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1 Probability Spaces

Definition. Suppose Ω is a set and F is a collection of subsets of Ω.
We call F a σ-algebra if:
(i) Ω ∈ F
(ii) if A ∈ F , then AC ∈ F
(iii) for any countable collection (An)n≥1 with An ∈ F ∀n, we must also have that

⋃
n
An ∈ F

Definition. Suppose F is a σ-algebra on Ω. A function P : F → [0, 1] is called a probability
measure if
(i) P(Ω) = 1
(ii) for any countable disjoint collection (An)n≥1 in F with An ∈ F ∀n, we have

P(
⋃
n≥1

An) =
∑
n≥1

P(An)

We call (Ω,F ,P) a probability space. Ω is the sample space
F a σ-algebra
P the probability measure

Note. We say P(A) is the probability of A

Remark. When Ω countable, we take F to be all subsets of Ω

Definition. The elements of Ω are called outcomes and the elements of F are called events.

Remark. We talk about probability of events and not outcomes.

1.1 Combinatorial Analysis

Note. (
n

k

)
strictly increasing functions from set size k to size n(

n+ k − 1

k

)
increasing functions from set size k to size n

1.2 Stirling’s Formula

Notation. Let (an) and (bn) be 2 sequences. We write:

an ∼ bn if
an
bn
→ 1 as n→∞
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Theorem (Stirling).
n! ∼ nn

√
2πne−n as n→∞

Note. Weaker examinable statement proved below

Proof. Non-examinable.

Claim. Weaker statement of Stirling:

log(n!) ∼ n log n as n→∞

Proof. Define ln = log(n!) = log 2 + . . . log n
For x ∈ R, we write bxc: integer part of x.

logbxc ≤ log x ≤ logbx+ 1c

Integrate from 1 to n to reach result∫ n

1

logbxc dx ≤
∫ n

1

log xdx ≤
∫ n

1

logbx+ 1c

1.3 Properties of Probability Measures
1.3.1 Countable subadditivity

Claim. Let (An)n≥1 be a sequence of events in F (An ∈ F ∀n)
Then

P

( ∞⋃
n=1

An

)
≤
∞∑
n=1

P(An)

Proof. Define B1 = A1 and Bn = An\(A1 ∪ · · · ∪An−1)∀n ≥ 2.
Then (Bn)n≥1 is a disjoint sequence of events in F and

⋃
n≥1

Bn =
⋃
n≥1

An.

Then apply properties of probability measure

1.3.2 Continuity of Probability Measures

Let (An)n≥1 be an increasing sequence on F , i.e. ∀n An ∈ F andAn ⊆ An+1. Then P(An) ≤ P(An+1).
So P(An) converges as n→∞.
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Claim.

lim
n→∞

P(An) = P

(⋃
n

An

)

Proof. Set B1 = A1 and ∀n ≥ 2 Bn = An\(A1 ∪ · · · ∪An−1)

Then
n⋃
k=1

Bk = An and
n⋃
k=1

Bk =
n⋃
k=1

Ak

Then use properties of probability measure.

Note. Similarly, if (An) is a decreasing sequence in F , i.e. ∀n An ∈ F and An+1 ⊆ An, then

P(An)→ P

(⋂
n

An

)
as n→∞

1.4 Inclusion-Exclusion Formula

Let A,B ∈ F . Then P(A ∪B) = P(A) + P(B)− P(A ∩B)
Let C ∈ F . Then P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)

Claim. Let A1, . . . , An ∈ F . then

P

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

P(Ai1 ∩ · · · ∩Aik)

Proof. By induction. For n = 2 it holds.
Assume it holds for n− 1 events. We will prove it for n events.

P(A1∪· · ·∪An) = P((A1∪. . . An−1)∪An) = P(A1∪. . . An−1)+P(An)−P((A1∪. . . An−1)∩An) (∗)

Notice
P((A1 ∪ . . . An−1) ∩An) = P((A1 ∩An) ∪ · · · ∪ (An−1 ∩An))

Set Bi = Ai ∩An. By the inductive hypothesis,

P(A1 ∪ · · · ∪An−1) =

n−1∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n−1

P(Ai1 ∩ · · · ∩Aik)

P(B1 ∪ · · · ∪Bn−1) =

n−1∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n−1

P(Bi1 ∩ · · · ∩Bik)

Plugging these two into back into (∗) gives the claim.
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Let (Ω,F ,P) with |Ω| <∞ and P(A) = |A|
|Ω| ∀A ∈ F .

Let A1, . . . , An ∈ F . Then

|A1 ∪ · · · ∪An−1| =
n−1∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n−1

|Ai1 ∩ · · · ∩Aik |

1.4.1 Bonferroni Inequalities

Claim. Truncating sum in the inclusion-exclusion formula at the r-th term gives an overestimate if
r is odd and an underestimate if r is even, i.e.

P

(
n⋃
i=1

Ai

)
≤

r∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

P(Ai1 ∩ · · · ∩Aik) if r is odd

P

(
n⋃
i=1

Ai

)
≥

r∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n

P(Ai1 ∩ · · · ∩Aik) if r is even

Proof. By induction. For n = 2 P(A ∪B) ≤ P(A) + P(B)
Assume the claim holds for n− 1 events. Will prove for n.
Suppose r is odd. Then

P(A1 ∪ · · · ∪An) = P(A1 ∪ · · · ∪An−1) +P(An)−P(B1 ∪ · · · ∪Bn−1), where Bi = Ai ∩An (∗)

Since r is odd, apply the inductive hypothesis to P(A1 ∪ · · · ∪An) to get:

P

(
n−1⋃
i=1

Ai

)
≤

r∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n−1

P(Ai1 ∩ · · · ∩Aik)

Since r − 1 is even, apply the inductive hypothesis to P(B1 ∪ · · · ∪Bn−1)

P

(
n−1⋃
i=1

Bi

)
≥

r−1∑
k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤n−1

P(Bi1 ∩ · · · ∩Bik)

Substitute both bounds in (∗) to get an overestimate.
In exactly the same way we prove the result for r even.
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1.5 Independence

Definition. Let A,B ∈ F . They are called independent (A ⊥⊥ B) if

P(A ∩B) = P(A) · P(B)

A countable collection of events (An) is said to be independent if ∀ distinct i1, i2, . . . , ik we have

P(Ai1 ∩ · · · ∩Aik) =

k∏
j=1

P(Aij )

Remark. Pairwise independent does not imply independent see example below

Claim. If A is independent of B, then A is also independent of BC

Proof. trivial

1.6 Conditional Probability

Definition. Let B ∈ F with P(B) > 0
Let A ∈ F . We define the conditional probability of A given B and write P(A|B) to be

P(A|B) =
P(A ∩B)

P(B)

Note. If A and B are independent, then P(A∩B)
P(B) = P(A)·P(B)

P(B) = P(A)

So in this case P(A|B) = P(A)

Claim. Suppose (An) is a disjoint sequence in F .
Then P(

⋃
An|B) =

∑
n
P(An|B) (countable additivity for conditional probability)

Proof. Apply above formula and use countable additivity
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1.7 Law of Total Probability

Claim. Suppose (Bn)n∈N is a disjoint collection in F and
⋃
Bn = Ω and ∀nP(Bn) > 0.

Let A ∈ F . Then P(A) =
∑
n P(A|Bn) · P(Bn)

Proof.

P(A) = P(A ∩ Ω) = P

(
A ∩

(⋃
n

Bn

))

= P

(⋃
n

(A ∩Bn)

)

Then use countable additivity

1.8 Bayes’ Formula

Equation. Let (Bn) be a partition of Ω, i.e. (Bn) are disjoint and ∪Bn = Ω

∀A ∈ F P(Bn|A) =
P(A|Bn) · P(Bn)∑
k P(A|Bk)P(Bk)

Baye’s formula

1.9 Simpson’s Paradox

All applicants Admitted Rejected % Admitted
State 25 25 50%

Independent 28 22 56%
Men Only Admitted Rejected % Admitted

State 15 22 41%
Independent 5 8 38%
Women Only Admitted Rejected % Admitted

State 10 3 77%
Independent 23 14 62%

Remark. This phenomenon is called confounding in statistics. It arises when we aggregate data
from disparate populations.
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2 Discrete Random Variables

2.1 Definitions and Examples

Definition (Discrete Probability Distribution).

