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0 Overview

Statistics is the science of making informed decisions. It can include:
• The design of experiments and studies
• Data visualisation
• Formal statistical inference
• Communication of uncertainty and risk
• Formal decision theory

In this course, we focus on formal statistical inference

0.1 Parametric Inference

Notation. Let X1, . . . , Xn be iid random variables. We assume the distribution of X1 belongs to
some family with parameter θ ∈ Θ

Example. • X1 ∼ Poisson(µ). θ = µ ∈ Θ = (0,∞)
• X1 ∼ N(µ, σ2). θ = (µ, σ2) ∈ Θ = R× (0,∞)

Notation. We’ll use the observed X = (X1, . . . , Xn) to make inferences about θ:
(i) Point estimate θ̂(X) of θ (hat usually denotes estimator)
(ii) Interval estimate of θ: (θ̂1(x), θ̂2(x))
(iii) Testing hypothesies about θ e.g. H0 : θ = 1. Testing is checking whether there is evidence in

X against H0

Remark. In general, we will assume that the distribution family of X1, . . . , Xn is known and the
parameter is unknown. However, some results (on m.s.e., bias, Gauss-Markov theorem) will make
weaker assumptions.

1 Review of Probability

Definition. Let Ω be the sample space of outcomes in an expeiment. A “nice” or measurable subset
of Ω is called an event. The set of events is denoted by F

Definition. A probability measure P : F → [0, 1] satisfies:
• P(∅) = 0
• P(Ω) = 1
•

P(

∞⋃
i=1

Ai) =
∑
i

P(Ai)

if (Ai)i is a sequence of disjoint events

Definition. A random variable (r.v.) is a (measurable) function X : Ω→ R
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Example. Tossing 2 coins: Ω = {HH,HT, TH, TT}. F is the power set of Ω. We can let X be the
number of heads.

X(HH) = 2 X(HT ) = X(TH) = 1 X(TT ) = 0

Definition. The distribution function of X is

FX(x) = P(X ≤ x)

Definition. A discrete r.v. takes values in a countable set X ⊂ R

Definition. Its probability mass function is

pX(x) = P(X = x)

We say that X has a continuous distribution if it has a probability distribution function p.d.f.
fX(x) which satisfies:

P(x ∈ A) =

∫
A

fX(x) dx

for “nice” sets A

Definition. The expectation of X is

EX =

{∑
x∈X x · pX(x) if X discrete∫∞
−∞ x · fX(x) if X continuous

If g : R→ R

Ef(X) =

∫ ∞
−∞

g(x)fX(x) dx

Definition. The variance of X is

Var(X) = E[(X − EX)2]

Definition. We say X1, . . . , Xn are independent if for all x1, . . . , xn,

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn)

If X1, . . . , Xn have pdfs (or pmfs) fX1
, . . . , fXn

, the joint pdf (pmf) is

fX(x) =
∏
i

fXi(xi)

Note. Converse true
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1.1 Maxima of Random Variables

Equation. If Y = max{X1, . . . , Xn} (indep), then

FY (y) = P(Y ≤ y) = P(X1 ≤ y, . . . , Xn ≤ y)

=
∏
i

FXi
(y)

The pdf of Y (if it exists) is obtained by differentiating FY .

1.2 Linear Transformations

Equation. Let (a1, . . . , an)T = a ∈ Rn a constant.

E[a1X1 + · · ·+ anXn] = E[aTX]

= aTEX

We let

EX =

EX1

...
EXn


Remark. We do not require X1, . . . , Xn to be independent

Equation.

Var(aTX) =
∑
i,j

aiajCov(Xi, Xj)

=
∑
i,j

E[(Xi − EXi)(Xj − EXj)]

= aTVar(X)a

where
(Var(X))ij = Cov(Xi, Xj)

This is known as the “bilinearity of variance”
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1.3 Standardised Statistics

Notation. Let X1, . . . , Xn be iid r.v.s, EX1 = µ, Var(X1) = σ2

Sn =
∑
i

Xi, Xn =
Sn
n

Xn is the sample mean. By linearity

EXn = µ VarXn =
σ2

n

Define
Zn =

Sn − nµ
σ
√
n

=
√
n
Xn − µ
σ

EZn = 0 VarZn = 1

1.4 Moment Generating Functions

Definition. The mgf of a r.v. X is
Mx(t) = E(etX)

This is the Laplace transform of the pdf provided that it exists for t in some neighbourhood of 0.
Relationship with moments:

E[Xn] =
dn

dtn
Mx(t)

∣∣∣∣
t=0

Remarks.
• Under broad conditions MX = MY ⇐⇒ FX = FY
• Moment generating functions are useful for finding the distribution of sums of indepented ran-
dom variables

Example. Let X1, . . . , Xn ∼ Poisson(µ)

MXi(t) = EetXi =

∞∑
x=0

etx
e−µµx

x!
= e−µ

∑
x

(etµ)x

x!

= e−µeµ exp t = e−µ(1−et)

What is MSn
?

MSn
(t) = Eet(X1+···+Xn) =

n∏
i=1

etXi

= e−nµ(1−et)

Therefore, Sn ∼ Poisson(µ)
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1.5 Limits of Random Variables

Theorem (Weak law of large numbers (WLLN)).

∀ε > 0 P(|Xn − µ| > ε)→ 0 as n→∞

we note our event depends only on X1, . . . , Xn

Theorem (Strong law of large numbers (SLLN)).

P(Xn → µ) = 1 as n→∞

we note our event depends on the whole sequence

Xn → µ ⇐⇒ ∀ε > 0 ∃N s.t. |Xn − µ| < ε if n ≥ N

Theorem (Central limit theorem). Zn = (Sn−nµ)/(σ
√
n) is approximately N(0, 1) when n is large

P(Zn ≤ z)→ Φ(z) ∀z ∈ R

where Φ is the distribution funtion of a N(0, 1) random variable

1.6 Conditioning

Definition. If X,Y are discrete random variables

pX|Y (x | y) =
P(X = x, Y = y)

P(Y = y)

when the denominator is non-zero.

Definition. If X,Y are continuous, the joint p.d.f. of X,Y , fX,Y (x, y) satisfies:

P(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (x′, y′) dy′ dx′

The conditional p.d.f. of X given Y is

fX|Y (x|y) =
fX,Y (x, y)∫∞

−∞ fX,Y (x, y) dx

note that we can denote the denominator a fY (y)

Definition.

E[X|Y ] =

{∑
x xpX|Y (x|Y ) if discrete∫
xfX|Y (x|Y ) dx if continuous

note that E[X|Y ] is a function of Y so is itself a random variable. We define Var(X|Y ) similarly.
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Equation (Tower property).
E[E[X|Y ]] = EX

Theorem (Law of total variance).

