Probability Summary

Hasan Baig

Lent 2021

Contents

1 Probability Spaces

Definition. Suppose Ω is a set and F is a collection of subsets of Ω . We call $\mathcal F$ a σ -algebra if: (i) $\Omega \in \mathcal{F}$ (ii) if $A \in \mathcal{F}$, then $A^C \in \mathcal{F}$

(iii) for any countable collection $(A_n)_{n\geq 1}$ with $A_n \in \mathcal{F}$ $\forall n$, we must also have that $\bigcup_n A_n \in \mathcal{F}$

Definition. Suppose F is a σ -algebra on Ω . A function $\mathbb{P}: \mathcal{F} \to [0,1]$ is called a **probability** measure if

(i) $\mathbb{P}(\Omega) = 1$

(ii) for any countable disjoint collection $(A_n)_{n\geq 1}$ in $\mathcal F$ with $A_n \in \mathcal F$ $\forall n$, we have

$$
\mathbb{P}(\bigcup_{n\geq 1} A_n) = \sum_{n\geq 1} \mathbb{P}(A_n)
$$

We call $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space. Ω is the sample space F a σ-algebra P the probability measure

Note. We say $\mathbb{P}(A)$ is the probability of A

Remark. When Ω countable, we take F to be all subsets of Ω

Definition. The elements of Ω are called **outcomes** and the elements of $\mathcal F$ are called events.

Remark. We talk about probability of events and not outcomes.

1.1 Combinatorial Analysis

1.2 Stirling's Formula

Notation. Let (a_n) and (b_n) be 2 sequences. We write: $a_n \sim b_n$ if $\frac{a_n}{b_n} \to 1$ as $n \to \infty$ Theorem (Stirling).

$$
n! \sim n^n \sqrt{2\pi n} e^{-n} \text{ as } n \to \infty
$$

Note. Weaker examinable statement proved below

Proof. Non-examinable.

Claim. Weaker statement of Stirling:

$$
\log(n!) \sim n \log n \text{ as } n \to \infty
$$

Proof. Define $l_n = \log(n!) = \log 2 + \dots \log n$ For $x \in \mathbb{R}$, we write $|x|$: integer part of x.

$$
\log\lfloor x\rfloor \le \log x \le \log\lfloor x + 1\rfloor
$$

Integrate from 1 to n to reach result

$$
\int_1^n \log\lfloor x \rfloor \, \mathrm{d}x \le \int_1^n \log x \, \mathrm{d}x \le \int_1^n \log\lfloor x + 1 \rfloor
$$

1.3 Properties of Probability Measures

1.3.1 Countable subadditivity

Claim. Let
$$
(A_n)_{n\geq 1}
$$
 be a sequence of events in $\mathcal{F}(A_n \in \mathcal{F} \forall n)$
Then

$$
\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} \mathbb{P}(A_n)
$$

Proof. Define $B_1 = A_1$ and $B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1}) \forall n \geq 2$. Then $(B_n)_{n\geq 1}$ is a disjoint sequence of events in $\mathcal F$ and $\bigcup_{n\geq 1} B_n = \bigcup_{n\geq 1}$ $\bigcup_{n\geq 1}A_n.$ Then apply properties of probability measure

1.3.2 Continuity of Probability Measures

Let $(A_n)_{n\geq 1}$ be an increasing sequence on $\mathcal F$, i.e. $\forall n \ A_n \in \mathcal F$ and $A_n \subseteq A_{n+1}$. Then $\mathbb P(A_n) \leq \mathbb P(A_{n+1})$. So $\mathbb{P}(A_n)$ converges as $n \to \infty$.

Claim.

$$
\lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_n A_n\right)
$$

Proof. Set $B_1 = A_1$ and $\forall n \ge 2$ $B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1})$ Then \bigcup^n $\bigcup_{k=1}^{n} B_k = A_n$ and $\bigcup_{k=1}^{n} B_k = \bigcup_{k=1}^{n}$ $\bigcup_{k=1} A_k$ Then use properties of probability measure.

Note. Similarly, if (A_n) is a decreasing sequence in F, i.e. $\forall n \ A_n \in \mathcal{F}$ and $A_{n+1} \subseteq A_n$, then

$$
\mathbb{P}(A_n) \to \mathbb{P}\left(\bigcap_n A_n\right) \text{ as } n \to \infty
$$

1.4 Inclusion-Exclusion Formula

Let $A, B \in \mathcal{F}$. Then $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ Let $C \in \mathcal{F}$. Then $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$

Claim. Let $A_1, \ldots, A_n \in \mathcal{F}$. then

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})
$$

Proof. By induction. For $n = 2$ it holds.

Assume it holds for $n - 1$ events. We will prove it for n events.

$$
\mathbb{P}(A_1\cup\cdots\cup A_n)=\mathbb{P}((A_1\cup\ldots A_{n-1})\cup A_n)=\mathbb{P}(A_1\cup\ldots A_{n-1})+\mathbb{P}(A_n)-\mathbb{P}((A_1\cup\ldots A_{n-1})\cap A_n)(*)
$$

Notice

$$
\mathbb{P}((A_1 \cup \ldots A_{n-1}) \cap A_n) = \mathbb{P}((A_1 \cap A_n) \cup \cdots \cup (A_{n-1} \cap A_n))
$$

Set $B_i = A_i \cap A_n$. By the inductive hypothesis,

$$
\mathbb{P}(A_1 \cup \dots \cup A_{n-1}) = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})
$$
\n
$$
\mathbb{P}(B_1 \cup \dots \cup B_{n-1}) = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} \mathbb{P}(B_{i_1} \cap \dots \cap B_{i_k})
$$

Plugging these two into back into $(*)$ gives the claim. \square

Let $(\Omega, \mathcal{F}, \mathbb{P})$ with $|\Omega| < \infty$ and $\mathbb{P}(A) = \frac{|A|}{|\Omega|} \forall A \in \mathcal{F}$. Let $A_1, \ldots, A_n \in \mathcal{F}$. Then

$$
|A_1 \cup \dots \cup A_{n-1}| = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} |A_{i_1} \cap \dots \cap A_{i_k}|
$$

1.4.1 Bonferroni Inequalities

Claim. Truncating sum in the inclusion-exclusion formula at the r -th term gives an overestimate if r is odd and an underestimate if r is even, i.e.

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{k=1}^{r} (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \cdots < i_{k} \leq n} \mathbb{P}(A_{i_{1}} \cap \cdots \cap A_{i_{k}}) \text{ if } r \text{ is odd}
$$
\n
$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{k=1}^{r} (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \cdots < i_{k} \leq n} \mathbb{P}(A_{i_{1}} \cap \cdots \cap A_{i_{k}}) \text{ if } r \text{ is even}
$$

Proof. By induction. For $n = 2 \mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$ Assume the claim holds for $n - 1$ events. Will prove for n. Suppose r is odd. Then

$$
\mathbb{P}(A_1 \cup \cdots \cup A_n) = \mathbb{P}(A_1 \cup \cdots \cup A_{n-1}) + \mathbb{P}(A_n) - \mathbb{P}(B_1 \cup \cdots \cup B_{n-1}),
$$
 where $B_i = A_i \cap A_n (*)$

Since r is odd, apply the inductive hypothesis to $\mathbb{P}(A_1 \cup \cdots \cup A_n)$ to get:

$$
\mathbb{P}\left(\bigcup_{i=1}^{n-1} A_i\right) \le \sum_{k=1}^r (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})
$$

Since $r - 1$ is even, apply the inductive hypothesis to $\mathbb{P}(B_1 \cup \cdots \cup B_{n-1})$

$$
\mathbb{P}\left(\bigcup_{i=1}^{n-1} B_i\right) \ge \sum_{k=1}^{r-1} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} \mathbb{P}(B_{i_1} \cap \dots \cap B_{i_k})
$$

Substitute both bounds in (∗) to get an overestimate. In exactly the same way we prove the result for r even. \Box

1.5 Independence

Definition. Let $A, B \in \mathcal{F}$. They are called **independent** $(A \perp \perp B)$ if

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$

A countable collection of events (A_n) is said to be **independent** if \forall distinct i_1, i_2, \ldots, i_k we have

$$
\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \prod_{j=1}^k \mathbb{P}(A_{i_j})
$$

Remark. Pairwise independent does not imply independent see example below

Claim. If A is independent of B, then A is also independent of B^C

Proof. trivial

1.6 Conditional Probability

Definition. Let $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$ Let $A \in \mathcal{F}$. We define the **conditional probability** of A given B and write $\mathbb{P}(A|B)$ to be

$$
\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Note. If A and B are independent, then $\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \cdot \mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$ So in this case $\mathbb{P}(A|B) = \mathbb{P}(A)$

Claim. Suppose (A_n) is a disjoint sequence in \mathcal{F} . Then $\mathbb{P}(\bigcup A_n|B) = \sum_{n} \mathbb{P}(A_n|B)$ (countable additivity for conditional probability)

Proof. Apply above formula and use countable additivity

1.7 Law of Total Probability

Claim. Suppose $(B_n)_{n\in\mathbb{N}}$ is a disjoint collection in F and $\bigcup B_n = \Omega$ and $\forall n \mathbb{P}(B_n) > 0$. Let $A \in \mathcal{F}$. Then $\mathbb{P}(A) = \sum_{n} \mathbb{P}(A|B_n) \cdot \mathbb{P}(B_n)$

Proof.

$$
\mathbb{P}(A) = \mathbb{P}(A \cap \Omega) = \mathbb{P}\left(A \cap \left(\bigcup_{n} B_{n}\right)\right)
$$

$$
= \mathbb{P}\left(\bigcup_{n} (A \cap B_{n})\right)
$$

Then use countable additivity

1.8 Bayes' Formula

Equation. Let (B_n) be a partition of Ω , i.e. (B_n) are disjoint and $\cup B_n = \Omega$

$$
\forall A \in \mathcal{F} \ \mathbb{P}(B_n|A) = \frac{\mathbb{P}(A|B_n) \cdot \mathbb{P}(B_n)}{\sum_k \mathbb{P}(A|B_k)\mathbb{P}(B_k)}
$$

Baye's formula

1.9 Simpson's Paradox

Remark. This phenomenon is called confounding in statistics. It arises when we aggregate data from disparate populations.

2 Discrete Random Variables

2.1 Definitions and Examples

Definition (Discrete Probability Distribution).

$$
(\Omega, \mathcal{F}, \mathbb{P})
$$
 Ω finite or countable

$$
\Omega = \{\omega_1, \omega_2, \dots, \}
$$

$$
\mathcal{F} = \{ \text{all subsets of } \Omega \}
$$

If we know $\mathbb{P}(\{\omega_i\})$ $\forall i$, then this determines \mathbb{P} . Indeed, let $A \subseteq \Omega$ then

$$
\mathbb{P}(A) = \mathbb{P}\left(\bigcup_{i:\omega_i \in A} \{\omega_i\}\right) = \sum_{i:\omega_i \in A} \mathbb{P}(\{\omega_i\})
$$

We write $p_i = \mathbb{P}(\{\omega_i\})$ and we call it a discrete probability distribution

Note. Properties: $\bullet\, p_i\geq 0\,\,\forall i$ $\bullet\ \sum_i p_i=1$

Example (Bernoulli Distribution). Model the outcome of the toss of a coin.

$$
\Omega = \{0, 1\} \ p_1 = \mathbb{P}(\{1\}) = p \text{ and } p_0 = \mathbb{P}(\{0\}) = 1 - p
$$

 $\mathbb{P}(\text{we see a } H) = p, \mathbb{P}(\text{we see a } T) = 1 - p$

Example (Binomial distribution).