(Ω,F ,P) Ω finite or countable

Ω = {ω1, ω2, . . . , }

F = {all subsets of Ω}

If we know P({ωi}) ∀i, then this determines P.
Indeed, let A ⊆ Ω then

P(A) = P

( ⋃
i:ωi∈A

{ωi}

)
=
∑
i:ωi∈A

P({ωi})

We write pi = P({ωi}) and we call it a discrete probability distribution

Note. Properties:
• pi ≥ 0 ∀i
•
∑
i pi = 1

Example (Bernoulli Distribution). Model the outcome of the toss of a coin.

Ω = {0, 1} p1 = P({1}) = p and p0 = P({0}) = 1− p

P(we see a H) = p, P(we see a T ) = 1− p

Example (Binomial distribution).

B(N, p), N ∈ Z+, p ∈ [0, 1]

Toss a p-coin (prob of H is p) N times independently.

P(we see k heads) =

(
N

k

)
pk(1− p)n−k

Ω = {0, 1, . . . , N} pk =

(
N

k

)
· pk · (1− p)n−k

N∑
k=0

pk = 1
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Example (Multinomial Distribution).

M(N, p1, . . . , pk), N ∈ Z+, p1, . . . , pk ≥ 0 and
k∑
i=1

pi = 1

. . .

1 2 k

k boxes and N balls
P(pick box i) = pi

Throw the balls independently.

Ω = {(n1, . . . , nk) ∈ Nk :

k∑
i=1

ni = N}

The set of ordered partitions of N .

P(n1 balls fall in box 1, . . . , nk fell in box k) =

(
N

n1, . . . , nk

)
· pn1

1 · p
n1
2 . . . pnk

k

∑
ni = N

Example (Geometric Distribution). Toss a p-coin until the first H appears.

Ω = {1, 2, . . . } P(we tossed k times until first H) = (1− p)k−1p = pk

∞∑
k=1

pk = 1

Ω = {0, 1, . . . } P(k tails before first H) = (1− p)k · p = p′k
∞∑
k=0

p′k = 1

10



Example (Poisson Distribution). This is used to model the number of occurences of an event in a
given interval of time. For instance, the number of customers that enter a shop in a day.

Ω = {1, 2, . . . } λ > 0

pk = e−λ · λ
k

k!
, ∀k ∈ Ω

We call this the Poisson distribution with parameter λ.

∞∑
k=0

pk = e−λ
∞∑
k=1

λk

k!
= e−λ · eλ = 1

So indeed it is a probability distribution.
Suppose customers arive into a shop during [0, 1]. Discretise [0,1] , i.e. subdivide [0, 1] into N intervals[
i−1
N , iN

]
, i = 1, 2, . . . , N

In each interval, a customer arrives with probability p (independently of other intervals and with
probability (w.p.) 1− p nobody arrives.

P(k customers arrived) =

(
N

k

)
· pk(1− p)N−k

Take p = λ
N , λ > 0:(

N

k

)
· pk · (1− p)N−k =

N !

k!(N − k)!

(
λ

N

)k
·
(

1− λ

N

)N−k
=
λk

k!

N !

Nk(N − k)!

(
1− λ

N

)N−k
Keep k fixed and send N →∞
So:

P(k customers arrived)→ e−λ · λ
k

k!
as N →∞

This is exactly the Poisson distribution. So we showed that the B(N, p) with p = 1
N converges to the

Poisson with parameter λ.

Definition. (Ω,F ,P). A random variable X is a function X : Ω→ R satisfying

{ω : X(ω) ≤ x} ∈ F ∀x ∈ R

Notation. We will use the shorthand notation: suppose A ⊆ R

{X ∈ A} = {ω : X(ω) ∈ A}

Definition. Given A ∈ F , define the indicator of A to be

1(ω ∈ A) = 1A(ω) =

{
1 if ω ∈ A
0 otherwise

Because A ∈ F , 1A is a random variable.
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Definition. Suppose X is a random variable. Define the probability distribution function of X
to be

FX(x) = P(X ≤ x), FX : R→ [0, 1]

Definition. (X1, . . . , Xn) is called a random variable in Rn if

(X1, . . . , Xn) : Ω→ Rn

and ∀x1, . . . , xn ∈ R we have
{X1 ≤ x1, . . . , Xn ≤ xn} ∈ F

i.e.
{ω : X1(ω) ≤ x1, . . . , Xn(ω) ≤ xn}

Note. This definition is equivalent to saying that X1, . . . , Xn are all random variables (in R).
Indeed:

{X1 ≤ x1, . . . , Xn ≤ xn} = {X1 ≤ xn}
∈F

∩ · · · ∩ {Xn ≤ xn}
∈F

∈ F

Definition. A random variable X is called discrete if it takes values in a countable set.

Notation. Suppose X takes values in the countable set S. For every x ∈ S we write

px = P(X = x) = P({ω : X(ω) = x})

We call (px)x∈S the probability mass function of X (pmf) or the distribution of X.
If (px) is Bernoulli then we say that X is a Bernoulli r.v. or that X has the Bernoulli distribution.
If (px) is Geometric, similarly say X is a geometric r.v. etc.

Definition. Suppose that X1, . . . , Xn are discrete r.v.s taking values in S1, . . . , Sn. We say
X1, . . . , Xn are independent if

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) . . .P(Xn = xn) xn ∈ S1, . . . , xn ∈ Sn

2.2 Expectation

(Ω,F ,P). Assume Ω is finite or countable.
Let X : Ω→ R be a r.v. (discrete).
We say X is non-negative if X ≥ 0.

12



Definition (Expectation of X ≥ 0).

E[X] =
∑
ω

X(ω) · P({ω})

ΩX = {X(ω) : ω ∈ Ω}

So
Ω =

⋃
x∈ΩX

{X = x}

E[X] =
∑
ω

X(ω)P({ω}) =
∑
x∈ΩX

∑
ω∈{X=x}

X( ω
=x

) · P({ω})

E[X] =
∑
x∈ΩX

∑
ω∈{X=x}

x · P({ω}) =
∑
x∈ΩX

x · P(X = x)

So the expectation of X (mean of X, average value) is an average of the values taken by X with
weights given by P(X = x).
So

E[X] =
∑
x∈ΩX

x · px

Definition. Let X be a general r.v. (discrete). We define X+ = max(X, 0) and X− = max(−X, 0).
Then

X = X+ −X−
|X| = X+ +X−

We can define E[X+] and E[X−] since, they are both non-negative.
If at least one of E[X+] or E[X−] is finite, then we define

E[X] = E[X+]− E[X−]

If both are ∞ (E[X+] = E[X−] =∞), then we say the expectation of X is not defined. Whenever we
write E[X], it is assumed to be well-defined.
If E[|X|] <∞, we say X is integrable.
When E[X] is well defined, we have again that

E[X] =
∑
x∈ΩX

x · P(X = x)

13



2.2.1 Properties of Expectation

Claim. Suppose X1, X2, . . . are non-negative radom variables. Then

E

[∑
n

Xn

]
=
∑
n

E [Xn]

Proof. (Ω countable)

E

[∑
n

Xn

]
=
∑
ω

∑
n

Xn(ω)P({ω}) =
∑
n

∑
ω

Xn(ω)P({ω}) =
∑
n

E[Xn]

Claim. If g : R→ R, then define g(X) to be the random variable g(X)(ω) = g(X(ω))
Then E[g(X)] =

∑
x∈ΩX

g(x) · P(X = x)

Proof. Set Y = g(X). Then
E[Y ] =

∑
y∈ΩY

y · P(Y = y)

{Y = y} = {ω : Y (ω) = y} = {ω : g(X(ω)) = y} = {ω : X(ω) ∈ g−1({y})} = {X ∈ g−1({y})}

So

E[Y ] =
∑
y∈ΩY

y · P(X ∈ g−1({y}))

=
∑
y∈ΩY

y ·
∑

x∈g−1({y})

P(X = x)

=
∑
y∈ΩY

∑
x∈g−1({y})

g(x) · P(X = x)

=
∑
x∈ΩX

g(x) · P(X = x)

Claim. If X ≥ 0 and takes integer values, then

E[X] =

∞∑
k=1

P(X ≥ k) =

∞∑
k=0

P(X > k)

Proof. We can write since X takes ≥ 0 integer values

X =

∞∑
k=1

1(X ≥ k) =

∞∑
k=0

1(X > k) (*)

Taking E in (*) and using that E[1(A)] = P(A) and countable additivity for (1(X ≥ k))k gives
the statement.
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2.3 Another proof of the inclusion-exclusion formula
2.3.1 Properties of Indicator Random Variables

• 1(AC) = 1− 1(A)
• 1(A ∩B) = 1(A) · 1(B)
• 1(A ∪B) = 1− (1− 1(A))(1− 1(B))