Var(X) = EVar(X|Y ) + Var(E[X|Y ])

1.7 Change of Variables

Theorem. Let (x, y) 7→ (u, v) be a differentiable bijection R2 → R2. Then

fU,V (u, v) = fX,Y (x(u, v), y(u, v))|J |

J :=
∂(x, y)

∂(u, v)
=

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]

1.8 Important Distributions

Examples. • X ∼ Bin(n, p): number of successes in n independent Bernoulli(p) trials
• X ∼ Multi(n; p1, . . . , pk): n independent trials, k types, pj is the probability of type j in each
trial. Note X takes values in Nk. We let Xj be the number of trials with type j

• X ∼ Neg(k, p): In iid Ber(p) trials, X is the time where kth success occurs

Neg(1, p) = Geometric(p)

• X ∼ Poi(λ): Limit of Bin(n, λ/n) as n→∞

Equation. If Xi ∼ Γ(αi, λ) for i = 1, . . . , n with X1, . . . , Xn indep. What is the distribution of
Sn = X1 + · · ·+Xn?

MSn
(t) =

∏
i

MXi
(t) =

(
λ

λ− t

)∑
i αi

for t < λ

or ∞ if t ≥ λ. Therefore, Sn ∼ Γ(
∑
i αi, λ). The first parameter is the “shape parameter”. The

second parameter is the rate parameter.
If X ∼ Γ(α, λ) , then ∀b > 0 bX ∼ Γ(α, λ/b)

Examples. Special cases:
• Γ(1, λ) = Exp(λ)
• Γ(k/2, 1/2) = χ2

k is the Chi-squared distribution with k degrees of freedom. This is the distri-
bution of the sum of k independent squared N(0, 1) random variables
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2 Estimation

Notation. SupposeX1, . . . , Xn are iid observations with pdf (or pmf) fX(x|θ) where θ is an unknown
parameter in Θ. Let X = (X1, . . . , Xn)

Definition. An estimator is a statistic or function T (X) = θ̂ which does not depend on θ, and
is used to approximate the true parameter θ. The distribution of T (X) is called its sampling
distribution

Example. X1, . . . , Xn ∼ N(µ, 1)

µ̂ = T (X) =
1

n

∑
i

Xi = Xn

The sampling distribution of µ̂ is T (X) ∼ N(µ, 1
n )

Definition. The bias of θ̂ = T (X)

bias(θ̂) = Eθ[θ̂]− θ

Eθ is the expectation in the model where X1, . . . , Xn ∼ fX(·|θ)

Remark. In general, the bias is a function of the true parameter θ, even though it is not explicit in
notation “bias(θ̂)”

Definition. We say θ̂ is unbiased if bias(θ̂) = 0 for all values of true parameter θ

Example (continued). µ̂ is unbiased because

Eµ[µ̂] = Eµ[Xn] ∀µ ∈ R

Definition. The mean squared error (mse) of θ

mse(θ̂) = Eθ[(θ̂ − θ)2]

it tells us “how far θ̂” is from θ “on average”

Warning. The mse(θ̂) is a function of θ!
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2.1 Bias-variance Decomposition

Equation.

mse(θ̂) = Eθ[(θ̂ − θ)2]

= Eθ[(θ̂ − Eθ θ̂ + Eθ θ̂ − θ)2]

= Varθ(θ̂) + bias2(θ̂) ≥ 0

There is a tradeoff between bias and variance
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Example. X ∼ Binomial(n, θ). Suppose n known, θ ∈ [0, 1] is unknown parameter.

Tu =
X

n

is the ‘proportion of successes observed’. This is unbiased as Eθ(Tu) = Eθ(X)/n = nθ/n = θ.
Therefore,

mse(Tu) = Varθ(Tu)

= Varθ
(
X

n

)
=

Varθ
n2

= θ(1− θ)

Consider another estimator

TB =
X + 1

n+ 1
= w

X

n
+ (1− w)

1

2
w :=

n

n+ 2

bias(TB) = EθTB − θ = Eθ[
X + 1

n+ 2
]− θ =

n

n+ 2
θ +

1

n+ 2
− θ

This is 6= 0 of all but one value of θ.

Varθ(TB) =
Varθ(X + 1)

(n+ 2)2
=
n(θ)(1− θ)

(n+ 2)2

mse(TB) = (1− w)2(
1

2
− θ)2 + w2 θ(1− θ)

n

mse

θ

mse(TB)

mse(Tu)

0 11/2

TB is "better" than Tu

Remark. Prior judgement on true value of θ determines which estimator is better

Note. Unbiasedness is not necessarily desirable

11



Example. Pathological example. Suppose X ∼ Poisson(λ). We want to estimate θ = P(X = 0)2 =
e−2λ. For some estimator T (X) to be unbiased, we need

Eλ(T (X)) =

∞∑
x=0

T (x)
λxe−λ

x!
= e−2λ = θ

⇐⇒
∞∑
x=0

T (x)
λx

x!
= e−λ =

∞∑
x=0

(−1)x
λk

x!

The only function T : N→ R satisfying this equality is

T (X) = (−1)X

This makes no sense.

2.2 Sufficiency

Definition. A statistic T (X) is sufficient for θ if the conditional distribution of X given T (X) does
not depend on θ

Remark. θ can be a vector and T (X) can also be vector-valued

Example. X1, . . . , Xn ∼ Bernoulli(θ) iid for some parameter θ ∈ [0, 1]

fX(x|θ) =

n∏
i=1

θxi(1− θ)1−xi

= θ
∑
xi(1− θ)n−

∑
xi

Note: this only depends on x through T (x) =
∑
xi

fX|T=t(x|T (x) = t) =
Pθ(X = x, T (x) = t)

Pθ(T (x) = t)

If
∑
xi = t,

fX|T=t(x|T (x) = t) =
θ
∑
xi(1− θ)n−

∑
xi(

n
t

)
θt(1− θ)−t+n

=

(
n

t

)−1

This does not depend on θ, hence T (X) is sufficient
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Theorem (Factorisation Criterion). A statistic T is sufficient for θ iff fX(x|θ) = g(T (x), θ)h(x) for
suitable functions g, h

Proof. We only prove in the discrete case. Suppose fX(x|θ) = g(T (x), θ)h(x). Then if
T (x) = t:

fX|T=t(x|T = t) =
Px(X = x, T (X) = t)

Pθ(T (X) = t)

=
g(T (x), θ)h(x)∑

x′:T (x′)=t g(T (x′, θ))h(x′)