 $B(N, p), N \in \mathbb{Z}^+, p \in [0, 1]$

Toss a p -coin (prob of H is p) N times independently.

$$
\mathbb{P}(\text{we see } k \text{ heads}) = \binom{N}{k} p^k (1-p)^{n-k}
$$

$$
\Omega = \{0, 1, \dots, N\} \ p_k = \binom{N}{k} \cdot p^k \cdot (1-p)^{n-k}
$$

$$
\sum_{k=0}^N p_k = 1
$$

Example (Multinomial Distribution).

$$
M(N, p_1, \ldots, p_k), \ N \in \mathbb{Z}^+, \ p_1, \ldots, p_k \ge 0 \text{ and } \sum_{i=1}^k p_i = 1
$$
\n
$$
\begin{bmatrix} \begin{matrix} \begin{matrix} \end{matrix} \\ \begin{matrix} \end{matrix} \\ \begin{matrix} \end{matrix} \\ \begin{matrix} \end{matrix} \\ \begin{matrix} \end{matrix} \end{bmatrix} \\ \begin{matrix} \begin{matrix} \end{matrix} \\ \begin{matrix} \end{matrix} \end{bmatrix} \\ \begin{matrix} \begin{matrix} \end{matrix} \\ \begin{matrix} \end{matrix} \end{bmatrix} \end{bmatrix} \\ \begin{matrix} \begin{matrix} \end{matrix} \\ \begin{matrix} \end{matrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \begin{matrix} \begin{matrix} \end{matrix} \\ \end{matrix} \end{bmatrix} \end{bmatrix}
$$

 k boxes and N balls

 $\mathbb{P}(\text{pick box } i) = p_i$

Throw the balls independently.

$$
\Omega = \{(n_1, \dots, n_k) \in N^k : \sum_{i=1}^k n_i = N\}
$$

The set of ordered partitions of $\mathcal N.$

 $\mathbb{P}(n_1 \text{ balls fall in box } 1, \ldots, n_k \text{ fell in box } k) = \binom{N}{n}$ n_1, \ldots, n_k $\Bigg\} \cdot p_1^{n_1} \cdot p_2^{n_1} \dots p_k^{n_k} \sum n_i = N$

Example (Geometric Distribution). Toss a p -coin until the first H appears.

$$
\Omega = \{1, 2, \dots\} \mathbb{P}(\text{we tossed } k \text{ times until first } H) = (1 - p)^{k-1}p = p_k
$$

$$
\sum_{k=1}^{\infty} p_k = 1
$$

$$
\Omega = \{0, 1, \dots\} \mathbb{P}(k \text{ tails before first } H) = (1 - p)^k \cdot p = p'_k
$$

$$
\sum_{k=0}^{\infty} p'_k = 1
$$

Example (Poisson Distribution). This is used to model the number of occurences of an event in a given interval of time. For instance, the number of customers that enter a shop in a day.

$$
\Omega = \{1, 2, \dots\} \lambda > 0
$$

$$
p_k = e^{-\lambda} \cdot \frac{\lambda^k}{k!}, \ \forall k \in \Omega
$$

We call this the Poisson distribution with parameter λ .

$$
\sum_{k=0}^{\infty} p_k = e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} \cdot e^{\lambda} = 1
$$

So indeed it is a probability distribution.

Suppose customers arive into a shop during $[0, 1]$. Discretise $[0, 1]$, i.e. subdivide $[0, 1]$ into N intervals $\left[\frac{i-1}{N},\frac{i}{N}\right], i = 1,2,\ldots,N$

In each interval, a customer arrives with probability p (independently of other intervals and with probability (w.p.) $1 - p$ nobody arrives.

$$
\mathbb{P}(k \text{ customers arrived}) = {N \choose k} \cdot p^k (1-p)^{N-k}
$$

Take $p = \frac{\lambda}{N}, \lambda > 0$:

$$
\binom{N}{k} \cdot p^k \cdot (1-p)^{N-k} = \frac{N!}{k!(N-k)!} \left(\frac{\lambda}{N}\right)^k \cdot \left(1 - \frac{\lambda}{N}\right)^{N-k} = \frac{\lambda^k}{k!} \frac{N!}{N^k(N-k)!} \left(1 - \frac{\lambda}{N}\right)^{N-k}
$$

Keep k fixed and send $N \to \infty$ So:

$$
\mathbb{P}(k \text{ customers arrived}) \to e^{-\lambda} \cdot \frac{\lambda^k}{k!} \text{ as } N \to \infty
$$

This is exactly the Poisson distribution. So we showed that the $B(N, p)$ with $p = \frac{1}{N}$ converges to the Poisson with parameter λ .

Definition. $(\Omega, \mathcal{F}, \mathbb{P})$. A random variable X is a function $X : \Omega \to \mathbb{R}$ satisfying

 $\{\omega : X(\omega) \leq x\} \in \mathcal{F} \ \forall x \in \mathbb{R}$

Notation. We will use the shorthand notation: suppose $A \subseteq \mathbb{R}$

$$
\{X \in A\} = \{\omega : X(\omega) \in A\}
$$

Definition. Given $A \in \mathcal{F}$, define the **indicator** of A to be

$$
1(\omega \in A) = 1_A(\omega) = \begin{cases} 1 \text{ if } \omega \in A \\ 0 \text{ otherwise} \end{cases}
$$

Because $A \in \mathcal{F}$, 1_A is a random variable.

Definition. Suppose X is a random variable. Define the **probability distribution function** of X to be

$$
F_X(x) = \mathbb{P}(X \le x), F_X : \mathbb{R} \to [0, 1]
$$

Definition. (X_1, \ldots, X_n) is called a random variable in \mathbb{R}^n if

$$
(X_1,\ldots,X_n):\Omega\to\mathbb{R}^n
$$

and $\forall x_1, \ldots, x_n \in \mathbb{R}$ we have

$$
\{X_1 \le x_1, \ldots, X_n \le x_n\} \in \mathcal{F}
$$

i.e.

$$
\{\omega: X_1(\omega) \le x_1, \ldots, X_n(\omega) \le x_n\}
$$

Note. This definition is equivalent to saying that X_1, \ldots, X_n are all random variables (in \mathbb{R}). Indeed:

$$
\{X_1 \le x_1, \dots, X_n \le x_n\} = \{X_1 \le x_n\} \cap \dots \cap \{X_n \le x_n\} \in \mathcal{F}
$$

Definition. A random variable X is called **discrete** if it takes values in a countable set.

Notation. Suppose X takes values in the countable set S. For every $x \in S$ we write

$$
p_x = \mathbb{P}(X = x) = \mathbb{P}(\{\omega : X(\omega) = x\})
$$

We call $(p_x)_{x\in S}$ the probability mass function of X (pmf) or the distribution of X. If (p_x) is Bernoulli then we say that X is a Bernoulli r.v. or that X has the Bernoulli distribution. If (p_x) is Geometric, similarly say X is a geometric r.v. etc.

Definition. Suppose that X_1, \ldots, X_n are discrete r.v.s taking values in S_1, \ldots, S_n . We say X_1, \ldots, X_n are independent if

$$
\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_1 = x_1) \dots \mathbb{P}(X_n = x_n) \ x_n \in S_1, \dots, x_n \in S_n
$$

2.2 Expectation

 $(\Omega, \mathcal{F}, \mathbb{P})$. Assume Ω is finite or countable. Let $X : \Omega \to \mathbb{R}$ be a r.v. (discrete). We say X is non-negative if $X \geq 0$.

Definition (Expectation of $X \geq 0$).

$$
\mathbb{E}[X] = \sum_{\omega} X(\omega) \cdot \mathbb{P}(\{\omega\})
$$

$$
\Omega_X = \{X(\omega) : \omega \in \Omega\}
$$

$$
\Omega = \bigcup_{x \in \Omega_X} \{X = x\}
$$

So

$$
\mathbb{E}[X] = \sum_{\omega} X(\omega) \mathbb{P}(\{\omega\}) = \sum_{x \in \Omega_X} \sum_{\omega \in \{X = x\}} X(\omega) \cdot \mathbb{P}(\{\omega\})
$$

$$
\mathbb{E}[X] = \sum_{x \in \Omega_X} \sum_{\omega \in \{X = x\}} x \cdot \mathbb{P}(\{\omega\}) = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X = x)
$$

So the expectation of X (mean of X , average value) is an average of the values taken by X with weights given by $\mathbb{P}(X = x)$. So

$$
\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot p_x
$$

Definition. Let X be a general r.v. (discrete). We define $X_+ = \max(X, 0)$ and $X_- = \max(-X, 0)$. Then

$$
X = X_+ - X_-
$$

$$
|X| = X_+ + X_-
$$

We can define $\mathbb{E}[X_+]$ and $E[X_-]$ since, they are both non-negative. If at least one of $\mathbb{E}[X_+]$ or $\mathbb{E}[X_-]$ is finite, then we define

$$
\mathbb{E}[X] = \mathbb{E}[X_+] - \mathbb{E}[X_-]
$$

If both are ∞ ($\mathbb{E}[X_+] = \mathbb{E}[X_-] = \infty$), then we say the expectation of X is not defined. Whenever we write $\mathbb{E}[X]$, it is assumed to be well-defined.

If $\mathbb{E}[|X|] < \infty$, we say X is integrable.

When $\mathbb{E}[X]$ is well defined, we have again that

$$
\mathbb{E}[X] = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X = x)
$$

2.2.1 Properties of Expectation

Claim. Suppose X_1, X_2, \ldots are non-negative radom variables. Then

$$
\mathbb{E}\left[\sum_{n} X_{n}\right] = \sum_{n} \mathbb{E}\left[X_{n}\right]
$$

Proof. $(\Omega \text{ countable})$

$$
\mathbb{E}\left[\sum_{n} X_{n}\right] = \sum_{\omega} \sum_{n} X_{n}(\omega) \mathbb{P}(\{\omega\}) = \sum_{n} \sum_{\omega} X_{n}(\omega) \mathbb{P}(\{\omega\}) = \sum_{n} \mathbb{E}[X_{n}]
$$

Claim. If $g : \mathbb{R} \to \mathbb{R}$, then define $g(X)$ to be the random variable $g(X)(\omega) = g(X(\omega))$ Then $\mathbb{E}[g(X)] = \sum_{x \in \Omega_X} g(x) \cdot \mathbb{P}(X = x)$

Proof. Set
$$
Y = g(X)
$$
. Then
\n
$$
\mathbb{E}[Y] = \sum_{y \in \Omega_Y} y \cdot \mathbb{P}(Y = y)
$$
\n
$$
\{Y = y\} = \{\omega : Y(\omega) = y\} = \{\omega : g(X(\omega)) = y\} = \{\omega : X(\omega) \in g^{-1}(\{y\})\} = \{X \in g^{-1}(\{y\})\}
$$
\nSo\n
$$
\mathbb{E}[Y] = \sum_{y \in \Omega_Y} y \cdot \mathbb{P}(X \in g^{-1}(\{y\}))
$$
\n
$$
= \sum_{y \in \Omega_Y} y \cdot \sum_{x \in g^{-1}(\{y\})} \mathbb{P}(X = x)
$$
\n
$$
= \sum_{y \in \Omega_Y} \sum_{x \in g^{-1}(\{y\})} g(x) \cdot \mathbb{P}(X = x)
$$
\n
$$
= \sum_{x \in \Omega_X} g(x) \cdot \mathbb{P}(X = x)
$$