More generally

1(A1 ∪ · · · ∪An) = 1−
n∏
i=1

(1− 1(Ai)) =

n∑
i=1

1(Ai)−
∑
i1<i2

1(Ai1 ∩Ai2) + · · ·+ (−1)n+11(A1 ∩ · · · ∩An)

Taking E of both sides we get

P(A1 ∪ · · · ∪An) =

n∑
i=1

P(Ai)−
∑
i1<i2

P(Ai1 ∩Ai2) + · · ·+ (−1)n+1P(A1 ∩ · · · ∩An)

2.4 Terminology

Definition. Let X be a r.v. and r ∈ N. We call E[Xr] as long as it is well-defined) the r-th moment
of X

Definition. The variance of X denoted Var(X) is defined to be

Var(X) = E[(X − E[X])2]

The variance is a measure of how concentrated X is around its expectation. The smaller the variance,
the more concentrated X is aroudn E[X].
We call

√
Var(X) the standard deviation of X

Properties:
• Var(X) ≥ 0 and if Var(X) = 0, then

P(X = E[X]) = 1

• c ∈ R, then Var(cX) = c2Var(X) and Var(X + c) = Var(X)
• Var(X) = E[X2]− (E[X])2

Proof. Just expand out, use properties of expectation

• Var(X) = min
c∈R

E[(X − c)2] and this min is achieved for c = E[X]

Proof. Just expand out RHS

15



Definition. Let X and Y be 2 random variables. Their covariance is defined

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

“It is a “measure” of how dependent X and Y are.”

Properties
(i)

Cov(X,Y ) = Cov(Y,X)

(ii)
Cov(X,X) = Var(X)

(iii)
Cov(X,Y ) = E[XY ]− E[X] · E[Y ]

Proof. Expand LHS

(iv) Let x ∈ R. Then
Cov(cX, Y ) = cCov(X,Y )

and
Cov((c+X), Y ) = Cov(X,Y )

(v)
Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

Proof. Expand out

(vi) For all c ∈ R, Cov(c,X) = 0
(vii) X,Y, Z are random variables, then

Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z)

More generally, for c1, c2, . . . , cn, d1, . . . , cn ∈ R and X1, . . . , Xn and Y1, . . . , YN r.v’s

Cov

(
n∑
i=1

ciXi,

n∑
i=1

diYi

)
=

n∑
i=1

n∑
j=1

cidjCov(Xi, Yj)

In particular

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj)

Remark. Recall that X and Y are indep, if for all x and y

P(X = x, Y = y) = P(X = x) · P(Y = y)

16



Claim. Let X and Y be 2 indep. r.v’s and let

f, g : R→ R

Then
E[f(X)g(Y )] = E[f(X)] · E[g(Y )]

Proof. Use remark,
∑

(x,y)

Equation. Suppose that X and Y are independent. Then

Cov(X,Y ) = 0, since Cov(X,Y ) = E[(X − E[X])(Y − E[Y ]) = 0

So if X and Y are independent, then

Var(X + Y ) = Var(X) + Var(Y )

Warning.
Cov(X,Y ) = 0 6=⇒ independence

2.5 Inequalities
2.5.1 Markov’s Inequality

Claim (Markov’s Inequality). Let X ≥ 0 be a random variable. Then ∀a > 0,

P(X ≥ a) ≤ E[X]

a

Proof. Observe that
X ≥ a · 1(X ≥ a)

Then take expectations

2.5.2 Chebyshev’s Inequality

Claim (Chebyshev’s Inequality). Let X be a r.v. with E[X] <∞. Then ∀a > 0

P(|X − E[X]| ≥ a) ≤ Var(X)

a2

Proof. Use Markov on the random variable Y = (X − E[X])2 and a2

17



2.5.3 Cauchy-Schwarz Inequality

Claim (Cauchy-Schwarz Inequality). Let X and Y be 2 r.v’s. Then

E[|XY |] ≤
√

E[X2]E[Y 2]

Proof. Suffices to prove it for X and Y with E[X2] <∞ and E[Y 2] <∞
Also enough to prove it for X,Y ≥ 0

XY ≤ 1

2
(X2 + Y 2) =⇒ E[XY ] ≤ 1

2
(E[X2] + E[Y 2]) <∞

Assume E[X2] > 0 and E[Y 2] > 0, otherwise result is trivial.
Let t ∈ R and consider

0 ≤ (X − tY )2 = X2 − 2tXY + t2Y 2

Take expectations and minimise f by taking t = E[XY ]/E[Y 2]. Sub in and result immediate

2.5.4 Cases of Equality

Note. Equality in C-S occurs when

E[(X − tY )2] = 0 for t =
E[XY ]

E[Y 2]

E[(X − tY )2] = 0 =⇒ P(X = tY ) = 1

2.5.5 Jensen’s Inequality

Definition. A function f : R→ R is called convex if ∀x, y ∈ R and for all t ∈ (0, 1)

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

18



Example.

x y

Claim (Jensen’s Inequality). Let X be a r.v. and let f be a convex function. Then

E[f(X)] ≥ f(E[X])

Proof. Let m ∈ R. Let x < m < y. Then m = tx + (1 − t)y for some t ∈ [0, 1]. Use the
definition of convex to get an inequality which leads to

f(m)− f(x)

m− x
≤ f(y)− f(m)

y −m

Then let
a = sup

x<m

f(m)− f(x)

m− x
and use above to get

f(x) ≥ a(x−m) + f(m) for all x

Set m = E[X] and apply last inequality to X then take expectation to get result

Note. A rule to remember the direction:

Var(X) = E[(X − E[X])2] ≥ 0

implies
E(X2) ≥ (E[X])2
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2.5.6 Cases of Equality

E[f(X)] = f(E[X]) = aE[X] + b

where b = f(E[X])− aE[X] so
E[f(X)− (aX + b)] = 0

but
f(X) ≥ aX + b

from before so this forces f(X) = aX + b
By assumption f(E[X]) = aE[X] + b and ∀x 6= E[X] f(x) > ax+ b
So this forces X = E[X] with probability 1

2.5.7 AM-GM Inequality

Claim (AM-GM Inequality). Let f be a convex function and let x1, . . . , xn ∈ R. Then

1

n

n∑
k=1

f(xk) ≥ f

(
1

n

n∑
k=1

xk

)

E[f(X)] ≥ f(E[X])

Proof. Define X to be the r.v. taking values {x1, . . . , xn} all with equal prob
Apply Jensen’s with f(x) = − log x

2.6 Conditional expectation

Note. Recall if B ∈ F with P(B) > 0, we defined

P(A|B) =
P(A ∩B)

P(B)

Definition. Let B ∈ F with P(B) > 0 and let X be a r.v.
We define

E[X|B] =
E[X · 1(B)]

P(B)
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2.6.1 Law of Total Expectation

Claim (Law of Total Expectation). Suppose X > 0 and let (Ωn) be a partition of Ω into disjoint
events, i.e.

Ω =
⋃
n

Ωn

Then
E[X] =

∑
n

E[X|Ωn] · P(Ωn)

Proof. Write
X = X · 1(Ω) =

∑
n

X · 1(Ωn)

and take expectations

2.6.2 Joint Distributions

Definition. Let X1, . . . , Xn be r.v.’s (discrete). Their joint distribution is defined to be

P(X1 = x1, . . . , Xn = xn) ∀x1 ∈ ΩX1 , . . . , xn ∈ ΩXn

P(X1 = x1) = P({X1 = x1} ∩
n⋃
i=2

⋃
Xi

{Xi = xi})) =
∑

X1,...,Xm

P(X1 = x1, . . . Xn = xn)

P(Xi = xi) =
∑

X1,...,Xi−1,Xi+1,...,Xn

P(X1 = x1, . . . , Xn = xn)

We call (P(Xi = xi))xi the marginal distribution of Xi

Definition. Let X and Y be 2 r.v.’s
The conditional distribution of X given Y = y (y ∈ Ωy) is defined to be

P(X = x|Y = y), x ∈ ΩX

P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)

Equation.
P(X = x) =

∑
y

P(X = x, Y = y) =
∑
y

P(X = x|Y = y)P(Y = y)

(law of total probability)
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2.6.3 Distribution of the sum of independent r.v.’s

Definition. Let X and Y be 2 independent r.v.’s (discrete)

P(X + Y = z) =
∑
y

P(X = z − y) · P(Y = y)

This last sum is called the convolution of the distribution of X and Y
Similarly,

P(X + Y = z) =
∑
x

P(X = x)P(Y = z − x)

Example. If X ∼ Poi(λ) and Y ∼ Poi(µ) independent then X + Y ∼ Poi(λ+ µ)

Definition. Let X and Y be 2 discrete r.v.’s. The conditional expectation of X given Y = y is

E[X|Y = y] =
E[X · 1(Y = y)]

P(Y = y)

E[X|Y = y] =
∑
x

xP(X = x|Y = y)

Note. We observe that for very y ∈ ΩY , E[X|Y = y] is a function of y only.
We set

g(y) = E[X|Y = y]

Definition. We define the conditional expectation for X given Y and write it as E[X|Y ] for the
random variable g(Y )
We emphasise that E[X|Y ] is a random variable and it depends only on Y , because it is a function
only of Y

Equation.