=
h(x)∑

x′:T (x′)=t h(x′)

does not depend on θ; hence T (X) sufficient.
Conversely, suppose that T (X) is sufficient

fX(x|θ) = Pθ(X = x) = Pθ(X = x, T (X) = T (x))

= Pθ(X = x|T (X) = T (x))︸ ︷︷ ︸
h(x)

Pθ(T (X) = T (x))︸ ︷︷ ︸
g(T (x),θ)

Note the first term does not depend on θ as T sufficient. The second term only depends on
X through T (x)

Example. X1, . . . , Xn ∼ Ber(θ) iid

fX(x|θ) = θ
∑
xi(1− θ)n−

∑
xi︸ ︷︷ ︸

g(T (x),θ)

· 1︸︷︷︸
h(x)

Let T (X) =
∑
Xi. Then T (X) is sufficient

Example. Let X1, . . . , Xn ∼ Unif([0θ]) for some θ > 0. Then

fX(x|θ) =

n∏
i=1

1

θ
1{xi∈[0,θ]}

=

(
1

θ

)
1{maxiXi≥01{maxXi≤θ}

g(T (x), θ) =

(
1

θ

)
1{maxiXi≥0, h(x) = 1{maxXi≤θ}

Therefore, T (X) is sufficient

2.2.1 Minimal sufficiency

Note. Sufficient statistics are not unique
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Remark. Any 1-to-1 function applied to a sufficient statistic yields another sufficient statistic.
T (X) = X is a trivial sufficient statistic. We want statistics which give us “maximal” copression
of information in X

Definition. A sufficient statistic T (X) is called minimal if it is a function of every other sufficient
statistic. I.e. if T ′ is also sufficient, then

T ′(x) = T ′(y) =⇒ T (x) = T (y) ∀x, y ∈ Xn

Remark. If S, T minimal sufficient, then they are in bijection, i.e.

T (x) = T (y) ⇐⇒ S(x) = S(y)

Minimal sufficient statistics are unique “up to bijections”

Theorem. Suppose that fX(x|θ)/fY (y|θ) is constant in Θ iff T (x) = T (y). Then, T is minimal
sufficient

Proof. For any value t of T let zt be a representative from {x : T (x) = t}. Then

fX(x|θ) = fX(zT (x)|θ) ·
fX(x|θ)

fX(zT (x)|θ)

Call the first term g(T (x), θ) and second term does not depend on θ by hypothesis, call this
h(x). Then T is sufficient by factorisation criterion.
To prove T is minimal sufficient, let S be any other sufficient statistic. By factorisation
criterion, ∃ functions gS , hS s.t.

fX(x|θ) = gS(S(x), θ)hS(x)

Now suppose S(x) = S(y) then

fX(x|θ)
fX(y|θ)

=
gS(S(x), θ)hS(x)

gS(S(x), θ)hS(y)
=
hS(x)

hS(y)

which is constant in θ, so x ∼1 y. By hypothesis, x ∼2 y and T (x) = T (y)

Let x ∼1 y if fX(x|θ)/fY (y|θ) is constant in θ. It’s easy to check that ∼1 is an equivalence relation.
Similarly, let x ∼2 y if T (x) = T (y) also an equivalence relation. Hypothesis in theorem says
equivalence classes of ∼1, ∼2 are the same

Note. We can always construct a statistic T which is constant on the equivalence classes of ∼1.
Hence, by the theorem a minial sufficient statistic exists
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Example. Suppose X1, . . . , Xn ∼ N(µ, σ2)

fX(x|µ, σ2)

fX(y|µ, σ2)
=

(2πσ)−n/2 exp
{
− 1

2σ2

∑
i(xi − µ)2

}
(2πσ)−n/2 exp

{
− 1

2σ2

∑
i(yi − µ)2

}
= exp

{
− 1

2σ2

(∑
i

x2
i −

∑
i

y2
i

)
+

µ

σ2
(
∑

xi −
∑

yi)

}

This is constant in (µ, σ2) iff
∑
x2
i =

∑
y2
i and

∑
xi =

∑
yi. Hence (

∑
x2
i ,
∑
xi) is a minimal

sufficient statistic.
A more common minimal sufficient statistic is obtained by taking a bijection of (

∑
x2
i ,
∑
xi):

S(x) = (Xn, Sxx)

Xn =
1

n

∑
xi Sxx =

∑
i

(Xi −Xn)2

Note. In previous example, θ = (µ, σ2) has same dimension as S(X). In general, they can differ

Example. Consider X1, . . . , Xn ∼ N(µ, µ2), µ ∈ R. In this case S(X) = Xn, Sxx is minimal
sufficient

2.3 Rao-Blackwell Theorem

Notation. Up to now, we have used Eθ,Pθ to denote expectations & probabilities under model
X1, . . . , Xn are iid from fX(x|θ). From now, we omit the subscript θ
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Theorem. Let T be a sufficient statistic for θ and define an estimator θ̃ with E[θ̃2] < ∞ for all θ.
Define a new estimator

θ̂ = E[θ̃|T (X)]

Then for all θ ∈ Θ

E[(θ̂ − θ)2] ≤ E[(θ̃ − θ)2]

The inequality is strict unless θ̃ is a function of T (x)

Proof. By tower property
E[θ̂] = E[E[θ̃|T ]] = Eθ̃

So bias(θ̂) = bias(θ̃) for all θ ∈ Θ. By conditional variance formula

Var(θ̃) = E[Var(θ̃|T )]︸ ︷︷ ︸
≥0

+Var(E[θ̃|T ])︸ ︷︷ ︸
Var(θ̂)

So Var(θ̃) ≥ Var(θ̂), and by bias-variance decomposition

mse(θ̃) ≥ mse(θ̂)

The inequality is strict unless Var(θ̃|T ) = 0 with probability 1, which would require θ̃ is a
function of T

Moral. Start from any estimator θ̃ and by conditioning on sufficient statistic, we get a better one

Remark. As T (X) is sufficient, θ̂ is a bona fide estimator of θ (i.e. it is a function of X but not of
θ), because

θ̂(X) = θ̂(T ) =

∫
θ̃(x)fX|T (x|T ) dx
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Example. X1, . . . , Xn ∼ Poi(λ). Let θ = P(X1 = 0) = e−λ

fX(x|λ) =
e−nλλ

∑
xi∏

i xi!