Claim. If $X \geq 0$ and takes integer values, then

$$
\mathbb{E}[X] = \sum_{k=1}^{\infty} \mathbb{P}(X \ge k) = \sum_{k=0}^{\infty} \mathbb{P}(X > k)
$$

Proof. We can write since X takes ≥ 0 integer values

$$
X = \sum_{k=1}^{\infty} 1(X \ge k) = \sum_{k=0}^{\infty} 1(X > k)
$$
 (*)

Taking $\mathbb E$ in (*) and using that $\mathbb E[1(A)] = \mathbb P(A)$ and countable additivity for $(1(X \ge k))_k$ gives the statement. \Box

2.3 Another proof of the inclusion-exclusion formula

2.3.1 Properties of Indicator Random Variables

• $1(A^C) = 1 - 1(A)$ • $1(A \cap B) = 1(A) \cdot 1(B)$ • $1(A \cup B) = 1 - (1 - 1(A))(1 - 1(B))$

More generally

$$
1(A_1 \cup \cdots \cup A_n) = 1 - \prod_{i=1}^n (1 - 1(A_i)) = \sum_{i=1}^n 1(A_i) - \sum_{i_1 < i_2} 1(A_{i_1} \cap A_{i_2}) + \cdots + (-1)^{n+1} 1(A_1 \cap \cdots \cap A_n)
$$

Taking E of both sides we get

$$
\mathbb{P}(A_1 \cup \dots \cup A_n) = \sum_{i=1}^n \mathbb{P}(A_i) - \sum_{i_1 < i_2} \mathbb{P}(A_{i_1} \cap A_{i_2}) + \dots + (-1)^{n+1} \mathbb{P}(A_1 \cap \dots \cap A_n)
$$

2.4 Terminology

Definition. Let X be a r.v. and $r \in \mathbb{N}$. We call $\mathbb{E}[X^r]$ as long as it is well-defined) the **r-th moment** of X

Definition. The variance of X denoted $\text{Var}(X)$ is defined to be

$$
\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]
$$

The variance is a measure of how concentrated X is around its expectation. The smaller the variance, the more concentrated X is aroudn $\mathbb{E}[X]$. We call $\sqrt{\text{Var}(X)}$ the standard deviation of X

Properties:

• $Var(X) \geq 0$ and if $Var(X) = 0$, then

$$
\mathbb{P}(X = \mathbb{E}[X]) = 1
$$

• $c \in \mathbb{R}$, then $\text{Var}(cX) = c^2 \text{Var}(X)$ and $\text{Var}(X + c) = \text{Var}(X)$

•
$$
\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2
$$

Proof. Just expand out, use properties of expectation

• $Var(X) = min \mathbb{E}[(X - c)^2]$ and this min is achieved for $c = \mathbb{E}[X]$ c∈R

Proof. Just expand out RHS

Definition. Let X and Y be 2 random variables. Their **covariance** is defined

 $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

"It is a "measure" of how dependent X and \overline{Y} are."

Properties (i) $Cov(X, Y) = Cov(Y, X)$ (ii) $Cov(X, X) = Var(X)$ (iii) $Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$ Proof. Expand LHS (iv) Let $x \in \mathbb{R}$. Then $Cov(cX, Y) = cCov(X, Y)$ and $Cov((c+X), Y) = Cov(X, Y)$ (v) $Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$ Proof. Expand out (vi) For all $c \in \mathbb{R}$, Cov $(c, X) = 0$ (vii) X, Y, Z are random variables, then $Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z)$ More generally, for $c_1, c_2, \ldots, c_n, d_1, \ldots, c_n \in \mathbb{R}$ and X_1, \ldots, X_n and Y_1, \ldots, Y_N r.v's $\overline{\text{Cov}}\left(\sum_{n=1}^{n}$ $i=1$ $c_i X_i, \sum^n$ $i=1$ d_iY_i \setminus $=\sum_{n=1}^{n}$ $i=1$ $\sum_{n=1}^{\infty}$ $j=1$ $c_i d_j \text{Cov}(X_i, Y_j)$ In particular $Var\left(\sum_{n=1}^{n}$ $i=1$ X_i \setminus $=\sum_{n=1}^{n}$ $i=1$ $Var(X_i) + \sum$ $i \neq j$ $Cov(X_i, X_j)$ **Remark.** Recall that X and Y are indep, if for all x and y

 $\mathbb{P}(X=x,Y=y)=\mathbb{P}(X=x)\cdot\mathbb{P}(Y=y)$

Claim. Let X and Y be 2 indep. r.v's and let

 $f, g : \mathbb{R} \to \mathbb{R}$

Then

$$
\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)] \cdot \mathbb{E}[g(Y)]
$$

Proof. Use remark, $\sum_{(x,y)}$

Equation. Suppose that X and Y are independent. Then

$$
Cov(X, Y) = 0, \text{ since } Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y]) = 0]
$$

So if X and Y are independent, then

$$
Var(X + Y) = Var(X) + Var(Y)
$$

Warning.

$$
Cov(X, Y) = 0 \implies \text{independence}
$$

2.5 Inequalities

2.5.1 Markov's Inequality

2.5.2 Chebyshev's Inequality

Claim (Chebyshev's Inequality). Let *X* be a r.v. with
$$
\mathbb{E}[X] < \infty
$$
. Then $\forall a > 0$

$$
\mathbb{P}(|X - \mathbb{E}[X]| \ge a) \le \frac{\text{Var}(X)}{a^2}
$$

Proof. Use Markov on the random variable $Y = (X - \mathbb{E}[X])^2$ and a^2

2.5.3 Cauchy-Schwarz Inequality

Claim (Cauchy-Schwarz Inequality). Let X and Y be 2 r.v's. Then

$$
\mathbb{E}[|XY|] \le \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}
$$

Proof. Suffices to prove it for X and Y with $\mathbb{E}[X^2] < \infty$ and $\mathbb{E}[Y^2] < \infty$ Also enough to prove it for $X, Y \geq 0$

$$
XY \leq \frac{1}{2}(X^2 + Y^2) \implies \mathbb{E}[XY] \leq \frac{1}{2}(\mathbb{E}[X^2] + \mathbb{E}[Y^2]) < \infty
$$

Assume $\mathbb{E}[X^2] > 0$ and $\mathbb{E}[Y^2] > 0$, otherwise result is trivial. Let $t \in \mathbb{R}$ and consider

$$
0 \le (X - tY)^2 = X^2 - 2tXY + t^2Y^2
$$

Take expectations and minimise f by taking $t = \mathbb{E}[XY]/\mathbb{E}[Y^2]$. Sub in and result immediate

2.5.4 Cases of Equality

Note. Equality in C-S occurs when

$$
\mathbb{E}[(X - tY)^2] = 0 \text{ for } t = \frac{\mathbb{E}[XY]}{\mathbb{E}[Y^2]}
$$

$$
\mathbb{E}[(X - tY)^2] = 0 \implies \mathbb{P}(X = tY) = 1
$$

2.5.5 Jensen's Inequality

Definition. A function $f : \mathbb{R} \to \mathbb{R}$ is called **convex** if $\forall x, y \in \mathbb{R}$ and for all $t \in (0,1)$

$$
f(tx + (1-t)y) \le tf(x) + (1-t)f(y)
$$

Claim (Jensen's Inequality). Let X be a r.v. and let f be a convex function. Then

 $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$

Proof. Let $m \in \mathbb{R}$. Let $x < m < y$. Then $m = tx + (1-t)y$ for some $t \in [0,1]$. Use the definition of convex to get an inequality which leads to

$$
\frac{f(m) - f(x)}{m - x} \le \frac{f(y) - f(m)}{y - m}
$$

Then let

$$
a = \sup_{x < m} \frac{f(m) - f(x)}{m - x}
$$

and use above to get

$$
f(x) \ge a(x - m) + f(m)
$$
 for all x

Set $m = \mathbb{E}[X]$ and apply last inequality to X then take expectation to get result

Note. A rule to remember the direction:

$$
\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] \ge 0
$$

implies

$$
\mathbb{E}(X^2) \ge (\mathbb{E}[X])^2 \square
$$

2.5.6 Cases of Equality

$$
\mathbb{E}[f(X)] = f(\mathbb{E}[X]) = a\mathbb{E}[X] + b
$$
 where $b = f(\mathbb{E}[X]) - a\mathbb{E}[X]$ so

$$
\mathbb{E}[f(X) - (aX + b)] = 0
$$
 but

$$
f(X) \ge aX + b
$$
 from before so this forces $f(X) = aX + b$

By assumption $f(\mathbb{E}[X]) = a\mathbb{E}[X] + b$ and $\forall x \neq \mathbb{E}[X]$ $f(x) > ax + b$ So this forces $X = \mathbb{E}[X]$ with probability 1

2.5.7 AM-GM Inequality

Claim (AM-GM Inequality). Let f be a convex function and let $x_1, \ldots, x_n \in \mathbb{R}$. Then

$$
\frac{1}{n}\sum_{k=1}^{n}f(x_k) \ge f\left(\frac{1}{n}\sum_{k=1}^{n}x_k\right)
$$

$$
\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])
$$

Proof. Define X to be the r.v. taking values $\{x_1, \ldots, x_n\}$ all with equal prob Apply Jensen's with $f(x) = -\log x$

2.6 Conditional expectation

Note. Recall if $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, we defined

$$
\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Definition. Let $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$ and let X be a r.v. We define

 $\mathbb{E}[X|B] = \frac{\mathbb{E}[X \cdot 1(B)]}{\mathbb{P}(B)}$

2.6.1 Law of Total Expectation

Claim (Law of Total Expectation). Suppose $X > 0$ and let (Ω_n) be a partition of Ω into disjoint events, i.e.

> $\Omega = |$ n Ω_n

Then

$$
\mathbb{E}[X] = \sum_{n} \mathbb{E}[X|\Omega_n] \cdot \mathbb{P}(\Omega_n)
$$

Proof. Write

$$
X = X \cdot 1(\Omega) = \sum_{n} X \cdot 1(\Omega_n)
$$

and take expectations

2.6.2 Joint Distributions

Definition. Let X_1, \ldots, X_n be r.v.'s (discrete). Their **joint distribution** is defined to be $\mathbb{P}(X_1 = x_1, \ldots, X_n = x_n) \,\forall x_1 \in \Omega_{X_1}, \ldots, x_n \in \Omega_{X_n}$ $\mathbb{P}(X_1 = x_1) = \mathbb{P}(\lbrace X_1 = x_1 \rbrace \cap \bigcup^n$ $i=2$ L X_i $\{X_i = x_i\})$) = \sum $X_1,...,X_m$ $\mathbb{P}(X_1 = x_1, \ldots X_n = x_n)$ $\mathbb{P}(X_i = x_i) = \sum$ $X_1,...,X_{i-1},X_{i+1},...,X_n$ $\mathbb{P}(X_1 = x_1, \ldots, X_n = x_n)$

We call $(\mathbb{P}(X_i = x_i))_{x_i}$ the **marginal distribution** of X_i

Definition. Let X and Y be 2 r.v.'s The conditional distribution of X given $Y = y$ $(y \in \Omega_y)$ is defined to be

$$
\mathbb{P}(X = x|Y = y), \ x \in \Omega_X
$$

$$
\mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}
$$

Equation.

$$
\mathbb{P}(X = x) = \sum_{y} \mathbb{P}(X = x, Y = y) = \sum_{y} \mathbb{P}(X = x|Y = y)\mathbb{P}(Y = y)
$$