E[X|Y ] =
∑
y

E[X|Y = y] · 1(Y = y)
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2.6.4 Properties of Conditional Expectation

Claim.
•

∀c ∈ R E[cX|Y ] = c · E[X|Y ] and E[c|Y ] = c

• X1, . . . , Xn r.v.’s, then

E

[
n∑
i=1

Xi|Y

]
=

n∑
i=1

E[Xi|Y ]

•
E[E[X|Y ]] = E[X]

Proof. only prove third:

E[X|Y ] =
∑
y

1(Y = y)E[X|Y = y]

Taking expectation of both sides gives result

Proof (Another way).∑
y

E[X|Y = y] · P(Y = y) =
∑
x

∑
y

x · P(X = x|Y = y) · P(Y = y) = E[X] = 0

Claim. • Let X and Y be 2 independent r.v.’s. Then

E[X|Y ] = E[X]

Proof.

E[X|Y ] =
∑
y

1(Y = y) · E[X|Y = y]

Expanding the expectation gives result

Claim. Suppose Y and Z are independent r.v.’s. Then

E[E[X|Y ]|Z] = E[X]

Proof. We have E[X|Y ] = g(Y ) i.e. E[X|Y ] is a function only of Y . If Y and Z are indep.,
then f(Y ) is also independent of Z for any function f . (can show directly)
So g(Y ) is independent of Z. By the a previous property, we get

E[g(Y )|Z] = E[g(Y )] = E[E[X|Y ]] = E[X]
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Claim. Suppose h : R→ R is a function. Then

E[h(Y ) ·X|Y ] = h(Y ) · E[X|Y ]

Proof.

E[h(Y ) ·X|Y = y] = E[h(y) ·X|Y = y]

= h(y) · E[X|Y = y]

So
E[h(Y ) ·X|Y ] = h(Y ) · E[X|Y ]

Corollary.
E[E[X|Y ]|Y ] = E[X|Y ]

and
E[X|X] = X

2.7 Random Walks

Definition. A random/ stochastic process is a sequence of random variables (Xn)n∈N

Definition. A random walk is a random process that can be expressed in the following way

Xn = x+ Y1 + · · ·+ Yn

where (Yi) are independent and identically distributed (iid) r.v.’s and x is a deterministic number
(fixed).

Method. Let’s focus on the SRW (simple random walk) on Z which is defined by taking

P(Yi = +1) = p and P(Yi = −1) = q = 1− p

Z
i i+ 1i− 1

q p

We can think of Xn as the fortune of a gambler who bets 1 at every step and either receives it back
doubled it w.p. p or loses it with prob. q

i i+ 1i− 1

q p

a0 x

Suppose the gambler starts with £x at time 0. What is the prob. he reaches a before going bankrupt?
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Notation. We write Px for the probability measure P(·|X0 = x) i.e.

∀A ∈ F Px(A) = P(A|X0 = x)

Method. Define
h(x) = Px((Xn) hits a before hitting 0)

By the law of total probability, we have

h(x) =Px((Xn) hits a before hitting 0|Y1 = +1) · Px(Y1 = +1)

+ Px((Xn) hits a before hitting 0|Y1 = −1) · Px(Y1 = −1)

h(x) = p · h(x+ 1) + q · h(x− 1) 0 < x < a

h(0) = 0) while h(a) = 1

• Case p = q = 1
2 :

h(x)− h(x+ 1) = h(x− 1)− h(x)

In this case,
h(x) =

x

a

• p 6= q:
h(x) = ph(x+ 1) + qh(x− 1)

Solving this recurrence relation with boundary conditions yields:

Equation.

h(x) =

(
q
p

)x
− 1(

q
p

)a
− 1

This is the Gambler’s Ruin estimate.
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2.7.1 Expected time to absorption

Equation. Define
T = min{n ≥ 0 : Xn ∈ {0, a}}

i.e. T is the first time X hits either 0 or a.
Want to find

Ex[T ] = τx

Conditioning on the first step and using the law of total expectation yields

τx = 1 + p · τx+1 + q · τx−1 0 < x < a

τ0 = τa = 0

• Case p = 1
2 . Guessing quadratic solution and applying boundary conditions gives:

τx = x(a− x)

• Case p 6= 1
2 . Guessing Cx particular integral and solving recurrence relation gives:

τx =
1

q − p
x− q

q − p

(
q
p

)x
− 1(

q
p

)a
− 1

2.8 Probability Generating Functions

Definition. Let X be a r.v. with values in N. Let

pr = P(X = r), r ∈ N

be its prob. mass function. The pgf of X is defined to be

p(z) =

∞∑
r=0

pr · zr = E[zX ] for |z| ≤ 1

When |z| ≤ 1, the pgf converges absolutely (trivial check)

Theorem. The pgf uniquely determines the distribution of X

Proof. Suppose (pr) and (qr) are 2 prob. mass functions with

∞∑
r=0

prz
r =

∞∑
r=0

qrz
r ∀|z| ≤ 1

Show pr = qr ∀r by applying induction: cancelling same terms, dividing by power of z and
taking limit to zero

26



Theorem. we have
lim
z→1

p′(z) = p′(1−) = E[X]

Proof. Assume first that E[X] <∞.
Let 0 < z < 1. We can differentiate p(z) term by term and get

p′(z) =

∞∑
r=0

rprz
r−1 ≤

∞∑
r=1

rpr = E[X]

(because z < 1)
Then just do analysis, considering the following:
Let ε > 0 and N be large enough s.t.

N∑
r=0

rpr ≥ E[X]− ε

Also

p′(z) ≥
N∑
r=1

rprz
r−1 (0 < z < 1)

So

lim
z→1

p′(z) ≥
N∑
r=1

rpr ≥ E[X]− ε

Follow appropriate similar reasoning for E[X] =∞.

Note. In exactly the same way one can prove the following:

Theorem.
p′′(1−) = lim

z→1
p′′(z) = E[X(X − 1)]

∀k > 0, p(k)(1−) = lim
z→1

p(k)(z) = E[X(X − 1) . . . (X − k + 1)]

In particular
Var(X) = p′′(1−) + p′(1−)− (p′(1−))2

Moreover

P(X = n) =
1

n!

(
d

dz

)n∣∣∣∣
z=0

p(z)
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Equation. Suppose that X1, . . . Xn are independent r.v.’s with pgf’s q1, . . . , qn respectively, i.e.

qi = E[zXi ]

Let
p(z) = E[zX1+···+Xn ]

So
p(z) = E[zX1 · zX2 . . . zXn ] = E[zX1 ] . . .E[zXn ] = q1(z) . . . qn(z)

If Xi’s are iid, then
p(z) = (q(z))n

Example.
(i)

X ∼ Bin(n, p)

p(z) = (pz + 1− p)n

(ii) Let X ∼ Bin(n, p) and Y ∼ Bin(m, p) and X ⊥⊥ Y

E[zX+Y ] = E[zX ] · E[zY ] = (pz + 1− p)n · (pz + 1− p)m = (pz + 1− p)n+m

So
X + Y ∼ Bin(n+m, p)

(iii) Let X ∼ Geo(p)

E[zX ] =
p

1− z(1− p)
(iv) Let X ∼ Poi(λ)

E[zX ] = eλ(z−1)

Let X ∼ Poi(λ), Y ∼ Poi(λ) and X ⊥⊥ Y

E[zX+Y ] = eλ(z−1) · eµ(z−1) = e(λ+µ)(z−1) =⇒ X + Y ∼ Poi(λ+ µ)
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2.9 Sum of a Random Number of r.v.’s

Method. Let X1, X2, . . . be iid and let N be an indep r.v. taking values in N.
Define

Sn = X1 + · · ·+Xn ∀n ≥ 1

Then
SN = X1 + · · ·+XN

means ∀ω ∈ Ω,

SN (ω) = X1(ω) + · · ·+XN(ω)(ω) =

N(ω)∑
i=1

Xi(ω)

Let q be the pgf of N and p the pgf of X1.
Then

r(z) = E[zSN ]

= E[zX1+···+XN ]

=
∑
n

E[zX1+···+XN · 1(N = n)]

= q(p(z))

by working through the algebra

2.9.1 Another Proof Using Conditional Expectation

Method.

r(z) = E[zX1+···+XN ]

= E[E[zX1+···+XN |N ]]

which leads to
r(z) = E

[
(p(z))N

]
= q(p(z))

So
E[SN ] = lim

z→1
r′(z) = r′(1−)

r′(z) = q′(p(z)) · p′(z)

Subbing in z = 1− yields

Equation.
E[SN ] = E[N ] · E[X1]

Similarly
Var(SN ) = E[N ] ·Var(X1) + Var(N) · (E[X1])

2
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2.10 Branching Processes

From Bienaguie/ Gralton-Watson, 1874.