=⇒ fX(x|θ =
θn(− log θ)

∑
xi∏

i xi!
)

∴
∑
xi = T (x) is sufficient by factorisation. Recall

∑
xi ∼ Poi(λ). Let θ̃ = 1{X1=0 (only depends on

X1). It’s weak but unbiased

θ̂ = E[θ̃|T = t]

= P(X1 = 0|
n∑
i=1

Xi = t)

=
P(X1 = 0,

∑n
i=1Xi = t)

P(
∑n
i=1Xi = t)

=
P(X1 = 0)P(

∑n
i=2Xi = t)

P(
∑n
i=1Xi = t)

=

(
n− 1

n

)t
So θ̂ = (1− 1/n)

∑
xi is an estimator with mse(θ̂) < mse(θ̂) for all θ.

Sanity check: θ̂ = (1 − 1/n)nXn → e−Xn as n → ∞ and by SLLN Xn → EX1 = λ w.p. 1 so
θ̂ ≈ e−λ = θ when n is large

Example. Let X1, . . . , Xn be iid Unif([0, θ]), want to estimate θ > 0. We have seen previously that
T = maxiXi is sufficient.
Let θ̃ = 2X1, an unbiased estimator of θ. Then,

θ̂ = E[θ̂|T = t] = 2E[X1|max
i
Xi = t]

= 2E[X1|max
i
Xi = t,X1 = max

i
Xi]P[X1 = max

i
Xi|max

i
Xi = t]

+ 2E[X1|max
i
Xi = t,X1 6= max

i
Xi]P[X1 6= max

i
Xi|max

i
Xi = t]

=
2t

n
+ 2E[X1|X1 < 1,

n
max
i=2

Xi = t]

(
n− 1

n

)
=

2t

n
+ 2

t

2

(
n− 1

n

)
=

(n+ 1)

n
·max

i
Xi

By Rao-Blackwell mse(θ̂) ≤ mse(θ̃). Also, θ̂ is unbiased

2.4 Maximum Likelihood Estimation

Notation. Let X1, . . . , Xn iid with pdf (or pmf) fX(·|θ)

17



Definition. The likelihood function L : Θ→ R is given by

L(θ) = fX(x|θ) =

n∏
i=1

fXi
(xi|θ)

(we take x to be fixed observations)

Notation. We’ll denote the log-likelihood

l(θ) = logL(θ) =

n∑
i=1

log fXi
(xi|θ)

Definition. A maximum likelihood estimator (mle) is one that maximises L over Θ (or l)

Example. Let X1, . . . , Xn ∼ Ber(p) iid

l(p) =

n∑
i=1

Xi log p+ (1−Xi) log p

= log p(
∑

Xi) + log(1− p)(n−
∑

Xi)

dl

dp
=

∑
Xi

p
− n−

∑
Xi

1− p

This is equal to 0 ⇐⇒ p =
∑
Xi/n = Xn. We have Ep̂ = n

nEX1 = p. So the mle p̂ = Xn is
unbiased

18



Example. X1, . . . , Xn ∼ N(µ, σ2)

l(µ, σ2) = −n
2

log(2π)− n

2
log σ2 − 1

2σ2

∑
i

(Xi − µ)2

Maximised when ∂l
∂µ = ∂l

∂σ2 = 0

∂l

∂µ
= − 1

σ2

n∑
i=1

(Xi − µ)

=⇒ equal to 0 iff µ = Xn = 1
n

∑
Xi, for all σ2 > 0

∂l

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(Xi − µ)2

If we set µ = Xn, ∂l
∂σ2 is 0 iff

σ2 =
1

n

n∑
i=1

(Xi −Xn)2 =
Sxx
n

Hence the mle is (µ̂, σ̂2) = (Xn,
Sxx

n ).
We can check that µ̂ is unbiased. Later in the course, we will see that

Sxx
σ2

=
nσ̂2

σ2
∼ χ2

n−1

E[σ̂2] =
σ2

n
E[χ2

n−1] =
n− 1

n
σ2 6= σ2

Hence σ̂2 is biased. But as n→∞, the bias converges to 0, so we say σ̂2 is “asymptotically unbiased”

Example. X1, . . . , Xn ∼ Unif([0, θ]). Recall, we derived estimator θ̂ = n+1
n maxiXi

What is the mle?
L(θ) =

1

θ1
1{maxiXi≤θ

L(θ)

θ
maxiXi

Hence the mle is θ̂mle = maxiXi. As θ̂ is unbiased, θ̂mle is not unbiased

Eθ̂mle =
n

n+ 1
Eθ̂ =

n

n+ 1
θ
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Properties of the mle:
(i) If T is a sufficient statistic for θ, then mle is a function of T . Recall,

L(θ) = g(T, θ)h(X)

So the maximiser of L only depends on X through T
(ii) If φ = H(θ) where H is a bijection and θ̂ is mle for θ, then H(θ̂) is the mle for φ
(iii) Asymptotic normality: under regularity conditions, as n→∞ the statistic

√
n(θ̂− θ) is approx

N(0,Σ), i.e. for some “nice” set A

P(
√
n(θ̂ − θ) ∈ A)→ P(z ∈ A)

where z ∼ N(0,Σ). The limiting covariance matrix Σ is a known function of l. In some sense,
it is the “best” or “smallest” variance that any estimator can achieve asymptotically
(We prove this in Part II Principles of Statistics)

(iv) When the mle is not available analytically in closed form, it can be found numerically in many
cases

2.5 Confidence Intervals

Definition. A 100 ·γ% confidence interval (with 0 < γ < 1) for a parameter θ is a random interval
(A(X), B(X)) such that

P(A(X) ≤ θ ≤ B(X)) = γ for all θ ∈ Θ

A,B are random, θ is fixed.

We have a frequentist interpretation: if we repeat the experiment many times, on average 100 · γ%
of the time, (A(X), B(X)) will contain θ

Warning. Misleading interpretation: Having observed X = x, there is now a probability γ that
θ ∈ (A(x), B(x))
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Example. X1, . . . , Xn ∼ N(θ, 1). Find 95% C.I. for θ. We know

X =
1

n

n∑
i=1

Xi ∼ N(θ,
1

n
)

and
Z =

√
n(X − θ) ∼ N(0, 1) for all θ ∈ R

Let a, b be numbers s.t. Φ(b)− Φ(a) = 0.95
Then P(a ≤

√
n(X − θ) ≤ b) = 0.95. Rearrange:

P
(
X − b√

n
≤ θ ≤ X − a√

n

)
= 0.95

Hence (X − b/
√
n,X − a/

√
n) isa 95% C.I. for θ.