(law of total probability)

2.6.3 Distribution of the sum of independent r.v.'s

Definition. Let X and Y be 2 independent r.v.'s (discrete)

$$
\mathbb{P}(X+Y=z) = \sum_{y} \mathbb{P}(X=z-y) \cdot \mathbb{P}(Y=y)
$$

This last sum is called the convolution of the distribution of X and Y Similarly,

$$
\mathbb{P}(X+Y=z) = \sum_{x} \mathbb{P}(X=x) \mathbb{P}(Y=z-x)
$$

Example. If $X \sim \text{Poi}(\lambda)$ and $Y \sim \text{Poi}(\mu)$ independent then $X + Y \sim \text{Poi}(\lambda + \mu)$

Definition. Let X and Y be 2 discrete r.v.'s. The **conditional expectation** of X given $Y = y$ is

$$
\mathbb{E}[X|Y=y] = \frac{\mathbb{E}[X \cdot 1(Y=y)]}{\mathbb{P}(Y=y)}
$$

$$
\mathbb{E}[X|Y=y] = \sum_{x} x \mathbb{P}(X=x|Y=y)
$$

Note. We observe that for very $y \in \Omega_Y$, $\mathbb{E}[X|Y=y]$ is a function of y only. We set

$$
g(y) = \mathbb{E}[X|Y=y]
$$

Definition. We define the **conditional expectation** for X given Y and write it as $\mathbb{E}[X|Y]$ for the random variable $g(Y)$ We emphasise that $\mathbb{E}[X|Y]$ is a random variable and it depends only on Y, because it is a function only of Y

Equation.

$$
\mathbb{E}[X|Y] = \sum_{y} \mathbb{E}[X|Y=y] \cdot 1(Y=y)
$$

2.6.4 Properties of Conditional Expectation

Claim. • $\forall c \in \mathbb{R} \mathbb{E}[cX|Y] = c \cdot \mathbb{E}[X|Y]$ and $\mathbb{E}[c|Y] = c$ • X_1, \ldots, X_n r.v.'s, then $\mathbb{E} \left[\sum_{n=1}^{\infty} \right]$ $i=1$ $X_i|Y$ 1 $=\sum_{n=1}^{\infty}$ $i=1$ $\mathbb{E}[X_i|Y]$ • $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$ Proof. only prove third:

$$
\mathbb{E}[X|Y] = \sum_{y} 1(Y = y)\mathbb{E}[X|Y = y]
$$

Taking expectation of both sides gives result

Proof (Another way).

$$
\sum_{y} \mathbb{E}[X|Y=y] \cdot \mathbb{P}(Y=y) = \sum_{x} \sum_{y} x \cdot \mathbb{P}(X=x|Y=y) \cdot \mathbb{P}(Y=y) = \mathbb{E}[X] = 0
$$

Claim. • Let X and Y be 2 independent r.v.'s. Then

 $\mathbb{E}[X|Y] = \mathbb{E}[X]$

Proof.

$$
\mathbb{E}[X|Y] = \sum_{y} 1(Y = y) \cdot \mathbb{E}[X|Y = y]
$$

Expanding the expectation gives result

Claim. Suppose Y and Z are independent r.v.'s. Then

 $\mathbb{E}[\mathbb{E}[X|Y] | Z] = \mathbb{E}[X]$

Proof. We have $\mathbb{E}[X|Y] = q(Y)$ i.e. $\mathbb{E}[X|Y]$ is a function only of Y. If Y and Z are indep. then $f(Y)$ is also independent of Z for any function f. (can show directly) So $g(Y)$ is independent of Z. By the a previous property, we get

$$
\mathbb{E}[g(Y)|Z] = \mathbb{E}[g(Y)] = \mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X] \square
$$

Claim. Suppose $h : \mathbb{R} \to \mathbb{R}$ is a function. Then

 $\mathbb{E}[h(Y) \cdot X|Y] = h(Y) \cdot \mathbb{E}[X|Y]$

Proof.

$$
\mathbb{E}[h(Y) \cdot X | Y = y] = \mathbb{E}[h(y) \cdot X | Y = y]
$$

$$
= h(y) \cdot \mathbb{E}[X | Y = y]
$$

So

$$
\mathbb{E}[h(Y) \cdot X|Y] = h(Y) \cdot \mathbb{E}[X|Y] \square
$$

Corollary.

$$
\mathbb{E}[\mathbb{E}[X|Y]|Y] = \mathbb{E}[X|Y]
$$

and

 $\mathbb{E}[X|X] = X$

2.7 Random Walks

Definition. A random/ stochastic process is a sequence of random variables $(X_n)_{n\in\mathbb{N}}$

Definition. A random walk is a random process that can be expressed in the following way

 $X_n = x + Y_1 + \cdots + Y_n$

where (Y_i) are independent and identically distributed (iid) r.v.'s and x is a deterministic number (fixed).

Notation. We write \mathbb{P}_x for the probability measure $\mathbb{P}(\cdot|X_0 = x)$ i.e.

 $\forall A \in \mathcal{F} \mathbb{P}_x(A) = \mathbb{P}(A|X_0 = x)$

Method. Define

 $h(x) = \mathbb{P}_x((X_n)$ hits a before hitting 0)

By the law of total probability, we have

 $h(x) = \mathbb{P}_x((X_n)$ hits a before hitting $0|Y_1 = +1) \cdot \mathbb{P}_x(Y_1 = +1)$ + $\mathbb{P}_x((X_n)$ hits a before hitting $0|Y_1 = -1) \cdot \mathbb{P}_x(Y_1 = -1)$

$$
h(x) = p \cdot h(x+1) + q \cdot h(x-1) \quad 0 < x < a
$$
\n
$$
h(0) = 0 \quad \text{while } h(a) = 1
$$

• Case $p = q = \frac{1}{2}$:

$$
h(x) - h(x+1) = h(x-1) - h(x)
$$

In this case,

$$
h(x) = \frac{x}{a}
$$

• $p \neq q$:

$$
h(x) = ph(x+1) + qh(x-1)
$$

Solving this recurrence relation with boundary conditions yields:

Equation.

$$
h(x) = \frac{\left(\frac{q}{p}\right)^x - 1}{\left(\frac{q}{p}\right)^a - 1}
$$

This is the Gambler's Ruin estimate.

2.7.1 Expected time to absorption

Equation. Define

 $T = \min\{n \geq 0 : X_n \in \{0, a\}\}\$

i.e. T is the first time X hits either 0 or a . Want to find

 $\mathbb{E}_x[T] = \tau_x$

Conditioning on the first step and using the law of total expectation yields

$$
\tau_x = 1 + p \cdot \tau_{x+1} + q \cdot \tau_{x-1} \quad 0 < x < a
$$
\n
$$
\tau_0 = \tau_a = 0
$$

• Case $p = \frac{1}{2}$. Guessing quadratic solution and applying boundary conditions gives:

$$
\tau_x = x(a - x)
$$

• Case $p \neq \frac{1}{2}$. Guessing Cx particular integral and solving recurrence relation gives:

$$
\tau_x = \frac{1}{q-p}x - \frac{q}{q-p}\left(\frac{q}{p}\right)^x - 1
$$

2.8 Probability Generating Functions

Definition. Let X be a r.v. with values in N . Let

$$
p_r = \mathbb{P}(X = r), \ r \in \mathbb{N}
$$

be its prob. mass function. The **pgf** of X is defined to be

$$
p(z) = \sum_{r=0}^{\infty} p_r \cdot z^r = \mathbb{E}[z^X] \text{ for } |z| \le 1
$$

When $|z| \leq 1$, the pgf converges absolutely (trivial check)

Theorem. The pgf uniquely determines the distribution of X

Proof. Suppose (p_r) and (q_r) are 2 prob. mass functions with

$$
\sum_{r=0}^{\infty} p_r z^r = \sum_{r=0}^{\infty} q_r z^r \ \forall |z| \leq 1
$$

Show $p_r = q_r \forall r$ by applying induction: cancelling same terms, dividing by power of z and taking limit to zero

Theorem. we have

$$
\lim_{z \to 1} p'(z) = p'(1-) = \mathbb{E}[X]
$$

Proof. Assume first that $\mathbb{E}[X] < \infty$. Let $0 < z < 1$. We can differentiate $p(z)$ term by term and get

$$
p'(z) = \sum_{r=0}^{\infty} r p_r z^{r-1} \le \sum_{r=1}^{\infty} r p_r = \mathbb{E}[X]
$$

(because $z < 1$) Then just do analysis, considering the following: Let $\varepsilon > 0$ and N be large enough s.t.

$$
\sum_{r=0}^{N} rp_r \ge \mathbb{E}[X] - \varepsilon
$$

Also

$$
p'(z) \ge \sum_{r=1}^{N} r p_r z^{r-1} \ (0 < z < 1)
$$

So

$$
\lim_{z \to 1} p'(z) \ge \sum_{r=1}^{N} rp_r \ge \mathbb{E}[X] - \varepsilon
$$

Follow appropriate similar reasoning for $\mathbb{E}[X] = \infty$.

Note. In exactly the same way one can prove the following:

Theorem.

$$
p''(1-) = \lim_{z \to 1} p''(z) = \mathbb{E}[X(X-1)]
$$

$$
\forall k > 0, \ p^{(k)}(1-) = \lim_{z \to 1} p^{(k)}(z) = \mathbb{E}[X(X-1)...(X-k+1)]
$$

In particular

$$
Var(X) = p''(1-) + p'(1-) - (p'(1-))^2
$$

Moreover

$$
\mathbb{P}(X=n) = \frac{1}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}z}\right)^n \bigg|_{z=0} p(z)
$$

Equation. Suppose that X_1, \ldots, X_n are independent r.v.'s with pgf's q_1, \ldots, q_n respectively, i.e.

 $q_i = \mathbb{E}[z^{X_i}]$

Let

$$
p(z) = \mathbb{E}[z^{X_1 + \dots + X_n}]
$$

So

$$
p(z) = \mathbb{E}[z^{X_1} \cdot z^{X_2} \dots z^{X_n}] = \mathbb{E}[z^{X_1}] \dots \mathbb{E}[z^{X_n}] = q_1(z) \dots q_n(z)
$$

If X_i 's are iid, then

$$
p(z) = (q(z))^n
$$

Example.

(i)

$X \sim \text{Bin}(n, p)$

$$
p(z) = (pz + 1 - p)^n
$$

(ii) Let
$$
X \sim \text{Bin}(n, p)
$$
 and $Y \sim \text{Bin}(m, p)$ and $X \perp Y$
\n
$$
\mathbb{E}[z^{X+Y}] = \mathbb{E}[z^X] \cdot \mathbb{E}[z^Y] = (pz + 1 - p)^n \cdot (pz + 1 - p)^m = (pz + 1 - p)^{n+m}
$$
\nSo\n
$$
X + Y \sim \text{Bin}(n + m, p)
$$
\n(iii) Let $X \sim \text{Geo}(p)$
\n
$$
\mathbb{E}[z^X] = \frac{p}{1 - z(1 - p)}
$$
\n(iv) Let $X \sim \text{Poi}(\lambda)$
\n
$$
\mathbb{E}[z^X] = e^{\lambda(z-1)}
$$

Let $X \sim \text{Poi}(\lambda)$, $Y \sim \text{Poi}(\lambda)$ and $X \perp Y$

$$
\mathbb{E}[z^{X+Y}] = e^{\lambda(z-1)} \cdot e^{\mu(z-1)} = e^{(\lambda+\mu)(z-1)} \implies X + Y \sim \text{Poi}(\lambda+\mu)
$$

2.9 Sum of a Random Number of r.v.'s

Method. Let X_1, X_2, \ldots be iid and let N be an indep r.v. taking values in N. Define

 $S_n = X_1 + \cdots + X_n \ \forall n \geq 1$

Then

$$
S_N = X_1 + \cdots + X_N
$$

means $\forall \omega \in \Omega$,

$$
S_N(\omega) = X_1(\omega) + \dots + X_{N(\omega)}(\omega) = \sum_{i=1}^{N(\omega)} X_i(\omega)
$$

Let q be the pgf of N and p the pgf of $X_1.$ Then

$$
r(z) = \mathbb{E}[z^{S_N}]
$$

= $\mathbb{E}[z^{X_1 + \dots + X_N}]$
= $\sum_n \mathbb{E}[z^{X_1 + \dots + X_N} \cdot 1(N = n)]$
= $q(p(z))$

by working through the algebra

2.9.1 Another Proof Using Conditional Expectation

2.10 Branching Processes

From Bienaguie/ Gralton-Watson, 1874.