Method. (Xn : n > 0) a random process.

Xn = # of individuals in generation n

X0 = 1

The individual in generation 0 produces a random number of offspring with distribution

gk = P(X1 = k)︸ ︷︷ ︸
# children of 1st individual

, k = 0, 1, 2, . . .

Every individual in gen. 1 produces an indep. number of offspring with the same distribution.
Let Yk,n : k ≥ 1, n ≥ 0) be an iid sequence with distribution (gk)k∈N
Yk,n is the number of offspring of k-th indiv. in gen. n

Xn+1 =

{
Y1,n + · · ·+ YXn,n : when Xn ≥ 1

0 otherwise

Theorem.
E[Xn] = (E[X1])

n ∀n ≥ 1

Proof.
E[Xn+1] = E[E[Xn+1|Xn]]

E[Xn+1|Xn = m] = m · E[X1]

(trivial to show)
So

E[Xn+1|Xn] = Xn · E[X1]

Taking expectation and iterating we get

E[Xn+1] = (E[X1])
n+1
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Theorem. Set
G(z) = E[zX1 ]

and
Gn(z) = E[zXn ]

Then

Gn+1(z) = G(Gn(z))

= G(G(. . . (G(z)) . . . ))

= Gn(G(z))

Proof. Condition on Xn as one would expect and we get:

E[E[zXn+1 |Xn]] = E[(G(z))Xn ] = Gn(G(z))

2.10.1 Extinction Probability

Method.
P(Xn = 0 for some n ≥ 1) = extinction prob. = q

qn = P(Xn = 0)

An = {Xn = 0} ⊆ {Xn+1 = 0} = An+1

Then (An) is an increasing sequence of events.
So by continuity of prob meas.

P(An)→ P

(⋃
n

An

)
as n→∞

But ⋃
n

An = {Xn = 0 for some n ≥ 1}

Therefore we get qn → q as n→∞

Claim.
qn+1 = G(qn) (G(z) = E[zX1 ]) and also q = G(q)

Proof.
qn+1 = P(Xn+1 = 0) = Gn+1(0) = G(Gn(0)) = G(qn)

Since G is continuous, taking the limit as n→∞ and using qn → q, we get

G(q) = q
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Claim (same as previous, different proof).

qn+1 = G(qn) (G(z) = E[zX1 ]) and also q = G(q)

Proof (Alternative). Conditional on X1 = m, we get m independent branching processes.
So we can write

Xn+1 = X(1)
n + · · ·+X(m)

n

where
(
X

(j)
i

)
are iid branching processes all with the same offspring distribution.

So

qn+1 = P(Xn+1 = 0) =
∑
m

P(Xn+1 = 0|X1 = m) · P(X1 = m)

=
∑
m

P(X(1)
n = 0, . . . , X(m)

n = 0) · P(X1 = m)

=
∑
m

P(X(1)
n = 0︸ ︷︷ ︸
qn

)

m

· P(X1 = m)

= G(qn)

Remark. So we have proved
qn+1 = G(qn) and q = G(q)

1

1

G(0)

q

G(0)

the tangent to the graph of G at 1 in 1st has slope < 1.

The slope = G′(1−) = E[X1] < 1

In 2nd, the slope is
G′(1−) = E[X1]] > 1

and we see that q < 1
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Theorem. Assume P(X1 = 1) < 1. Then the extinction probability is the minimal non-negative
solution to the equation

t = G(t)

We also have
q < 1 iff E[X1] > 1

Proof (of minimality). Let t be the smallest non-negative solution to x = G(x). We will show
that q = t.
We are going to prove by induction that

qn ≤ t ∀n

Then taking the limit as n→∞ will give us q ≤ t.
Since we know that q is a solution, this will imply q = t.

q0 = P(X0 = 0) ≤ t

Suppose qn ≤ t
qn+1 = G(qn)

G is an increasing function on [0, 1], and since qn ≤ t, we get

qn+1 = G(qn) ≤ G(t) = t

Proof (2nd part). Consider the function H(z) = G(z)− z
Have cases P(X1 ≤ 1) = 1 or P(X1 ≤ 1) < 1. The first is trivial. For the second case, think
about the diagrams previous and how to use Rolle’s theorem on H to show what we desire.

33



3 Continuous Random Variables

3.1 Definitions and Properties

(Ω,F ,P)
X : Ω→ R s.t. ∀x ∈ R

{X ≤ x} = {ω : X(ω) ≤ x} ∈ F

The probability distribution function is defined to be

F : R→ [0, 1] with F (x) = P(X ≤ x)
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Properties of F
(i) if x < y then F (x) ≤ F (y)

Proof.
{X ≤ x} ⊆ {X ≤ y}

(ii)
∀a < b, a, b ∈ R P(a < X ≤ b) = F (b)− F (a)

Proof.

P(a < X ≤ b) = P({a > X} ∩ {X ≤ b})
= P(X ≤ b)− P({X ≤ b} ∩ {X ≤ a})

(iii) F is a right continuous function and left limits exists always

F (x−) = lim
y→x

F (y) ≤ F (x)

Proof. NTP
lim
n→∞

F

(
x+

1

n

)
= F (x)

Define
An = {x < X ≤ x+

1

n
}

and use that
⋂
nAn = ∅.

Left limits exist by the increasing property of F

(iv) F (x−) = P(X < x)

Proof.
F (x−) = lim

n→∞
F

(
x− 1

n

)
Consider

Bn =

{
X ≤ x− 1

n

}
then (Bn) increasing and

⋃
nBn = {X < x}

P(Bn)→ P(X < n) =⇒ F (x−) = P(X < x)

(v)
lim
x→∞

F (x) = 1

and
lim

x→−∞
F (x) = 0

Proof. Exercise
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Remark. For a discrete variable, F (x) = P(X ≤ x)

x
x1 x2 x3

F is a step function (right continuous with left limits)

Definition. A r.v. X is called continuous if F is a continuous function, which means that

F (x) = F (x−) ∀x =⇒ P(X ≤ x) = P(X < x) ∀x

In other words, P(X = x) = 0 ∀x ∈ R

Equation.
F ′(x) = f(x)

F differentiable so say it is absolutely continuous
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3.2 Expectation

Definition. Let X ≥ 0 with density f . We define its expectation

E[X] =

∫ ∞
0

xf(x) dx

Suppose g > 0. Then

E[g(X)] =

∫ ∞
−∞

g(x)f(x) dx

for any variable X
Let X be a general r.v.
Define

X+ = max(X, 0)

and
X− = max(−X, 0)

and if at least one of E[X+] or E[X−] is finite, then we set

E[X] = E[X+]− E[X−] =

∫ ∞
−∞

xf(x) dx

since
E[X+] =

∫ ∞
0

xf(x) dx

and

E[X−] =

∫ 0

−∞
(−x)f(x) dx

Easy to check that the expectation is again a linear function
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Claim. Let X ≥ 0. Then

E[X] =

∫ ∞
0

P(X ≥ x) dx

Proof (1st).

E[X] =

∫ ∞
0

xf(x) dx

=

∫ ∞
0

(∫ x

0

1 dy

)
f(x) dx

=

∫ ∞
0

dy

∫ ∞
y

f(x) dx

=

∫ ∞
0

dy(1− F (y))

=

∫ ∞
0

P(X ≥ y) dy

Proof (2nd).