Typically, we center the interval around some estimator θ̂ and aim to minimise its length. In this
case, we want

−a = b = z0.025

where zα is equal to Φ−1(1− α) or the “upper α-point” of N(0, 1) distribution.
So C.I. is (X ± 1.96/

√
n)

Method. Finding a C.I.:
(i) Find a quantity R(X, θ) whose Pθ-distribution does not depend on θ. This is called a pivot.

e.g. R(X, θ) =
√
n(X − θ)

(ii) Write down
P(x1 ≤ R(X, θ) ≤ c2) = γ

Given some γ, we find c1, c2 using the distribution function of R(X, θ)
(iii) Rearrange to leave θ in the middle of two inequalities

Prop. If T is a monotone increasing function and (A(X), B(X)) is a 100 · γ% C.I. for θ, then
T (A(X), T (B(X))) is a 100 · γ% C.I. for T (θ)

Remark. When θ is a vector, we talk about confidence sets instead of confidence intervals
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Example. X1, . . . , Xn ∼ N(0, σ2) iid. Find a 95% C.I. for σ2

(i) Note X1/σ ∼ N(0, 1).
n∑
i=1

X2
i

σ2
χ2
n()

(ii) Let
c1 = F−1

χ2
n

(0.025), c2 = F−1
χ2
n

(0.975)

P

(
c1 ≤

∑
i

X2
i

σ2
≤ c2

)
= 0.95

diagram

(iii)

P
(∑

x2
i

c2
≤ σ2 ≤

∑
x2
i

c1

)
= 0.95

(iv) Hence
(∑

x2
i

c2
,

∑
x2
i

c1

)
is a 95% C.I, for σ

Example. X1, . . . , Xn ∼ Ber(p) with n “large”. Find approximate 95% C.I. for p
(i) The mle of p is p̂ = X = 1

n

∑
iXi By CLT, p̂ is approx N(p, p(1−p)n ). Thus

√
n(p̂−p)/

√
p(1− p)

is approx. N(0, 1)
(ii)

P

(
−z0.025 ≤

√
n

(p̂− p)√
p(1− p)

≤ z0.025

)
' 0.95

(iii) Instead of directly rearranging the inequalities, we will approximate
√
p(1− p) ≈

√
p̂(1− p̂).

And we argue that when n is large

P

(
−z0.025 ≤

√
n

(p̂− p)√
p̂(1− p̂)

≤ z0.025

)
≈ 0.95

P

(
p̂− z0.025

√
p̂(1− p̂)√

n
≤ p ≤ p̂+ z

0.025

√
p̂(1−p̂)
√

n

)
≈ 0.95

Hence
(
p̂± z0.025frac

√
p̂(1− p̂)

√
n
)
is an approximate 95% C.I. for p

Remark. p(1− p) ≤ 1/4 on p ∈ (0, 1) hence p̂± z0.025/2
√
n is a “conservative” 95% C.I. for o
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Moral. Interpreting C.I’s: suppose X1, X2 are iid Unif(θ − 1/2, θ + 1/2). What is a senseible 50%
C.I. for θ? Note

P(θ between X1, X2) = P(min(X1, X2) ≤ θ ≤ max(X1, X2))

= P(X1 ≤ θ ≤ X2) + P(X2 ≤ θ ≤ X1)

=
1

2
× 1

2
+

1

2
× 1

2
=

1

2

Hence (min(X1, X2),max(X1, X2) is a 50% C.I. for θ. The frequentist interpretaiton is exactly correct.
But suppose |X1 −X2| > 0.5 then we know that θ is in (min(X1, X2),max(X1, X2))
The frequentist interpretation of the 50% C.I. is entirely correct. But it is not sensible tosay that
having seen a particular X1, X2 (e.g. X1 = 0.1, X2 = 0.9) we are “50% certain that θ is in the C.I”

2.6 Bayesian Analysis

Remark. So far, we have talked about frequentist inference where we think of θ as fixed. Inferential
statements interpreted in terms of repetitions of the experiment. Bayesian analysis is a different
framework.
Bayesians treat θ as a r.v. taking values in Θ. The prior distribution π(θ) represents the investi-
gator’s beliefs or information about θ before observing data. Conditional on θ, the data X has pdf
(or pmf) fX(·|θ)
Having observed X, the information in X is combined with the prior to form the posterior distri-
bution denoted π(θ|X), which is conditional distribution of θ given X. By Bayes’ rule:

π(θ|X) =
π(θ)fX(X|θ)

fX(X)

where fX(x) is the marginal distribution of X

fX(X) =

{∫
Θ
fX(X|θ)π(θ) dθ θ continuous∑
θ∈Θ fX(X|θ)π(θ) θ discrete

More simply,
π(θ|X)︸ ︷︷ ︸

post

∝ π(θ)︸︷︷︸
prior

× fX(X|θ)︸ ︷︷ ︸
likelihood

Often, it is easy to recognise that RHS is in some family of distributions up to normalising constant

Note. By factorisation criterion, if T is sufficien, then

π(θ|X) ∝ π(θ)× g(T (X), θ)× h(X)

∝ π(θ)× g(T (X), θ)

∴ posterior only depends on X through T (X)
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Example (prior choice is clear). Patient walks into covid testing clinic (no information about them)

θ =

{
1 if patient infected
0 otherwise

We observe X = 1{positive covid text. We know sensitivity of the test:

fX(X = 1|θ = 1)

and specificity of the test:
fX(X = 0|θ = 0)

How to choose a prior?
Set π(θ = 1) to be the proportion of people in the UK with covid that day.
What is the probability of infection given a positive test?

π(θ = 1|X = 1) =
π(θ = 1)fX(X = 1|θ = 1)

π(θ = 1)fX(X = 1|θ = 1) + π(θ = 0)fX(X = 1|θ = 0)

Sometimes π(θ = 1) << π(θ = 0) which can make π(θ = 1|X = 1) small (surprising!)
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Example. θ taking values in [0, 1] is mortality rate for new surgery at Addenbrookes.
Data: in the first 10 operations, no deaths.
Model: X ∼ Binomial (10, θ), X = 0
Prior: in other hospitals, mortality ranges between 3% and 20%, with average of 10% e.g. take π(θ)
is Beta(a, b)
Choose a = 3, b = 27 os that π(θ) has mean 0.1 and

π(0.03 < θ < 0.2) ≈ 0.9

Posterior:

π(θ|X) ∝ π(θ)× fX(X = 0|θ)
∝ θa−1(1− θ)b−1 × θX(1− θ)n−X

= θX+a−1(1− θ)b+n−X−1

for θ ∈ [0, 1]. We recognise this as a Beta(X + a, n−X + b). In our example, Beta(3, 10 + 27)

θ

prior
posterior

0 1

Note. In the above example, prior and posterior are in the same family. This is known as conjugacy