Method. $(X_n : n > 0)$ a random process.

 $X_n = \#$ of individuals in generation n

 $X_0 = 1$

The individual in generation 0 produces a random number of offspring with distribution

 $g_k = \mathbb{P}(X_1 = k)$ $#$ children of $1st$ individual $, k = 0, 1, 2, \ldots$

Every individual in gen. 1 produces an indep. number of offspring with the same distribution. Let $Y_{k,n}: k \geq 1, n \geq 0$) be an iid sequence with distribution $(g_k)_{k \in \mathbb{N}}$ $Y_{k,n}$ is the number of offspring of k-th indiv. in gen. n

$$
X_{n+1} = \begin{cases} Y_{1,n} + \dots + Y_{X_n,n} & \text{: when } X_n \ge 1 \\ 0 & \text{otherwise} \end{cases}
$$

Theorem.

 $\mathbb{E}[X_n] = (\mathbb{E}[X_1])^n \ \forall n \geq 1$

Proof.

$$
\mathbb{E}[X_{n+1}] = \mathbb{E}[\mathbb{E}[X_{n+1}|X_n]]
$$

$$
\mathbb{E}[X_{n+1}|X_n=m]=m\cdot\mathbb{E}[X_1]
$$

(trivial to show) So

 $\mathbb{E}[X_{n+1}|X_n] = X_n \cdot \mathbb{E}[X_1]$

Taking expectation and iterating we get

$$
\mathbb{E}[X_{n+1}] = (\mathbb{E}[X_1])^{n+1} \quad \Box
$$

Theorem. Set

$$
G(z) = \mathbb{E}[z^{X_1}]
$$

and

$$
G_n(z) = \mathbb{E}[z^{X_n}]
$$

Then

$$
G_{n+1}(z) = G(G_n(z))
$$

=
$$
G(G(\dots(G(z))\dots))
$$

=
$$
G_n(G(z))
$$

Proof. Condition on X_n as one would expect and we get:

$$
\mathbb{E}[\mathbb{E}[z^{X_{n+1}}|X_n]] = \mathbb{E}[(G(z))^{X_n}] = G_n(G(z))
$$

2.10.1 Extinction Probability

Method.

 $\mathbb{P}(X_n = 0 \text{ for some } n \geq 1) = \text{ extinction prob. } = q$ $q_n = \mathbb{P}(X_n = 0)$ $A_n = \{X_n = 0\} \subseteq \{X_{n+1} = 0\} = A_{n+1}$

Then (A_n) is an increasing sequence of events. So by continuity of prob meas.

$$
\mathbb{P}(A_n) \to \mathbb{P}\left(\bigcup_n A_n\right) \text{ as } n \to \infty
$$

But

$$
\bigcup_{n} A_{n} = \{X_{n} = 0 \text{ for some } n \ge 1\}
$$

Therefore we get $q_n \to q$ as $n \to \infty$

Claim.

$$
q_{n+1} = G(q_n) (G(z) = \mathbb{E}[z^{X_1}])
$$
 and also $q = G(q)$

Proof.

$$
q_{n+1} = \mathbb{P}(X_{n+1} = 0) = G_{n+1}(0) = G(G_n(0)) = G(q_n)
$$

Since G is continuous, taking the limit as $n \to \infty$ and using $q_n \to q$, we get

 $G(q) = q \Box$

Claim (same as previous, different proof).

$$
q_{n+1} = G(q_n) (G(z) = \mathbb{E}[z^{X_1}])
$$
 and also $q = G(q)$

Proof (Alternative). Conditional on $X_1 = m$, we get m independent branching processes. So we can write

$$
X_{n+1} = X_n^{(1)} + \dots + X_n^{(m)}
$$

where $(X_i^{(j)})$ are iid branching processes all with the same offspring distribution. So

$$
q_{n+1} = \mathbb{P}(X_{n+1} = 0) = \sum_{m} \mathbb{P}(X_{n+1} = 0 | X_1 = m) \cdot \mathbb{P}(X_1 = m)
$$

$$
= \sum_{m} \mathbb{P}(X_n^{(1)} = 0, \dots, X_n^{(m)} = 0) \cdot \mathbb{P}(X_1 = m)
$$

$$
= \sum_{m} \left(\mathbb{P}(\underbrace{X_n^{(1)} = 0}_{q_n}) \right)^m \cdot \mathbb{P}(X_1 = m)
$$

$$
= G(q_n)
$$

Theorem. Assume $\mathbb{P}(X_1 = 1) < 1$. Then the extinction probability is the minimal non-negative solution to the equation

 $t = G(t)$

We also have

 $q < 1$ iff $\mathbb{E}[X_1] > 1$

Proof (of minimality). Let t be the smallest non-negative solution to $x = G(x)$. We will show that $q = t$.

We are going to prove by induction that

 $q_n \leq t \ \forall n$

Then taking the limit as $n \to \infty$ will give us $q \leq t$. Since we know that q is a solution, this will imply $q = t$.

$$
q_0 = \mathbb{P}(X_0 = 0) \le t
$$

Suppose $q_n \leq t$

 $q_{n+1} = G(q_n)$

G is an increasing function on [0, 1], and since $q_n \leq t$, we get

$$
q_{n+1} = G(q_n) \le G(t) = t \ \square
$$

Proof (2nd part). Consider the function $H(z) = G(z) - z$ Have cases $\mathbb{P}(X_1 \leq 1) = 1$ or $\mathbb{P}(X_1 \leq 1) < 1$. The first is trivial. For the second case, think about the diagrams previous and how to use Rolle's theorem on H to show what we desire.

3 Continuous Random Variables

3.1 Definitions and Properties

 $(\Omega, \mathcal{F}, \mathbb{P})$

$$
X: \Omega \to \mathbb{R} \text{ s.t. } \forall x \in \mathbb{R}
$$

$$
\{X \le x\} = \{\omega : X(\omega) \le x\} \in \mathcal{F}
$$

The probability distribution function is defined to be

 $F: \mathbb{R} \to [0,1]$ with $F(x) = \mathbb{P}(X \leq x)$

Properties of F (i) if $x < y$ then $F(x) \leq F(y)$ Proof. ${X \leq x} \subseteq {X \leq y}$ (ii) $\forall a < b, a, b \in \mathbb{R} \mathbb{P}(a < X \leq b) = F(b) - F(a)$ Proof. $\mathbb{P}(a < X \le b) = \mathbb{P}(\{a > X\} \cap \{X \le b\})$ $=\mathbb{P}(X \leq b) - \mathbb{P}(\{X \leq b\} \cap \{X \leq a\})$ (iii) F is a right continuous function and left limits exists always $F(x-) = \lim_{y \to x} F(y) \leq F(x)$ Proof. NTP $\lim_{n\to\infty} F\left(x+\frac{1}{n}\right)$ n $= F(x)$ Define $A_n = \{x < X \leq x + \frac{1}{x}\}$ $\frac{1}{n}$ and use that $\bigcap_n A_n = \emptyset$. Left limits exist by the increasing property of F (iv) $F(x-) = \mathbb{P}(X < x)$ Proof. $F(x-) = \lim_{n \to \infty} F\left(x - \frac{1}{n}\right)$ n \setminus Consider $B_n = \left\{ X \leq x - \frac{1}{n} \right\}$ n \mathcal{L} then (B_n) increasing and $\bigcup_n B_n = \{X < x\}$ $\mathbb{P}(B_n) \to \mathbb{P}(X < n) \implies F(x-) = \mathbb{P}(X < x)$ (v) $\lim_{x\to\infty} F(x) = 1$ and $\lim_{x \to -\infty} F(x) = 0$ Proof. Exercise

35

Definition. A r.v. X is called **continuous** if F is a continuous function, which means that

$$
F(x) = F(x-) \,\forall x \implies \mathbb{P}(X \le x) = \mathbb{P}(X < x) \,\forall x
$$

In other words, $\mathbb{P}(X = x) = 0 \,\forall x \in \mathbb{R}$

Equation.

$$
F'(x) = f(x)
$$

 ${\cal F}$ differentiable so say it is absolutely continuous

3.2 Expectation

Definition. Let $X \geq 0$ with density f. We define its expectation

$$
\mathbb{E}[X] = \int_0^\infty x f(x) \, \mathrm{d}x
$$

Suppose $g > 0$. Then

$$
\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \, \mathrm{d}x
$$

for any variable X Let X be a general r.v. Define

and

 $X_{+} = \max(X, 0)$

 $X_-=\max(-X,0)$

and if at least one of $\mathbb{E}[X_+]$ or $\mathbb{E}[X_-]$ is finite, then we set

$$
\mathbb{E}[X] = \mathbb{E}[X_+] - \mathbb{E}[X_-] = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x
$$

since

$$
\mathbb{E}[X_+] = \int_0^\infty x f(x) \, \mathrm{d}x
$$

and

$$
\mathbb{E}[X_{-}] = \int_{-\infty}^{0} (-x)f(x) \,\mathrm{d}x
$$

Easy to check that the expectation is again a linear function

Claim. Let $X \geq 0$. Then

$$
\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge x) \, \mathrm{d}x
$$

Proof (1^{st}) .

$$
\mathbb{E}[X] = \int_0^\infty x f(x) dx
$$

=
$$
\int_0^\infty \left(\int_0^x 1 dy\right) f(x) dx
$$

=
$$
\int_0^\infty dy \int_y^\infty f(x) dx
$$

=
$$
\int_0^\infty dy (1 - F(y))
$$

=
$$
\int_0^\infty \mathbb{P}(X \ge y) dy \square
$$

Proof (2^{nd}) .

$$
\forall \omega, \ X(\omega) = \int_0^\infty 1(X(\omega) \ge x) \, \mathrm{d}x
$$

Taking expectation, we get

$$
\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge x) \, \mathrm{d}x \, \Box
$$

Example. Uniform distribution is defined as you expect, write $X \sim U[a, b]$

Example. Exponential distribution

$$
f(x) = \lambda e^{-\lambda x}, \ \lambda > 0, \ x > 0, \ X \sim \ \text{Exp}(\lambda)
$$

$$
F(x) = 1 - e^{-\lambda x}
$$

and

$$
\mathbb{E}[X] = \frac{1}{\lambda}
$$

3.3 Exponential as a limit of geometrics

Equation. Let $T \sim \text{Exp}(\lambda)$ and set $T_n = |nT| \forall n \in \mathbb{N}$

$$
\mathbb{P}(T_n \ge k) = \mathbb{P}\left(T \ge \frac{k}{n}\right) = e^{-\lambda k/n} = \left(e^{-\lambda/n}\right)^k
$$