∀ω, X(ω) =

∫ ∞
0

1(X(ω) ≥ x) dx

Taking expectation, we get

E[X] =

∫ ∞
0

P(X ≥ x) dx

Example. Uniform distribution is defined as you expect, write X ∼ U [a, b]

Example. Exponential distribution

f(x) = λe−λx, λ > 0, x > 0, X ∼ Exp(λ)

F (x) = 1− e−λx

and
E[X] =

1

λ
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3.3 Exponential as a limit of geometrics

Equation. Let T ∼ Exp(λ) and set Tn = bnT c ∀n ∈ N

P(Tn ≥ k) = P
(
T ≥ k

n

)
= e−λk/n =

(
e−λ/n

)k
So Tn is a geometric of parameter

pn = 1− e−λ/n ∼ λ

n
as n→∞

and
Tn
n
→ T as n→∞

So the exponential is the limit of a rescaled geometric

Remark. Memoryless property:

s, t > 0 P(T > t+ s|T > s) = e−λt = P(T > t)

T ∼ Exp(λ)

Prop. Let T be a positive r.v. not identically 0 or ∞.
Then T has the memoryless property iff T is exponential

Proof. =⇒ :
∀s, t P(T > t+ s) = P(T > s)P(T > t)

Sub t = 1, then t = m/n. Then let P(t = 1) = e−λ so we have proved that

g(t) = P(T > t) = e−λt ∀t ∈ Q+

And for t ∈ R+. We can bound r ≤ t < s with r, s ∈ Q+ and |r − s| ≤ ε then take limit

Theorem. Let X be a continuous r.v. with density f . Let g be a continuous function which is either
strictly increasing or strictly decreasing and g−1 is differentiable.
Then g(X) is a continuous r.v. with density

f(g−1(x)) ·
∣∣∣∣ d

dx
g−1(x)

∣∣∣∣
Proof. Treat increasing and decreasing cases separately
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Example. Normal distribution:
−∞ < µ <∞, σ > 0 are our 2 parameters.

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
x ∈ R

Can show expectation and variance are what we expect.
When X has density f , we write X ∼ N(µ, σ2)
(X is normal with parameters µ and σ2)
When µ = 0 and σ2 = 1„ we call N(0, 1) the standard normal.
If X ∼ N(0, 1), we write

Φ(x) =

∫ x

−∞

1√
2π
e−u

2/2 du

and
ϕ(x) = Φ′(x) =

1√
2π
e−x

2/2

Have
ϕ(x) = ϕ(−x) =⇒ Φ(x) + Φ(−x) = 1 =⇒ P(X ≤ x) = 1− P(X ≤ −x)

Method. Let a 6= 0, b ∈ R. Set g(x) = ax+ b
Define Y = g(X). We can show that Y ∼ N(aµ+ b, a2σ2) by considering density of Y
σ is the ‘standard deviation’.
Suppose X ∼ N(µ, σ2), then

X − µ
σ

∼ N(0, 1)

3.4 Multivariate Density Functions

Equation. X = (X1, . . . , Xn) ∈ Rn r.v.
We say that X has density f if

P(X1 ≤ x1, . . . , Xn ≤ xn)︸ ︷︷ ︸
=F (X1,...,Xn)

=

∫ X1

−∞
· · ·
∫ Xm

−∞
f(y1, . . . , yn) dy1 . . . dyn

Then
f(X1, . . . , Xn) =

∂n

∂x1 . . . ∂xn
F (x1, . . . , xn)

This generalises: “∀” B ⊆ Rn

P((X1, . . . , Xn) ∈ B) =

∫
B

f(y1, . . . , yn) dy1 . . . dyn

Definition. We say that X1, . . . , Xn are independent if ∀x1, . . . , xn,

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn)
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Theorem. Let X = (X1, . . . , Xn) have density f
(i) Suppose X1, . . . , Xn are independent with densities f1, . . . , fn. Then

f(x1, . . . , xn) = f1(x1) . . . fn(xn) (*)

(ii) Suppose that f factorises as in (*) for some non-negative functions (fi). Then X1, . . . , Xn are
independent and have densities proportional to the fi’s

Proof.
(i) Apply definitions
(ii) Let B1, . . . , Bn ⊆ R then

P(X1 ∈ B1, . . . , Xn ∈ Bn) =

∫
B1

· · ·
∫
Bn

f1(x1) . . . fn(xn) dx1 . . . dxn

Factorise this appropriately and let Bj = R for j 6= i to get:

P(Xi ∈ Bi) =

∫
Bi
fi(y) dy∫

R fi(y) dy

This shows that the density of Xi is

fi∫
R fi(y) dy

Then we can check independence

Equation. Suppose (X1, . . . , Xn) has density f

fX1(x1) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xn) dx2 . . . dxn

3.5 Density of the Sum of Independent r.v.’s

Equation. Let X and Y be 2 independent r.v.’s with densities fX and fY respectively.

P(X + Y ≤ z) =

∫ z

−∞
dy

(∫ ∞
−∞

fY (y − x)fX(x) dx

)
So the density of X + Y is ∫ ∞

−∞
fY (y − x)fX(x) dx

We call this function the convolution of fX and fY

Definition. f, g: 2 densities

f ∗ g(x) =

∫ ∞
−∞

f(x− y)g(y) dy = convolution of f and g
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Moral. We can non-rigorously show this

P(X + Y ≤ z) =

∫ ∞
−∞

P(X + Y ≤ z, Y ∈ dy)

=

∫ ∞
−∞

P(X ≤ z − y)P(Y ∈ dy)

=

∫ ∞
∞

FX(z − y)fY (y) dy

d

dz
P(X + Y ≤ z) =

∫ ∞
−∞

d

dz
FX(z − y)fY (y) dy =

∫ ∞
−∞

fX(z − y)FY (y) dy

So the density of X + Y is ∫ ∞
−∞

fX(z − y)FY (y) dy

3.6 Conditional Density

Definition. Let X and Y be continuous variables with joint density fX,Y and marginal densities fX
and fY . Then the conditional density of X given Y = y is defined

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

3.7 Law of Total Probability

Equation.

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ ∞
−∞

fX|Y (x|y)fY (y) dy

Remark. Want to define E[X|Y ] = g(Y ) for some function g.
Define

g(y) =

∫ ∞
−∞

xfX|Y (x|y) dx

Set E[X|Y ] = g(Y ) = conditional expectation of X given Y .
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3.8 Transformation of a multidimensional r.v.

Theorem. Let X be a r.v. with values in D ⊆ Rd and with density fX .
Let g be a bijection from D to g(D) which has a continuous derivative on D and

det g′(x) 6= 0 ∀x ∈ D

Then the r.v. Y = g(X) has density

fY (y) = fX(x) · |J |

where x = g−1(y) and J is the determinant of the Jacobian

det Jij = det

(
∂xi
∂yj

)

Proof. We do not prove it here.

3.9 Order Statistics for a Random Sample

Equation. Let X1, . . . , Xn be iid with distr. function F and density f .
Put them in increasing order

X(1) ≤ X(2) ≤ · · · ≤ X(n)

and set
Yi = X(i)

Then (Yi) are the order statistics. We can show:

P(Yn ≤ x) = (F (x))n

fYn
(x) = n(F (x))n−1 · f(x)

We can show the density of Y1, . . . , Yn is:

fY1,...,Yn
(x1, . . . , xn) =

{
n!f(x1) . . . f(xn) when X1 < X2 < . . .Xn

0 otherwise

Equation. If X1, . . . , Xn are independent with Xi ∼ Exp(λi) then

min(X1, . . . , Xn) ∼ Exp

(
n∑
i=1

λi

)

Example. Let X1, . . . , Xn be iid Exp(λ) and let Yi be their order statistics

Z1 = Y1, Z2 = Y2 − Y1, . . . , Zn = Yn − Yn−1

So Z1, . . . , Zn are independent and Zi ∼ Exp(λ(n − i + 1)). We can show this by considering the
bijection with the values of Yi and applying a previous equation.
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3.10 Moment Generating Functions (mgfs)

Definition. Let X be a r.v. with density f . The mgf of X is defined to be

m(θ) = E
[
eθX

]
=

∫ ∞
−∞

eθxf(x) dx

whenever this integral is finite
m(0) = 1

Theorem. The mgf uniquely determines the distribution of a r.v. provided it is defined for an open
interval of values of θ.

Theorem. Suppose the mgf is defined for an open interval of values of θ. Then

m(r)(0) =
dr

dθr
m(θ)|θ=0 = E[Xr]

Example. Gamma distribution:

f(x) =
e−λxλnxn−1

(n− 1)!
, λ > 0, n ∈ N, x ≥ 0

We denote X with density f as X ∼ Γ(n, λ)
Check f is a density by showing integral over R is 1 (can use reduction In = In−1)

m(θ) =

(
λ

λ− θ

)n
for λ > 0

Claim. Suppose that X1, . . . , Xn are independent r.v’s. Then

m(θ) = E
[
eθ(X1+···+Xn)

]
=

n∏
i=1

E[eθXi ]

Example. Let X ∼ Γ(n, λ) and Y ∼ Γ(m,λ) and X ⊥⊥ Y . Then we can show

m(θ) =

(
λ

λ− θ

)n+m

for θ < λ

So by the uniqueness theorem we get X + Y ∼ Γ(n+m,λ).