Moral. What to do with posterior?
π(θ|X) represents info about θ after seeing X. This can eb used to make decisions under uncertainty

Method. (i) We must pick some decision δ ∈ ∆
e.g. In first example, ∆ = {ask patient to isolate, do not ask patient to isolate}

(ii) Define loss function L(θ, δ)
e.g. L(θ = 1, δ = 1) would be the loss incurred by asking patient to isolate if positive

(iii) Pick δ that minimises ∫
Θ

L(θ, δ)π(θ|X) dθ

in English, this is the “posterior expectation of loss” (see Von-Neumann-Morgenstern)
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2.7 Point estimation

An example of a decision is a “best guess” for θ. The Bayes estimator θ̂(b) minimises

h(δ) =

∫
Θ

L(θ, δ)π(0|X) dθ

Example. Quadratic loss L(θ, δ) = (θ − δ)2

h(δ) =

∫
Θ

(θ − δ)2π(θ|X) dθ

h′(δ) = 0 if
∫

Θ

(θ − δ)π(θ|X) dθ = 0

⇐⇒ δ =

∫
Θ

θπ(θ|X) dθ

This is θ̂(b) consider quadratic loss (posterior mean).

Example. Absolute error loss L(θ, δ) = |θ − δ|

h(δ) =

∫
Θ

|θ − δ|π(θ|X) dθ

=

∫ δ

−∞
−(θ − δ)π(θ|X) dθ +

∫ ∞
δ

(θ − δ)π(θ|X) dθ

Take derivative w.r.t. δ (invoke F.T.C.)

h′(δ) =

∫ δ

−∞
π(θ|X) dθ −

∫ ∞
δ

π(θ|X) dθ

So h′(δ) = 0 iff ∫ δ

−∞
π(θ|X) dθ =

∫ ∞
δ

π(θ|X) dθ

hence θ̂(b) is median of posterior π(θ|X)

Definition. A 100 · γ% credible interval (A(x), B(x)) satisfies

π(A(x) ≤ θ ≤ B(x)|x) = γ

Note. Unlike confidence intervals, credible intervals can be interpreted conditionally, i.e. “given a
specific observation x, we are 95% certain that θ is in (a, b)”
Caveat: credible interval depends on choice of prior
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Example. X1, . . . , Xn ∼ N(µ, 1)
Prior: π(µ) is N(0, τ−2) with known τ2

π(µ|x) ∝ fX(x|µ)× π(µ)

∝ exp{−1

2

n∑
i=1

(xi − µ)2} × exp{−µτ
2

2
}

∝ exp{−1

2
(n+ (τ)2)[µ−

∑
xi

n+ τ2
]2}

=⇒ posterior is N(
∑
xi

n+τ2 ,
1

n+τ2 )

Bayes estimator under quadratic and mean absolute error loss is
∑
xi

n+τ2 (contrast this with mle
µ̂(mle) =

∑
xi

n )
Posterior variance decreases as 1

n+τ2 ≈ 1
n

How do credible intervals compare to confidence intervals?

Example. X1, . . . , Xn ∼ Poi(λ)
priot: π(λ) is Exp(1)

π(λ|x) ∝ fX(x|λ)× π(λ)

∝ e−nλλ
∑
xi∏

i xi!
× e−λ, λ > 0

∝ e−(n+1)λλ
∑
xi

=⇒ posterior is Gamma(
∑
xi + 1, n+ 1)

Bayes estimator under quadratic loss is the posterior mean:

λ̂(b) =

∑
xi + 1

n+ 1

3 Hypothesis Testing

Definition. A hypothesis is an assumption about the distribution of data X.
Scientific questions are often phrased as a decision between a null hypothesis H0 and alternative
hypothesis H1
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Example. (i) X = (X1, . . . , Xn) are iid Bernoulli(θ)

H0 : θ =
1

2
, H1 : θ =

3

4

(ii)

H0 : θ =
1

2
, H1 : θ 6= 1

2

(iii) X = (X1, . . . , Xn), xi takes values in N0

H0Xi ∼ Poi(λ) for some λ > 0

H1 : Xi ∼ f1 for some other distribution f1

“Goodness-of-fit” test

Definition. A simple hypothesis is one which fully specifies the (pdf or pmf) of X.
Othewise, we say the hypothesis is composite
A test of the null H0 is defined by a critical region C ⊂ χ when X ∈ C, we “reject the null”. When
X 6∈ C, we say we “fail to reject H0” or “find no sufficient evidence against H0”

Definition. Two types of error:
• Type I error: rejecting H0 when H0 is true
• Type II error: fail to reject H0 when it isn’t true

When H0, H1 are simple, define

α = PH0
(H0 is rejected) = PH0

(X ∈ C)

β = PH1
(H0 is not rejected) = PH1

(X 6∈ C)

The size of test is α, the power is 1− β

Note. What we typically do is choose an acceptable probability of type I errors (say 1%); set α to
that, pick the test which minimises β (maximises power)

3.1 Neyman-Pearson Lemma

Definition. Let H0 and H1 be simple, with X having pdf (or pmf) fi under Hi, i = 0, 1.
The likelihood ratio statistic is:

Λx(H0;H1) =
f1(x)

f0(x)

A likelihood ratio test (LRT) rejects when Λx(H0;H1) is large, i.e.

C = {x : Λx(H0;H1) > k}

for some k
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Theorem. Suppose that f0, f1 are nonzero on some sets. Suppose there is k > 0 s.t. the LRT with
critical region

C = {x : Λx(H0;H1) > k}

has size α. Then out of all tests with size ≤ α, this test has smallest β (largest power)

Proof. Let C be complement of C. We know that LRT has

α = PH0(X ∈ C) =

∫
C

f0(x) dx

β = PH1
(X 6∈ C) =

∫
C

f1(x) dx

Let C∗ be some other critical region with type I/ type II error probabilities α∗, β∗

α∗ =

∫
C∗
f0(x) dx, β∗ =

∫
C∗
f0(x) dx

Suppose α∗ ≤ α: want to prove β ≤ β∗ ⇐⇒ β − β∗ ≤ 0

β − β∗ =

∫
C

f1(x) dx−
∫
C∗
f1(x) dx

Notice we can cancel over C ∩ C∗

β − β∗ =

∫
C∩C∗

f1(x) dx−
∫
C∗∩C

f1(x) dx

=

∫
C∩C∗

f1(x)

f0(x)︸ ︷︷ ︸
≤k

f0(x) dx−
∫
C∗∩C

f1(x)

f0(x)︸ ︷︷ ︸
>k

f0(x) dx

≤ l
[∫

C∩C∗
f0(x) dx−

∫
C∗∩C

f0(x) dx

]
≤ l
[∫

C∗
f0(x) dz −

∫
C

f0(x) dx

]
≤ k [α∗ − α] ≤ 0

Remark. A LRT of size α does not always exist. Exercise: think of a (model,H0, H1, α)
But in general, we can find a “randomised test of size α”
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Example. X1, . . . , Xn ∼ N(µ, σ2
0), where σ2 is known. Want the best size α test for

