$V = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$
 is non-negative definite

Proof. Show $u^T V u \ge 0$ for all $u \in \mathbb{R}^2$

Method. Suppose (X_1, X_2) is a Gaussian vector. We want to find $\mathbb{E}[X_2|X_1]$. Let $a \in \mathbb{R}$. Consider $X_2 - aX_1$.

$$\operatorname{Cov}(X_2 - aX_1, X_1) = \operatorname{Cov}(X_2, X_1) - a\operatorname{Cov}(X_1, X_1)$$
$$= \operatorname{Cov}(X_1, X_2) - a\operatorname{Var}(X_1)$$
$$= \rho\sigma_1\sigma_2 - a\sigma_1^2$$

Take $a = (\rho \sigma_2) / \sigma_1$. Then $Cov(X_2 - aX_1, X_1) = 0$. Set

$$Y = X_2 - aX_1$$

 $\begin{bmatrix} X_1 \\ Y \end{bmatrix}$ is a Gaussian vector as it is of the form $A \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$

From the criterion of independence, we get X_1 is independent of Y, since (X_1, Y) is Gaussian and $Cov(X_1, Y) = 0$.

$$\mathbb{E}[X_2|X_1] = \mathbb{E}[Y + aX_1|X_1] = \mathbb{E}[Y] + aX_1$$

as $X_2 = X_2 - aX_1 + aX_1$. So given X_1 ,

$$X_2 \sim N(aX_1 + \mu_2 - a\mu_1, \operatorname{Var}(X_2 - aX_1))$$

where

$$\operatorname{Var}(X_2 - aX_1) = \operatorname{Var}(X_2) + a^2 \operatorname{Var}(X_1) - 2a \operatorname{Cov}(X_1, X_2)$$

3.19 Rejection Sampling

Example. Suppose $A \subset [0,1]^d$. Define $f(x) = \frac{1(x \in A)}{|A|}, |A| = \text{ volume of } A$ Let X have density f. How can we simulate X? Let $(U_n)_{n \in N}$ be an iid sequence of d-dimensional uniforms, i.e. $U_n = (U_{k,n} : k \in \{1, \dots, d\}), (U_{k,n})_{(k,n)} \text{ iid } \sim U[0,1]$ Let $N = \min\{n \ge 1 : U_n \in A\}$ Claim. $U_N \sim f$ Proof. We want to show that $\forall B \subseteq [0,1]^d$ $\mathbb{P}(U_N \in B) = \int_B f(X) \, dx$ $\mathbb{P}(U_N \in B) = \sum_{n=1}^{\infty} \mathbb{P}(U_N \in B, N = n)$ $= \frac{|A \cap B|}{|A|}$ by working out sum $\frac{|A \cap B|}{|A|} = \int_A \frac{1(x \in B)}{|A|} \, dx = \int_B f(x) \, dx$ **Example.** Suppose f is a density on $[0, 1]^{d-1}$ which is bounded, i.e.

 $\exists \lambda > 0 \text{ s.t. } f(x) \leq \lambda \ \forall x \in [0,1]^{d-1}$

Want to sample $X \sim f$. Consider

$$A = \{ (x_1, \dots, x_d) \in [0, 1]^d : x_d \le f(x_1, \dots, x_{d-1}) / \lambda \}$$

From the above we know how to generate a uniform random variable on A. Let $Y = (X_1, \ldots, X_d)$ be this r.v. Set $X = (X_1, \ldots, X_{d-1})$

Claim. $X \sim f$

Proof. We need to show that $\forall B \subseteq [0, 1]^{d-1}$

$$\mathbb{P}(X \in B) = \int_B f(x) \, \mathrm{d}x$$

Have:

$$\mathbb{P}(X \in B) = \mathbb{P}((X_1, \dots, X_{d-1}) \in B) = \mathbb{P}((X_1, \dots, X_d) \in (B \times [0, 1]) \cap A) = \frac{|(B \times [0, 1]) \cap A|}{|A|}$$

as Y is uniform on A

$$|(B \times [0,1]) \cap A| = \int \cdots \int 1((x_1, \dots, x_d) \in B \times [0,1] \cap A) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_d$$
$$= \int \cdots \int 1((x_1, \dots, x_{d-1}) \in B) 1\left(x_d \le \frac{f(x_1, \dots, x_{d-1})}{\lambda}\right) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_{d-1}$$
$$= \frac{1}{\lambda} \int_B f(x) \, \mathrm{d}x$$

$$|A| = \frac{1}{\lambda} \int_{[0,1]^{d-1}} f(x) \, \mathrm{d}x$$
$$= \frac{1}{\lambda}$$

So

$$\mathbb{P}(X \in B) = \int_B f(x) \, \mathrm{d}x$$

Moral. In the case d = 3, imagine surface in 3-D where the z value is the probability. We are using uniform distributions to sample uniformly within a volume bounded by our surface which, in turn, gives (x, y) with desired probability.