Equation. In particular, this implies that if X1, . . . , Xn are iid Exp(1) (= Γ(1, λ)) then

X1 + · · ·+Xn ∼ Γ(n, λ)
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Remark. One could also consider Γ(α, λ) (α > 0) by replacing (n− 1)! with

Γ(α) =

∫ ∞
0

e−x · xα−1 dx

Example. Normal distribution. Let X ∼ N(µ, σ2)

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
x ∈ R

We can show that
m(θ) = eθµ+θ2σ2/2

by rewriting the integral in the form of constant times integral over a normal distribution.
If X ∼ N(µ, σ2), then aX + b ∼ N(aµ+ b, a2σ2)
So

E[eθ(aX+b)] = eθ(aµ+b)+θ2a2σ2/2

Suppose X ∼ N(µ, σ2) and Y ∼ N(µ, τ2) and X ⊥⊥ Y
Then X + Y ∼ N(µ+ ν, σ2 + τ2) (we can show this by considering the mgfs)

Example. Cauchy distribution

f(x) =
1

π(1 + x2)
x ∈ R

m(θ) =∞ ∀θ 6= 0, (m(0) = 1)

Moral. Suppose X ∼ f . Then X, 2X, 3X, . . . all have the same mgf.
However they do not have the same distribution.
So assumption on m(θ) being finite for an open interval of values of θ is essential

3.11 Multivariate Moment Generating Function

Definition. Let X = (X1, . . . , Xn) be a r.v. with values in Rn. Then the mgf of X is defined to be

m(θ) = E[eθ
TX ] = E[eθ1X1+···+θnXn ]

where
θ = (θ1, . . . , θn)T
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Theorem. In this case, provided mgf is finite for a range for values of θ, it uniquely determines the
distribution of X. Also

∂rm

∂θri

∣∣∣∣
θ=0

= E[Xr
i ]

∂r+sm

∂θri ∂θ
s
j

∣∣∣∣∣
θ=0

= E[Xr
iX

s
j ]

m(θ) =

n∏
i=1

E[eθiXi ] iff X1, . . . , Xn are indep.

Definition. Let (Xn : n ∈ N) be a sequence of r.v.’s and let X be another r.v.
We say that Xn converges to X in distribution and write Xn

d−→ X, if

FXn
(x)→ FX(x) ∀x ∈ R that are continuity points of FX

Theorem (Continuity Property for mgf’s). Let X be a r.v. with m(θ) <∞ for some θ 6= 0. suppose
that

mn(θ)→ m(θ) ∀θ ∈ R where mn(θ) = E[eθXn ] and m(θ) = E[eθX ]

Then Xn converges to X in distribution

Note. This is just saying if the mgf’s of the Xn converge to some mgf then Xn
d−→ X

3.12 Limit Theorems for Sums of iid r.v.’s

Theorem (Weak Law of Large Numbers). Let (Xn : n ∈ R) be a sequence of iid r.v.’s with µ =
E[X1] <∞. Set

Sn = X1 + · · ·+Xn

Then ∀ε > 0

P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
→ 0 as n→∞

Proof (assuming σ2 <∞ where (σ2 = Var(X1)).

P
(∣∣∣∣Snn − µ

∣∣∣∣ > ε

)
= P(|Sn − nµ| > εn)

then apply Chebyshev’s inequality

Definition. A sequence (Xn) converges to X in probability and we write

Xn
P−→ X as n→∞

if ε > 0:
P(|Xn −X| > ε)→ 0 as n→∞
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Definition. We say (Xn) converges to X with probability 1 or ‘almost surely (a.s.)’ if

P
(

lim
n→∞

Xn = X
)

= 1

Note.
P(∀ε > 0 ∃n0 : |Xn −X| < ε ∀n > n0) = 1

Intuitively, ‘pretty much all’ events have |Xn(ω)−X(ω)| < ε happening after a certain point.
E.g. We can take Xn to be 1 if we have had a head after n tosses with our sample space being
the set of sequences of tosses. X(ω) = 1.

Claim. Suppose Xn → 0 almost surely as n→∞. Then Xn
P−→ 0 as n→∞

Proof. NTS:
∀ε > 0 P(|Xn| > ε)→ 0 as n→∞

We do this by considering

An =

∞⋂
m=n

{|Xm| ≤ ε}

and then considering
⋃
An

Theorem (Strong law of large numbers). Let (Xn)n∈N be an iid sequence of r.v.’s with µ = E[X1] <
∞.
Then setting

SN = X1 + · · ·+Xn

we have
Sn
n
→ µ as n→∞ a.s.(

P
(
Sn
n
→ µ as n→∞

)
= 1

)

Proof. non-examinable

Equation. Suppose E[X1] = µ and Var(X1) = σ2 <∞

Var
(
Sn
n
− µ

)
=
σ2

n

Sn

n − µ√
Var

(
Sn

n − µ
) =

Sn

n − µ
σ√
n

=
Sn − nµ
σ
√
n
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3.13 Central limit theorem

Theorem. Let (Xn)n∈N be an iid sequence of rv.’s with E[X1] = µ and Var(X1) = σ2. Set

Sn = X1 + · · ·+Xn

Then

∀x ∈ R, P
(
Sn − nµ
σ
√
n
≤ x

)
→ Φ(x) =

∫ x

−∞

e−y
2/2

√
2π

dy as n→∞

In other words,
Sn − nµ
σ
√
n

n→∞−−−−→ Z

where Z ∼ N(0, 1)
CLT says that for n large enough:

Sn − nµ
σ
√
n
≈ Z Z ∼ N(0, 1)

=⇒ Sn ≈ nµ+ σ
√
nZ ∼ N(nµ, σ2n) for n large

Proof. Consider Yi = (Xi − µ)/σ. Then E[Y1] = 0 and Var(Yi) = 1.
It suffices to prove the CLT when

Sn = X1 + · · ·+Xn with E[Xi] = 0 and Var(Xi) = 1

Assume further that ∃δ > 0 s.t.

E[eδX1 ] <∞ and E[e−δX1 ] <∞

m(θ) = E
[
eθX1

]
= E

[
1 + θX1 +

θ2X2
1

2!
+

∞∑
k=3

θkXk
1

k!

]
Bound the series appropriately to show that it is o(|θ|2) by showing it is O(|θ|3)
Then

m

(
θ√
n

)
= 1 +

θ2

2n
+ o

(
|θ|2

n

)
and hence (

m

(
θ√
n

))n
→ eθ

2/2 as n→∞
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3.14 Applications

Example. Normal approximation to the Binomial distribution:
Let Sn ∼ Bin(n, p)

Sn =

n∑
i=1

Xi, (Xi) iid ∼ Ber(p) E[Sn] = np,Var(Sn) = np(1− p)

and apply CLT to get
Sn ≈ N(np, np(1− p)) for n large

Bin
(
n,
λ

n

)
→ Poi(λ) λ > 0

Example. Normal approximation to the Poisson distribution:
Let Sn ∼ Poi(n).

Sn =
n∑
i=1

Xi, (Xi) iid ∼ Poi(1)

Sn − n√
n

d−→ N(0, 1) as n→∞

3.15 Sampling Error via the CLT

Example. Pick N individuals at random. Let

p̂N =
SN
N

where SN is the number of yes voters.
How large should N be so that

|p̂N − p| ≤
4

100
w.p. ≥ 0.99?

Apply CLT to get an approximate normal for SN and use that
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3.16 Bertrand’s Paradox

Example.

A

B

r

Draw a chord at random.
What is the probability it has length ≤ r?

Different interpretations of random lead to different answers

3.17 Multidimensional Gaussian r.v.’s

Definition. A r.v. X with values in R is called Gaussian/ normal if

X = µ+ σZ, µ ∈ R, σ ∈ [0,∞] and Z ∼ N(0, 1)

The density of X is

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, x ∈ R

X ∼ N(µ, σ2)

Definition. Let X = (X1, . . . , Xn)T with values in Rn. Then X is a Gaussian vector or is just
called Gaussian if ∀u = (u1, . . . , un)T ∈ Rn

uTX =

n∑
i=1

uiXi is a Gaussian r.v. in R

Example. Suppose X is Gaussian in Rn. Suppose A is an m× n matrix and b ∈ Rm. Then AX + b
is also Gaussian in Rm.