H0 : µ = µ0, H1 : µ = µ1

for some fixed µ1 > µ0

ΛX(H0;H1) =
(2πσ0)1/2 exp{− 1

2σ2
0

∑
(xi − µ1)2}

(2πσ0)1/2 exp{− 1
2σ2

0

∑
(xi − µ0)2}

= exp{ (µ1 − µ0)

σ2
0

nX + n
µ2

0 − µ2
1

2σ2
0

ΛX is monotone increasing in X; it is also monotone increasing in Z =
√
nX−µ0

σ0

Thus Λx > k ⇐⇒ z > k′, for some k′.
Hence the LRT has critical region of the form

C = {x : Z(x) > k′}

for some k′ > 0.
To find the most powerful test, by Neuman-Pearson lemma, we need only find k such that C has size
α under H0 : µ = µ0, Z ∼ N(0, 1).
Thus if we chose k′ = Φ−1(1− α) we have

PH0(Z > k′) = α

i.e. the test C = {x : Z(x) > Φ−1(1− α). This is called a z-test

Definition. If we have a critical region {x : T (x) > k} for some test statistic T (x), we usually report
a p-value in addition to test’s conclusion which is defined by

p = PH0
(T (X) > T (x∗))

where x∗ is the observed data.

In the example above, suppose µ0 = 5, µ1 = 6, α = 0.005
Data: x∗ = (5.1, 5.5, 4.9, 5.3)

X∗ = 5.2, Z∗ = 0.4

LRT is {x : Z(x) > Φ−1(0.95) = 1.645}.
Conclusion of LRT: we do not reject H0

0

p-value is area

0.4
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Prop. Under H0, p-value is Unif[0, 1]

Proof. Let F be the distribution of T (which we assume to be continuous)

PH0
(p < u) = PH0

(1− F (T ) < u)

= PH0
(F (T ) > 1− u)

= PH0(T > F−1(1− u))

1− F (F−1(1− u)) = u

3.2 Composite Hypothesis

X ∼ fX(·|θ); θ ∈ Θ

H0 : θ ∈ Θ0 ⊂ Θ

H1 : θ ∈ Θ1 ⊆ Θ

Now, the probabilities of type I or type II error may depend on the value within Θ0 (or Θ1) - not
single numbers

Definition. The power function for a test C is

W (θ) = Pθ(X ∈ C)

The size of a test C is
α = sup

θ∈Θ0

W (θ)

We say that a test is uniformly most powerful (UMP) if for any other tes C∗ with power function
W ∗, and size ≤ α

W (θ) ≥W ∗(θ) for all θ ∈ Θ1

Note. UMP tests need not exist! However, in simple models, many LRTs are UMP

Example. One-sided test for normal location X1, . . . , Xn ∼ N(µ, σ2
0), σ0 is known

H0 : µ ≤ µ0, H1 : µ > µ0

for some fixed µ0 (e.g. µ0 = 0)
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Claim. LRT for H ′0 : µ = µ1, H
′
1 : µ = µ1 > µ0 derived earlier is UMP in the compound case.

The power function is

W (µ) = Pµ(reject H0) = Pµ(

√
n(X̄ − µ0)

σ0
> zα)

= Pµ(
√
n
X̄ − µ
σ0

> zα) +
√
n

(µ0 − µ1)

σ0
)

= 1− Φ(zα +
√
n

(µ0 − µ1)

σ0
)

0

Θ0 Θ1

α

W (µ)

µ

Note: test has size α as supµ∈Θ0
W (µ) = α

Proof. Indeed (i) is satisfied
sup
µ≤µ0

W (µ) = α

Need to check that for any test C∗ of size α, with power W ∗

W (µ) ≥W ∗(µ) for all µ > µ0

Note: Critical region C only depends on µ0, not µ1.
Take any µ1 > µ0 then C is LRT for H ′0 : µ = µ0 vs H ′1 : µ = µ1.
We can also see that C∗ as a test of H ′0 vs H ′1. And for these simple hypotheses C∗ has size:

W ∗(µ0) ≤ sup
µ<µ0

W ∗(µ) ≤ α

So by N-P lemma, C has power no smaller than C∗ for H ′0 vs H ′1, i.e.

W (µ1) ≥W ∗(µ1)
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3.3 Generalised Likelihood test

Definition.
H0 : θ ∈ Θ0, H1 : θ ∈ Θ1

with Θ0 ⊂ Θ1, hypotheses are “nested”
The GLR is given by

Λx(H0;H1) =
supθ∈Θ1

fX(x|θ)
supθ∈Θ0

fX(x|θ)

Large values indicate better fit under alternative. A GLR test rejects H0 when ΛX(H0;H1) is large

Example. Two sided test for normal location X1, . . . , Xn ∼ N(µ, σ2
0);σ2

0 known

H0 : µ = µ0, H1 : µ ∈ R

ΛX(H0;H1) =
(2πσ2

0)1/2 exp{− n
2σ2

0

∑n
i=1(Xi −X)2

(2πσ2
0)1/2 exp{− n

2σ2
0

∑n
i=1(Xi − µ0)2

2 log Λx =
n

σ2
0

(X − µ0)2

Recall that under H0,
√
n (X−µ0)

σ0
∼ N(0, 1)

So 2 log ΛX ∼ χ2
1

So critical region of GLR test is

C = {x : n
(x̄− µ0)2

σ2
0

> χ2
1(α)}

3.4 Wilk’s Theorem

The dimension of a hypothesis H0 : θ ∈ Θ0 is the number of “free parameters” in Θ0 e.g.
(i) Θ0 = {θ ∈ Rk : θ1 = · · · = θp = 0} then dim(Θ0) = k − p
(ii) Let A ∈ Rp×k with linearly indep. rows b ∈ Rp, p < k

Θ0 = {θ ∈ Rk : Aθ = b}

dim Θ0 = k − p

(iii) Θ0 is a Riemannian manifold

Theorem. Suppose Θ0 ⊂ Θ1 and dim(Θ1)− dim(Θ0) = p. Then if X = (X1, . . . , Xn) are iid under
fX(·|θ) with θ ∈ int(Θ0), then [under some conditions] as n→∞, limiting distribution of 2 log ΛX is
χ2
p i.e.