So T_n is a geometric of parameter

$$
p_n = 1 - e^{-\lambda/n} \sim \frac{\lambda}{n} \text{ as } n \to \infty
$$

and

$$
\frac{T_n}{n} \to T \text{ as } n \to \infty
$$

So the exponential is the limit of a rescaled geometric

Remark. Memoryless property:

$$
s, t > 0 \, \mathbb{P}(T > t + s | T > s) = e^{-\lambda t} = \mathbb{P}(T > t)
$$

 $T \sim \text{Exp}(\lambda)$

Prop. Let T be a positive r.v. not identically 0 or ∞ . Then T has the memoryless property iff T is exponential

Proof. \implies :

 $\forall s, t \ \mathbb{P}(T > t + s) = \mathbb{P}(T > s) \mathbb{P}(T > t)$

Sub $t = 1$, then $t = m/n$. Then let $\mathbb{P}(t = 1) = e^{-\lambda}$ so we have proved that

 $g(t) = \mathbb{P}(T > t) = e^{-\lambda t} \ \forall t \in \mathbb{Q}_+$

And for $t \in \mathbb{R}^+$. We can bound $r \leq t < s$ with $r, s \in \mathbb{Q}^+$ and $|r - s| \leq \varepsilon$ then take limit

Theorem. Let X be a continuous r.v. with density f. Let g be a continuous function which is either strictly increasing or strictly decreasing and g^{-1} is differentiable. Then $g(X)$ is a continuous r.v. with density

$$
f(g^{-1}(x)) \cdot \left| \frac{\mathrm{d}}{\mathrm{d}x} g^{-1}(x) \right|
$$

Proof. Treat increasing and decreasing cases separately

Example. Normal distribution:

 $-\infty < \mu < \infty$, $\sigma > 0$ are our 2 parameters.

$$
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \ x \in \mathbb{R}
$$

Can show expectation and variance are what we expect. When X has density f, we write $X \sim N(\mu, \sigma^2)$ (X is normal with parameters μ and σ^2) When $\mu = 0$ and $\sigma^2 = 1$, we call $N(0, 1)$ the standard normal. If $X \sim N(0, 1)$, we write

$$
\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du
$$

and

$$
\varphi(x) = \Phi'(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}
$$

Have

$$
\varphi(x) = \varphi(-x) \implies \Phi(x) + \Phi(-x) = 1 \implies \mathbb{P}(X \le x) = 1 - \mathbb{P}(X \le -x)
$$

Method. Let $a \neq 0$, $b \in \mathbb{R}$. Set $g(x) = ax + b$ Define $Y = g(X)$. We can show that $Y \sim N(a\mu + b, a^2\sigma^2)$ by considering density of Y σ is the 'standard deviation'. Suppose $X \sim N(\mu, \sigma^2)$, then $X - \mu$

$$
\frac{X-\mu}{\sigma} \sim N(0,1)
$$

3.4 Multivariate Density Functions

Equation. $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ r.v. We say that X has density f if

$$
\underbrace{\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n)}_{=F(X_1, \dots, X_n)} = \int_{-\infty}^{X_1} \dots \int_{-\infty}^{X_m} f(y_1, \dots, y_n) dy_1 \dots dy_n
$$

Then

$$
f(X_1,\ldots,X_n)=\frac{\partial^n}{\partial x_1\ldots\partial x_n}F(x_1,\ldots,x_n)
$$

This generalises: " \forall " $B \subseteq \mathbb{R}^n$

$$
\mathbb{P}((X_1,\ldots,X_n)\in B)=\int_B f(y_1,\ldots,y_n)\,\mathrm{d}y_1\ldots\,\mathrm{d}y_n
$$

Definition. We say that X_1, \ldots, X_n are independent if $\forall x_1, \ldots, x_n$,

$$
\mathbb{P}(X_1 \leq x_1, \dots, X_n \leq x_n) = \mathbb{P}(X_1 \leq x_1) \dots \mathbb{P}(X_n \leq x_n)
$$

Theorem. Let $X = (X_1, \ldots, X_n)$ have density f

(i) Suppose X_1, \ldots, X_n are independent with densities f_1, \ldots, f_n . Then

 $f(x_1, \ldots, x_n) = f_1(x_1) \ldots f_n(x_n)$ (*)

(ii) Suppose that f factorises as in (*) for some non-negative functions (f_i) . Then X_1, \ldots, X_n are independent and have densities proportional to the f_i 's

Proof.

- (i) Apply definitions
- (ii) Let $B_1, \ldots, B_n \subseteq \mathbb{R}$ then

$$
\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \int_{B_1} \dots \int_{B_n} f_1(x_1) \dots f_n(x_n) dx_1 \dots dx_n
$$

Factorise this appropriately and let $B_j = \mathbb{R}$ for $j \neq i$ to get:

$$
\mathbb{P}(X_i \in B_i) = \frac{\int_{B_i} f_i(y) \, dy}{\int_{\mathbb{R}} f_i(y) \, dy}
$$

This shows that the density of X_i is

$$
\frac{f_i}{\int_{\mathbb{R}} f_i(y)\,\mathrm{d}y}
$$

Then we can check independence

Equation. Suppose (X_1, \ldots, X_n) has density f

$$
f_{X_1}(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \ldots, x_n) dx_2 \ldots dx_n
$$

3.5 Density of the Sum of Independent r.v.'s

Equation. Let X and Y be 2 independent r.v.'s with densities f_X and f_Y respectively.

$$
\mathbb{P}(X+Y \le z) = \int_{-\infty}^{z} dy \left(\int_{-\infty}^{\infty} f_Y(y-x) f_X(x) dx \right)
$$

So the density of $X + Y$ is

$$
\int_{-\infty}^{\infty} f_Y(y-x) f_X(x) \, \mathrm{d}x
$$

We call this function the convolution of f_X and f_Y

Definition. $f, g: 2$ densities

$$
f * g(x) = \int_{-\infty}^{\infty} f(x - y)g(y) dy =
$$
 convolution of f and g

Moral. We can non-rigorously show this

$$
\mathbb{P}(X + Y \le z) = \int_{-\infty}^{\infty} \mathbb{P}(X + Y \le z, Y \in dy)
$$

$$
= \int_{-\infty}^{\infty} \mathbb{P}(X \le z - y) \mathbb{P}(Y \in dy)
$$

$$
= \int_{-\infty}^{\infty} F_X(z - y) f_Y(y) dy
$$

$$
\frac{d}{dz} \mathbb{P}(X + Y \le z) = \int_{-\infty}^{\infty} \frac{d}{dz} F_X(z - y) f_Y(y) dy = \int_{-\infty}^{\infty} f_X(z - y) F_Y(y) dy
$$

So the density of $X + Y$ is
$$
\int_{-\infty}^{\infty} f_X(z - y) F_Y(y) dy
$$

3.6 Conditional Density

Definition. Let X and Y be continuous variables with joint density $f_{X,Y}$ and marginal densities f_X and f_Y . Then the conditional density of X given $Y = y$ is defined

$$
f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}
$$

3.7 Law of Total Probability

Equation.

$$
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy = \int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy
$$

Remark. Want to define $\mathbb{E}[X|Y] = g(Y)$ for some function g. Define

$$
g(y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) \, \mathrm{d}x
$$

Set $\mathbb{E}[X|Y] = g(Y) =$ conditional expectation of X given Y.

3.8 Transformation of a multidimensional r.v.

Theorem. Let X be a r.v. with values in $D \subseteq \mathbb{R}^d$ and with density f_X . Let g be a bijection from D to $g(D)$ which has a continuous derivative on D and

 $\det g'(x) \neq 0 \,\forall x \in D$

Then the r.v. $Y = g(X)$ has density

$$
f_Y(y) = f_X(x) \cdot |J|
$$

where $x = g^{-1}(y)$ and J is the determinant of the Jacobian

$$
\det J_{ij} = \det \left(\frac{\partial x_i}{\partial y_j} \right)
$$

Proof. We do not prove it here.

3.9 Order Statistics for a Random Sample

Equation. Let X_1, \ldots, X_n be iid with distr. function F and density f. Put them in increasing order

 $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$

and set

$$
Y_i = X_{(i)}
$$

Then (Y_i) are the order statistics. We can show:

$$
\mathbb{P}(Y_n \le x) = (F(x))^n
$$

$$
f_{Y_n}(x) = n(F(x))^{n-1} \cdot f(x)
$$

We can show the density of Y_1, \ldots, Y_n is:

$$
f_{Y_1,\ldots,Y_n}(x_1,\ldots,x_n) = \begin{cases} n!f(x_1)\ldots f(x_n) & \text{when } X_1 < X_2 < \ldots X_n \\ 0 & \text{otherwise} \end{cases}
$$

Equation. If X_1, \ldots, X_n are independent with $X_i \sim \text{Exp}(\lambda_i)$ then

$$
\min(X_1, \ldots, X_n) \sim \operatorname{Exp}\left(\sum_{i=1}^n \lambda_i\right)
$$

Example. Let X_1, \ldots, X_n be iid $Exp(\lambda)$ and let Y_i be their order statistics

$$
Z_1 = Y_1, Z_2 = Y_2 - Y_1, \dots, Z_n = Y_n - Y_{n-1}
$$

So Z_1, \ldots, Z_n are independent and $Z_i \sim \text{Exp}(\lambda(n-i+1))$. We can show this by considering the bijection with the values of Y_i and applying a previous equation.

3.10 Moment Generating Functions (mgfs)

Definition. Let X be a r.v. with density f. The **mgf** of X is defined to be

$$
m(\theta) = \mathbb{E}\left[e^{\theta X}\right] = \int_{-\infty}^{\infty} e^{\theta x} f(x) \, \mathrm{d}x
$$

whenever this integral is finite

 $m(0) = 1$

Theorem. The mgf uniquely determines the distribution of a r.v. provided it is defined for an open interval of values of θ .

Theorem. Suppose the mgf is defined for an open interval of values of θ . Then

$$
m^{(r)}(0)=\frac{\mathrm{d}^r}{\mathrm{d}\theta^r}\; m(\theta)\vert_{\theta=0}=\mathbb{E}[X^r]
$$

Example. Gamma distribution:

$$
f(x) = \frac{e^{-\lambda x} \lambda^n x^{n-1}}{(n-1)!}, \ \lambda > 0, \ n \in \mathbb{N}, \ x \ge 0
$$

We denote X with density f as $X \sim \Gamma(n, \lambda)$ Check f is a density by showing integral over R is 1 (can use reduction $I_n = I_{n-1}$)

$$
m(\theta) = \left(\frac{\lambda}{\lambda - \theta}\right)^n \text{ for } \lambda > 0
$$

Claim. Suppose that X_1, \ldots, X_n are independent r.v's. Then

$$
m(\theta) = \mathbb{E}\left[e^{\theta(X_1 + \dots + X_n)}\right] = \prod_{i=1}^n \mathbb{E}[e^{\theta X_i}]
$$

Example. Let $X \sim \Gamma(n, \lambda)$ and $Y \sim \Gamma(m, \lambda)$ and $X \perp Y$. Then we can show

$$
m(\theta) = \left(\frac{\lambda}{\lambda - \theta}\right)^{n+m} \text{ for } \theta < \lambda
$$

So by the uniqueness theorem we get $X + Y \sim \Gamma(n + m, \lambda)$.