Proof. Work with definition and set v = ATu
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Definition.

µ = E[X] =

E[X1]
...

E[Xn]

 µi = E[Xi]

V = Var(X) = E[(X − µ)
n×1

·(X − µ)T

1×n
] =


. . .

...
E[(Xi − µi)(Xj − µj)]

...
. . .

 =


. . .

...
Cov(Xi, Xj)]

...
. . .


Vij = Cov(Xi, Xj)

Equation. We can show that:
E[uTX] = uTµ

Var(uTX) = uTV u

so uTX ∼ N(uTµ, uTV u)

Claim. V is a non-negative definite matrix (∀u ∈ Rn, uTV u ≥ 0)

Proof. Let u ∈ Rn. Then
Var(uTX) = uTV u

Since Var(uTX) ≥ 0, we have
uTV u ≥ 0

Method. Finding mgf of X:

m(λ) = E[eλ
TX ] ∀λ ∈ Rn, λ = (λ1, . . . , λn)T

We know
λTX ∼ N(λTµ, λTV λ)

So m(λ) is characterised by µ and V . Since the mgf uniquely characterises the distribution, we see
that a Gaussian vector is uniquely characterised by its mean µ and variance V .

m(λ) = E[eλ
TX ] = eλ

Tµ+λTV λ/2

In this case we write X ∼ N(µ, V )

51



Claim. Let Z1, . . . , Zn iid N(0, 1) r.v.’s .
Set Z = (Z1, . . . , Zn)T . Then Z is a Gaussian vector.

Proof. We can show that uTZ ∼ N(0, |u|2) by considering the moment generating of Z.

E[Z] = 0 Var(Z) = In =

1
. . .

1


So Z ∼ N(0, In)

Method. Let µ ∈ Rn and V a non-negative definite matrix.
We want to construct a Gaussian vector with mean µ and variance V using Z.
Let V = UTDU where D diagonal (possible as V symmetric). Then we set σ = UT

√
DU (diagonal

entries in
√
D are the root of those in D).

Let Z = (Z1, . . . , Zn) with (Zi) iid N(0, 1) r.v.’s
Set X = µ+ σZ

Claim. X ∼ N(µ, V )

Proof. X is Gaussian, since it is a linear transformation of the Gaussian vector Z.
Then we can easily check mean and variance are as desired

Method. Finding density of X ∼ N(µ, V )
In the case that V is positive definite:

fX(x) = fZ(z) · |J | =
n∏
i=1

(
e−z

2
i /2

√
2π

)
· | detσ−1|

=⇒ fX(x) =
1√

(2π)n detV
ez

T z/2

Subbing in for zt · z gives:

fX(x) =
1√

(2π)n detV
· exp

(
− (x− µ)T · V −1 · (x− µ)

2

)
In the case V is non-negative definite, some eigenvalues could be 0.
By an orthogonal change of basis, we can assume that

V =

[
U 0
0 0

]
where U is an m×m (m < n) positive definite matrix

We can write X =

[
Y
ν

]
where Y has density

fY (y) =
1√

(2π)m detU
exp

(
− (y − λ)T · U−1(y − λ)

2

)
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Claim. If the Xi’s are independent, then V is a diagonal matrix

Proof. Since the Xi’s are independent, it follows that Cov(Xi, Xj) = 0 whenever i 6= j. So
V is diagonal.

Lemma. Suppose that X is a Gaussian vector. Then if V is a diagonal matrix, then the Xi’s are
independent

Proof (1st). If V is diagonal, then the density fX(x) factorises into a product. Indeed,

(x− µ)TV −1(x− µ) =

n∑
i=1

(xi − µi)2

λi

so

fX(x) =
1√

(2π)n detV
exp

(
−

n∑
i=1

(xi − µi)2

2λi

)
Hence the Xi’s are indep.

Proof (2nd).
m(θ) = E[eθ

TX ] = eθ
Tµ+θTV θ/2 = e

∑
θiµi · e

∑
θ2i λi/2

So m(θ) factorises into the mgf’s of Gaussian r.v.’s in R

Moral. So for Gaussian vectors we have

(X1, . . . , Xn) are independent iff Cov(Xi, Xj) = 0 whenever i 6= j

3.18 Bivariate Gaussian

Definition. n = 2
Let X = (X1, X2) be a Gaussian vector in R2.
Set µk = E[Xk], k = 1, 2. Set σ2

k = Var(Xk)

ρ = Corr(X1, X2) =
Cov(X1, X2)√
Var(X1)Var(X2)

Claim. ρ ∈ [−1, 1]

Proof. Immediate from the Cauchy-Schwartz ineq. (Consider definition of Cov)

V = Var(X) =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
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Claim. For all σk > 0 and ρ ∈ [−1, 1]

V =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
is non-negative definite

Proof. Show uTV u ≥ 0 for all u ∈ R2

Method. Suppose (X1, X2) is a Gaussian vector. We want to find E[X2|X1].
Let a ∈ R. Consider X2 − aX1.

Cov(X2 − aX1, X1) = Cov(X2, X1)− aCov(X1, X1)

= Cov(X1, X2)− aVar(X1)

= ρσ1σ2 − aσ2
1

Take a = (ρσ2)/σ1. Then Cov(X2 − aX1, X1) = 0.
Set

Y = X2 − aX1[
X1

Y

]
is a Gaussian vector as it is of the form A

[
X1

X2

]
From the criterion of independence, we get X1 is independent of Y , since (X1, Y ) is Gaussian and
Cov(X1, Y ) = 0.

E[X2|X1] = E[Y + aX1|X1] = E[Y ] + aX1

as X2 = X2 − aX1 + aX1. So given X1,

X2 ∼ N(aX1 + µ2 − aµ1,Var(X2 − aX1))

where
Var(X2 − aX1) = Var(X2) + a2Var(X1)− 2aCov(X1, X2)
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3.19 Rejection Sampling

Example. Suppose A ⊂ [0, 1]d. Define

f(x) =
1(x ∈ A)

|A|
, |A| = volume of A

Let X have density f . How can we simulate X?
Let (Un)n∈N be an iid sequence of d-dimensional uniforms, i.e.

Un = (Uk,n : k ∈ {1, . . . , d}), (Uk,n)(k,n) iid ∼ U [0, 1]

Let N = min{n ≥ 1 : Un ∈ A}

Claim. UN ∼ f

Proof. We want to show that ∀B ⊆ [0, 1]d

P(UN ∈ B) =

∫
B

f(X) dx

P(UN ∈ B) =

∞∑
n=1

P(UN ∈ B,N = n)

=
|A ∩B|
|A|

by working out sum
|A ∩B|
|A|

=

∫
A

1(x ∈ B)

|A|
dx =

∫
B

f(x) dx
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Example. Suppose f is a density on [0, 1]d−1 which is bounded, i.e.

∃λ > 0 s.t. f(x) ≤ λ ∀x ∈ [0, 1]d−1

Want to sample X ∼ f .
Consider

A = {(x1, . . . , xd) ∈ [0, 1]d : xd ≤ f(x1, . . . , xd−1)/λ}

From the above we know how to generate a uniform random variable on A.
Let Y = (X1, . . . , Xd) be this r.v.
Set X = (X1, . . . , Xd−1)

Claim. X ∼ f

Proof. We need to show that ∀B ⊆ [0, 1]d−1

P(X ∈ B) =

∫
B

f(x) dx

Have:

P(X ∈ B) = P((X1, . . . , Xd−1) ∈ B) = P((X1, . . . , Xd) ∈ (B × [0, 1]) ∩A) =
|(B × [0, 1]) ∩A|

|A|

as Y is uniform on A

|(B × [0, 1]) ∩A| =
∫
· · ·
∫

1((x1, . . . , xd) ∈ B × [0, 1] ∩A) dx1 . . . dxd

=

∫
· · ·
∫

1((x1, . . . , xd−1) ∈ B)1

(
xd ≤

f(x1, . . . , xd−1)

λ

)
dx1 . . . dxd−1

=
1

λ

∫
B

f(x) dx

|A| = 1

λ

∫
[0,1]d−1

f(x) dx

=
1

λ

So
P(X ∈ B) =

∫
B

f(x) dx

Moral. In the case d = 3, imagine surface in 3-D where the z value is the probability. We
are using uniform distributions to sample uniformly within a volume bounded by our surface
which, in turn, gives (x, y) with desired probability.
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