Equation. In particular, this implies that if X_1, \ldots, X_n are iid $Exp(1)$ (= $\Gamma(1,\lambda)$) then

 $X_1 + \cdots + X_n \sim \Gamma(n, \lambda)$

Remark. One could also consider $\Gamma(\alpha, \lambda)$ ($\alpha > 0$) by replacing $(n - 1)!$ with

$$
\Gamma(\alpha) = \int_0^\infty e^{-x} \cdot x^{\alpha - 1} \, \mathrm{d}x
$$

Example. Normal distribution. Let $X \sim N(\mu, \sigma^2)$

$$
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \ x \in \mathbb{R}
$$

We can show that

$$
m(\theta) = e^{\theta \mu + \theta^2 \sigma^2 / 2}
$$

by rewriting the integral in the form of constant times integral over a normal distribution. If $X \sim N(\mu, \sigma^2)$, then $aX + b \sim N(a\mu + b, a^2\sigma^2)$ So

$$
\mathbb{E}[e^{\theta(aX+b)}] = e^{\theta(a\mu+b) + \theta^2 a^2 \sigma^2/2}
$$

Suppose $X \sim N(\mu, \sigma^2)$ and $Y \sim N(\mu, \tau^2)$ and $X \perp Y$ Then $X + Y \sim N(\mu + \nu, \sigma^2 + \tau^2)$ (we can show this by considering the mgfs)

Example. Cauchy distribution

$$
f(x) = \frac{1}{\pi(1+x^2)} \ x \in \mathbb{R}
$$

$$
m(\theta) = \infty \ \forall \theta \neq 0, \ (m(0) = 1)
$$

Moral. Suppose $X \sim f$. Then $X, 2X, 3X, \ldots$ all have the same mgf. However they do not have the same distribution. So assumption on $m(\theta)$ being finite for an open interval of values of θ is essential

3.11 Multivariate Moment Generating Function

Definition. Let $X = (X_1, \ldots, X_n)$ be a r.v. with values in \mathbb{R}^n . Then the **mgf** of X is defined to be

$$
m(\theta) = \mathbb{E}[e^{\theta^T X}] = \mathbb{E}[e^{\theta_1 X_1 + \dots + \theta_n X_n}]
$$

where

$$
\theta = (\theta_1, \ldots, \theta_n)^T
$$

Theorem. In this case, provided mgf is finite for a range for values of θ , it uniquely determines the distribution of X. Also

$$
\frac{\partial^r m}{\partial \theta_i^r}\Big|_{\theta=0} = \mathbb{E}[X_i^r]
$$

$$
\frac{\partial^{r+s} m}{\partial \theta_i^r \partial \theta_j^s}\Big|_{\theta=0} = \mathbb{E}[X_i^r X_j^s]
$$

$$
m(\theta) = \prod_{i=1}^n \mathbb{E}[e^{\theta_i X_i}] \text{ iff } X_1, \dots, X_n \text{ are indep.}
$$

Definition. Let $(X_n : n \in \mathbb{N})$ be a sequence of r.v.'s and let X be another r.v. We say that X_n converges to X in distribution and write $X_n \stackrel{d}{\to} X$, if

 $F_{X_n}(x) \to F_X(x)$ $\forall x \in \mathbb{R}$ that are continuity points of F_X

Theorem (Continuity Property for mgf's). Let X be a r.v. with $m(\theta) < \infty$ for some $\theta \neq 0$. suppose that

$$
m_n(\theta) \to m(\theta) \,\forall \theta \in \mathbb{R}
$$
 where $m_n(\theta) = \mathbb{E}[e^{\theta X_n}]$ and $m(\theta) = \mathbb{E}[e^{\theta X}]$

Then X_n converges to X in distribution

Note. This is just saying if the mgf's of the X_n converge to some mgf then $X_n \stackrel{d}{\to} X$

3.12 Limit Theorems for Sums of iid r.v.'s

Theorem (Weak Law of Large Numbers). Let $(X_n : n \in \mathbb{R})$ be a sequence of iid r.v.'s with $\mu =$ $\mathbb{E}[X_1] < \infty$. Set

$$
S_n = X_1 + \dots + X_n
$$

Then $\forall \varepsilon > 0$

$$
\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) \to 0 \text{ as } n \to \infty
$$

Proof (assuming $\sigma^2 < \infty$ where $(\sigma^2 = \text{Var}(X_1)).$

$$
\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) = \mathbb{P}(|S_n - n\mu| > \varepsilon n)
$$

then apply Chebyshev's inequality

Definition. A sequence (X_n) converges to X in probability and we write

 $X_n \stackrel{\mathbb{P}}{\rightarrow} X$ as $n \to \infty$

if $\varepsilon > 0$:

$$
\mathbb{P}(|X_n - X| > \varepsilon) \to 0 \text{ as } n \to \infty
$$

Definition. We say (X_n) converges to X with probability 1 or 'almost surely (a.s.)' if

$$
\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=1
$$

Note.

$$
\mathbb{P}(\forall \varepsilon > 0 \ \exists n_0 : |X_n - X| < \varepsilon \ \forall n > n_0) = 1
$$

Intuitively, 'pretty much all' events have $|X_n(\omega) - X(\omega)| < \varepsilon$ happening after a certain point. E.g. We can take X_n to be 1 if we have had a head after n tosses with our sample space being the set of sequences of tosses. $X(\omega) = 1$.

Claim. Suppose $X_n \to 0$ almost surely as $n \to \infty$. Then $X_n \xrightarrow{\mathbb{P}} 0$ as $n \to \infty$

Proof. NTS:

$$
\forall \varepsilon > 0 \; \mathbb{P}(|X_n| > \varepsilon) \to 0 \text{ as } n \to \infty
$$

We do this by considering

$$
A_n = \bigcap_{m=n}^{\infty} \{ |X_m| \le \varepsilon \}
$$

and then considering $\bigcup A_n$

Theorem (Strong law of large numbers). Let $(X_n)_{n\in\mathbb{N}}$ be an iid sequence of r.v.'s with $\mu = \mathbb{E}[X_1]$ < ∞.

Then setting

$$
S_N = X_1 + \dots + X_n
$$

we have

$$
\frac{S_n}{n} \to \mu \text{ as } n \to \infty \text{ a.s.}
$$

$$
\left(\mathbb{P}\left(\frac{S_n}{n} \to \mu \text{ as } n \to \infty\right) = 1\right)
$$

Proof. non-examinable

Equation. Suppose
$$
\mathbb{E}[X_1] = \mu
$$
 and $\text{Var}(X_1) = \sigma^2 < \infty$

$$
\text{Var}\left(\frac{S_n}{n} - \mu\right) = \frac{\sigma^2}{n}
$$

$$
\frac{\frac{S_n}{n} - \mu}{\sqrt{\text{Var}\left(\frac{S_n}{n} - \mu\right)}} = \frac{\frac{S_n}{n} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{S_n - n\mu}{\sigma\sqrt{n}}
$$

3.13 Central limit theorem

Theorem. Let $(X_n)_{n\in\mathbb{N}}$ be an iid sequence of rv.'s with $\mathbb{E}[X_1] = \mu$ and $\text{Var}(X_1) = \sigma^2$. Set

$$
S_n = X_1 + \dots + X_n
$$

Then

$$
\forall x \in \mathbb{R}, \ \mathbb{P}\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x\right) \to \Phi(x) = \int_{-\infty}^x \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, \mathrm{d}y \text{ as } n \to \infty
$$

In other words,

$$
\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{n \to \infty} Z
$$

where $Z \sim N(0, 1)$ CLT says that for n large enough:

$$
\frac{S_n - n\mu}{\sigma\sqrt{n}} \approx Z \ Z \sim N(0, 1)
$$

$$
\implies S_n \approx n\mu + \sigma\sqrt{n}Z \sim N(n\mu, \sigma^2 n)
$$
 for *n* large

Proof. Consider $Y_i = (X_i - \mu)/\sigma$. Then $\mathbb{E}[Y_1] = 0$ and $\text{Var}(Y_i) = 1$. It suffices to prove the CLT when

$$
S_n = X_1 + \dots + X_n \text{ with } \mathbb{E}[X_i] = 0 \text{ and } \text{Var}(X_i) = 1
$$

Assume further that $\exists \delta > 0$ s.t.

$$
\mathbb{E}[e^{\delta X_1}] < \infty \text{ and } \mathbb{E}[e^{-\delta X_1}] < \infty
$$
\n
$$
m(\theta) = \mathbb{E}\left[e^{\theta X_1}\right] = \mathbb{E}\left[1 + \theta X_1 + \frac{\theta^2 X_1^2}{2!} + \sum_{k=3}^{\infty} \frac{\theta^k X_1^k}{k!}\right]
$$

Bound the series appropriately to show that it is $o(|\theta|^2)$ by showing it is $O(|\theta|^3)$ Then

$$
m\left(\frac{\theta}{\sqrt{n}}\right) = 1 + \frac{\theta^2}{2n} + o\left(\frac{|\theta|^2}{n}\right)
$$

and hence

$$
\left(m\left(\frac{\theta}{\sqrt{n}}\right)\right)^n \to e^{\theta^2/2} \text{ as } n \to \infty
$$

3.14 Applications

Example. Normal approximation to the Binomial distribution: Let $S_n \sim \text{Bin}(n, p)$

$$
S_n = \sum_{i=1}^n X_i
$$
, (X_i) iid ~ Ber(p) $\mathbb{E}[S_n] = np$, $Var(S_n) = np(1 - p)$

and apply CLT to get

$$
S_n \approx N(np, np(1-p)) \text{ for } n \text{ large}
$$

$$
\text{Bin}\left(n, \frac{\lambda}{n}\right) \to \text{Poi}(\lambda) \lambda > 0
$$

Example. Normal approximation to the Poisson distribution: Let $S_n \sim \text{Poi}(n)$.

$$
S_n = \sum_{i=1}^n X_i, (X_i) \text{ iid } \sim \text{ Poi}(1)
$$

$$
\frac{S_n - n}{\sqrt{n}} \xrightarrow{d} N(0, 1) \text{ as } n \to \infty
$$

3.15 Sampling Error via the CLT

Example. Pick N individuals at random. Let

$$
\hat{p}_N = \frac{S_N}{N}
$$

where S_N is the number of yes voters. How large should $\cal N$ be so that

$$
|\hat{p}_N - p| \le \frac{4}{100}
$$
 w.p. ≥ 0.99 ?

Apply CLT to get an approximate normal for S_N and use that

3.16 Bertrand's Paradox

3.17 Multidimensional Gaussian r.v.'s

Definition. A r.v. X with values in \mathbb{R} is called **Gaussian**/ normal if

 $X = \mu + \sigma Z$, $\mu \in \mathbb{R}$, $\sigma \in [0, \infty]$ and $Z \sim N(0, 1)$

The density of X is

$$
f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \ x \in \mathbb{R}
$$

 $X \sim N(\mu, \sigma^2)$

Definition. Let $X = (X_1, ..., X_n)^T$ with values in \mathbb{R}^n . Then X is a Gaussian vector or is just $\textrm{called Gaussian if } \forall u=(u_1,\dots,u_n)^T\in\mathbb{R}^n$

$$
u^T X = \sum_{i=1}^n u_i X_i
$$
 is a Gaussian r.v. in R

Example. Suppose X is Gaussian in \mathbb{R}^n . Suppose A is an $m \times n$ matrix and $b \in \mathbb{R}^m$. Then $AX + b$ is also Gaussian in \mathbb{R}^m .

Proof. Work with definition and set $v = A^T u$

Definition. $\mu = \mathbb{E}[X] =$ \lceil $\overline{}$ $\mathbb{E}[X_1]$. . . $\mathbb{E}[X_n]$ 1 $\mu_i = \mathbb{E}[X_i]$ $V = \text{Var}(X) = \mathbb{E}[(X - \mu) \cdot (X - \mu)^T]$ $\left[\begin{matrix} -\mu \\ 1 \times n \end{matrix}\right]^T$ = \lceil $\overline{}$ $\mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)]$ 1 $\overline{}$ = \lceil $\Big\}$ $Cov(X_i, X_j)]$ 1 $\begin{array}{c} \hline \end{array}$ $V_{ij} = \text{Cov}(X_i, X_j)$

Equation. We can show that:

$$
\mathbb{E}[u^T X] = u^T \mu
$$

$$
\text{Var}(u^T X) = u^T V u
$$

so $u^T X \sim N(u^T \mu, u^T V u)$

Method. Finding mgf of X :

$$
m(\lambda) = \mathbb{E}[e^{\lambda^T X}] \,\forall \lambda \in \mathbb{R}^n, \,\,\lambda = (\lambda_1, \dots, \lambda_n)^T
$$

We know

 $\lambda^T X \sim N(\lambda^T \mu, \lambda^T V \lambda)$

So $m(\lambda)$ is characterised by μ and V. Since the mgf uniquely characterises the distribution, we see that a Gaussian vector is uniquely characterised by its mean μ and variance V .

$$
m(\lambda) = \mathbb{E}[e^{\lambda^T X}] = e^{\lambda^T \mu + \lambda^T V \lambda/2}
$$

In this case we write $X \sim N(\mu, V)$

Claim. Let Z_1, \ldots, Z_n iid $N(0, 1)$ r.v.'s. Set $Z = (Z_1, \ldots, Z_n)^T$. Then Z is a Gaussian vector.

Proof. We can show that $u^T Z \sim N(0, |u|^2)$ by considering the moment generating of Z.

$$
\mathbb{E}[Z] = 0 \text{ Var}(Z) = I_n = \begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{bmatrix}
$$

1 \perp \mathbf{I}

So $Z \sim N(0, I_n)$

Method. Let $\mu \in \mathbb{R}^n$ and V a non-negative definite matrix.

We want to construct a Gaussian vector with mean μ and variance V using Z. We want to construct a Gaussian vector with mean μ and variance V using Z.
Let $V = U^T D U$ where D diagonal (possible as V symmetric). Then we set $\sigma = U^T \sqrt{\frac{U^T U}{\sigma}}$ DU (diagonal Let $V = U^T D U$ where D diagonal (possitentries in \sqrt{D} are the root of those in D). Let $Z = (Z_1, ..., Z_n)$ with (Z_i) iid $N(0, 1)$ r.v.'s Set $X = \mu + \sigma Z$

Claim. $X \sim N(\mu, V)$

Proof. X is Gaussian, since it is a linear transformation of the Gaussian vector Z. Then we can easily check mean and variance are as desired

Method. Finding density of $X \sim N(\mu, V)$ In the case that V is positive definite:

$$
f_X(x) = f_Z(z) \cdot |J| = \prod_{i=1}^n \left(\frac{e^{-z_i^2/2}}{\sqrt{2\pi}} \right) \cdot |\det \sigma^{-1}|
$$

$$
\implies f_X(x) = \frac{1}{\sqrt{(2\pi)^n \det V}} e^{z^T z/2}
$$

Subbing in for $z^t \cdot z$ gives:

$$
f_X(x) = \frac{1}{\sqrt{(2\pi)^n \det V}} \cdot \exp\left(-\frac{(x-\mu)^T \cdot V^{-1} \cdot (x-\mu)}{2}\right)
$$

In the case V is non-negative definite, some eigenvalues could be 0 . By an orthogonal change of basis, we can assume that

 $V = \begin{bmatrix} U & 0 \\ 0 & 0 \end{bmatrix}$ where U is an $m \times m$ $(m < n)$ positive definite matrix

We can write $X = \begin{bmatrix} Y \\ Y \end{bmatrix}$ ν where Y has density

$$
f_Y(y) = \frac{1}{\sqrt{(2\pi)^m \det U}} \exp\left(-\frac{(y-\lambda)^T \cdot U^{-1}(y-\lambda)}{2}\right)
$$

Claim. If the X_i 's are independent, then V is a diagonal matrix

Proof. Since the X_i 's are independent, it follows that $Cov(X_i, X_j) = 0$ whenever $i \neq j$. So V is diagonal.

Lemma. Suppose that X is a Gaussian vector. Then if V is a diagonal matrix, then the X_i 's are independent

Proof (1st). If V is diagonal, then the density $f_X(x)$ factorises into a product. Indeed,

$$
(x - \mu)^{T} V^{-1} (x - \mu) = \sum_{i=1}^{n} \frac{(x_i - \mu_i)^2}{\lambda_i}
$$

so

$$
f_X(x) = \frac{1}{\sqrt{(2\pi)^n \det V}} \exp\left(-\sum_{i=1}^n \frac{(x_i - \mu_i)^2}{2\lambda_i}\right)
$$

Hence the X_i 's are indep.

Proof $(2nd)$.

$$
m(\theta) = \mathbb{E}[e^{\theta^T X}] = e^{\theta^T \mu + \theta^T V \theta/2} = e^{\sum \theta_i \mu_i} \cdot e^{\sum \theta_i^2 \lambda_i/2}
$$

So $m(\theta)$ factorises into the mgf's of Gaussian r.v.'s in \mathbb{R} \Box

Moral. So for Gaussian vectors we have

 (X_1, \ldots, X_n) are independent iff $Cov(X_i, X_j) = 0$ whenever $i \neq j$

3.18 Bivariate Gaussian

Definition. $n = 2$ Let $X = (X_1, X_2)$ be a Gaussian vector in \mathbb{R}^2 . Set $\mu_k = \mathbb{E}[X_k], k = 1, 2$. Set $\sigma_k^2 = \text{Var}(X_k)$

$$
\rho = \text{Corr}(X_1, X_2) = \frac{\text{Cov}(X_1, X_2)}{\sqrt{\text{Var}(X_1)\text{Var}(X_2)}}
$$

Claim. $\rho \in [-1, 1]$

Proof. Immediate from the Cauchy-Schwartz ineq. (Consider definition of Cov) \Box

$$
V = \text{Var}(X) = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}
$$

Claim. For all $\sigma_k > 0$ and $\rho \in [-1, 1]$

$$
V = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}
$$
 is non-negative definite

Proof. Show $u^T V u \ge 0$ for all $u \in \mathbb{R}^2$

Method. Suppose (X_1, X_2) is a Gaussian vector. We want to find $\mathbb{E}[X_2|X_1]$. Let $a \in \mathbb{R}$. Consider $X_2 - aX_1$.

$$
Cov(X2 - aX1, X1) = Cov(X2, X1) - aCov(X1, X1)
$$

= Cov(X₁, X₂) - aVar(X₁)
= $\rho \sigma_1 \sigma_2 - a \sigma_1^2$

Take $a = (\rho \sigma_2)/\sigma_1$. Then Cov $(X_2 - aX_1, X_1) = 0$. Set

$$
Y = X_2 - aX_1
$$

1

 $\left\lceil X_1 \right\rceil$ Y is a Gaussian vector as it is of the form $A\begin{bmatrix} X_1 \\ Y \end{bmatrix}$ $\scriptstyle X_2$

From the criterion of independence, we get X_1 is independent of Y, since (X_1, Y) is Gaussian and $Cov(X_1, Y) = 0.$

$$
\mathbb{E}[X_2|X_1] = \mathbb{E}[Y + aX_1|X_1] = \mathbb{E}[Y] + aX_1
$$

as $X_2 = X_2 - aX_1 + aX_1$. So given X_1 ,

$$
X_2 \sim N(aX_1 + \mu_2 - a\mu_1, \text{Var}(X_2 - aX_1))
$$

where

$$
Var(X_2 - aX_1) = Var(X_2) + a^2 Var(X_1) - 2aCov(X_1, X_2)
$$

3.19 Rejection Sampling

Example. Suppose $A \subset [0,1]^d$. Define $f(x) = \frac{1(x \in A)}{|A|}, |A| = \text{ volume of } A$ Let X have density f . How can we simulate X ? Let $(U_n)_{n\in\mathbb{N}}$ be an iid sequence of d-dimensional uniforms, i.e. $U_n = (U_{k,n} : k \in \{1, \ldots, d\}), (U_{k,n})_{(k,n)}$ iid ~ $U[0,1]$ Let $N = \min\{n \geq 1 : U_n \in A\}$ Claim. $U_N \sim f$ **Proof.** We want to show that $\forall B \subseteq [0,1]^d$ $\mathbb{P}(U_N \in B) = \int_B$ $f(X) dx$ $\mathbb{P}(U_N \in B) = \sum_{n=1}^{\infty}$ $n=1$ $\mathbb{P}(U_N \in B, N = n)$ $=\frac{|A\cap B|}{|A|}$ $|A|$ by working out sum $|A \cap B|$ $\frac{|A|}{|A|} = \int$ $1(x \in B)$ $\frac{x \in B}{|A|} dx = \int$ $f(x) dx$

A

B

Example. Suppose f is a density on $[0, 1]^{d-1}$ which is bounded, i.e.

 $\exists \lambda > 0 \text{ s.t. } f(x) \leq \lambda \ \forall x \in [0, 1]^{d-1}$

Want to sample $X \sim f$. Consider

$$
A = \{(x_1, \ldots, x_d) \in [0, 1]^d : x_d \le f(x_1, \ldots, x_{d-1})/\lambda\}
$$

From the above we know how to generate a uniform random variable on A. Let $Y = (X_1, \ldots, X_d)$ be this r.v. Set $X = (X_1, \ldots, X_{d-1})$

Claim. $X \sim f$

Proof. We need to show that $\forall B \subseteq [0,1]^{d-1}$

$$
\mathbb{P}(X \in B) = \int_B f(x) \, \mathrm{d}x
$$

Have:

$$
\mathbb{P}(X \in B) = \mathbb{P}((X_1, \dots, X_{d-1}) \in B) = \mathbb{P}((X_1, \dots, X_d) \in (B \times [0, 1]) \cap A) = \frac{|(B \times [0, 1]) \cap A|}{|A|}
$$

as Y is uniform on A

$$
|(B \times [0,1]) \cap A| = \int \cdots \int 1((x_1,\ldots,x_d) \in B \times [0,1] \cap A) dx_1 \ldots dx_d
$$

=
$$
\int \cdots \int 1((x_1,\ldots,x_{d-1}) \in B) \int \left(x_d \le \frac{f(x_1,\ldots,x_{d-1})}{\lambda}\right) dx_1 \ldots dx_{d-1}
$$

=
$$
\frac{1}{\lambda} \int_B f(x) dx
$$

$$
|A| = \frac{1}{\lambda} \int_{[0,1]^{d-1}} f(x) dx
$$

$$
= \frac{1}{\lambda}
$$

So

$$
\mathbb{P}(X \in B) = \int_B f(x) \, \mathrm{d}x
$$

Moral. In the case $d = 3$, imagine surface in 3-D where the z value is the probability. We are using uniform distributions to sample uniformly within a volume bounded by our surface which, in turn, gives (x, y) with desired probability.