Pθ(2 log ΛX ≤ l)→ P(Ξ ≤ l) ∀l ∈ R+

where Ξ ∼ χ2
p

Remark. This is very useful because it allows us to implement a GLR test even if we cant find the
exact distribution of 2 log ΛX (assuming that n is large; any frequentist guarantee will be approximate)
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Example. In 2 sided normal location example

dim Θ0 = 0, dim Θ1 = 1

So theorem tells us 2 log ΛX is approximately χ2
1 (in this example, this happens to be exact)

3.5 Goodness-of-fit Test

X1, . . . , Xn are iid samples taking values in {1, . . . , k}.
Let pi = P(X1 = i), let Ni be the number of samples equal to i.
Hence ∑

i

Ni = n,
∑
i

pi = 1

Parameters: (p1, . . . , pk) := p parameter space has dimension k − 1, because of constraint
∑
pi = 1

A G-o-F test has a null of form:
H0 : pi = p̃i i = 1, . . . , k

for some fixed distribution p̃. The alternative puts no constraints on p.
The model is (N1, . . . , Nk) ∼ Multinomial(n; p1, . . . , pk)

L(p) ∝ pN1
1 . . . pNk

k

l(p) = logL(p) = const +
∑

+iN + i log pi

The GLR ΛX has

2 log ΛX = 2

 sup
p∈Θ1

l(p)︸ ︷︷ ︸
l(p̂)

− sup
p∈Θ0

l(p)︸ ︷︷ ︸
l(p̃)


To find p̂ we use Lagrange multipliers

L(p, λ) =
∑
i

Ni log pi − λ(
∑

pi − 1)

=⇒ p̂i = Ni/n “fraction of samples equal to i”
After some computation, we get p̂i = Ni/n, so

2 log ∆x = 2
∑

Ni log

(
Ni

n− p̃i

)
Wilk’s theorem tells us that when n is large, 2 log ∆x is approximately χ2

p

p = dim(Θ1)− dim(Θ0) = (k − 1)− 0 = k − 1

An approximate GLR test of size α rejectes when

N ∈ C = {Ni2
∑

Ni log

(
Ni

n− p̃i

)
≥ χ2

k−1(α)
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Let oi = Ni “observed number of type i”; ei = np̃i “expectation number null of nuber of type i”

2 log Λ = 2
∑
i

oi log

(
oi
ei

)

3.6 Pearson statistic

δi = oi − ei

2 log Λ = 2
∑
i

(ei + δi) log

(
1 +

δi
ei

)
≈ 2

∑
i

(
δi +

δ2
i

ei
− δ2

i

2ei

)
=
∑ δ2

i

ei
=
∑
i

(oi − ei)2

ei

This is called Pearson’s χ2 statistic. It is also referred to a χ2
k−1 when we test H0

Example. Mendel’s experiment
Mendel crossed peas to obtain a sample of 556 descendents; each descentent is one of 4 types: SG,
SY, WG, WY.
He observed N = (315, 108, 102, 31).
Mendel’s theory gives a null hypothesis

H0 : p = p̃ =

(
9

16
,

3

16
,

3

16
,

1

16

)

2 log Λ = 0.618,
∑
i

(oi − ei)2

ei
= 0.604

These are referred to a χ2
3 distribution

χ2
3(0.05) = 7.05

so a test of size 5% does not reject H0.
The p-value is P(χ2

4 > 0.6) ≈ 0.96
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3.7 Goodness-of-Fit Test for Composite Null

H0 : pi = pi(θ) for some θ ∈ Θ, ∀i = 1, . . . , k

H1 : p is any distribution on {1, . . . , k}

2 log Λ = 2(sup
p
l(p)− sup

θ∈Θ0

l(p(θ)))

We can sometimes compute 2 log Λ, and find a test which refers this test statistic to χ2
p

p = dim Θ1 − dim Θ0 = (k − 1)− dim Θ0

Example.
p+ 1 = θ2, p2 = 2θ(1− θ), p3 = (1− θ)2

θ is the overall abundance of one type of gene.
In this example, we can find MLE θ̂ under null

θ̂ =
2N1 +N2

2n

So
2 log Λ = 2(l(p̂)− l(θ̂))

where p̂i = Ni/n can be computed and referred to a χ2
2

Remark. We can check that in this model

2 log Λ =
∑
i

oi log

(
oi
ei

)
≈
∑
i

(oi − ei)2

ei

where oi = Ni “observed counts” and ei = n · pi(θ̂) “expected counts under null”

3.8 Testing Independence in Contingency Tables

(X1, Y1), . . . , (Xn, Yn) are iid where Xi take values in {1, . . . , r}, Yi take values in {1, . . . , c}
We wish to test whether Xi independent of Yi
We shall summarise the data into a contingency table N

Nij = #{l : 1 ≤ l ≤ n, (Xl, Yl) = (i, j)}

“number of samples of type (i, j)”

36



Example. Covid-19 death
Q: Have deaths decreased more rapidly for vaccinated groups?
Probability model: we observe n samples, each sample has probability pij of being of type (i, j)

(Nij)i,j ∼ Multinomial(n; (pij)ij)

Null hypothesis:
H0 : pij = pi+ · p+j

where pi+ =
∑
ij , p+j =

∑
i pij .

Alternative: H1 : (pij)1≤i≤r,1≤j≤c is any non-negative vector with
∑
i,j pij = 1.

As usual, we find 2 log Λ

2 log Λ = 2

r∑
i=1

c∑
j=1

Nij log

(
p̂ij

p̂i+p̂+j

)
where:

• p̂ij is MLE under H1

• p̂i+, p̂+j is MLE under H0

All of these MLEs can be found with Langranian method. We have

p̂ij =
Nij
n
, p̂i+ =

Ni+
n
, p̂+j =

N+j

n

writing oij = Nij , eij = n · p̂i+p+j

2 log Λ =
∑
i,j

log

(
oij
eij

)

≈
∑
i,j

(oij − eij)2

eij

By Wilk’s theorem, these test statistics have approximate χ2
p

p = dim Θ1 − dim Θ0 = (r − 1)× (c− 1)

3.9 Problems With χ2 Test of Independence

(i) χ2 approximation requires n to be large.
Rule of Thumb: Nij ≥ 5 for all i, j
Solution: exact tests

(ii) Low power.
Why? The alternative H1 is too large.
Solution: define a more specific H1, lump categories

Remark. This test also applies when n is random with a Poisson
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3.10 Testing Homogeneity

Example. 150 patients are randomly assigned to 3 groups of equal size. Two sets get a new drug

with different doeses. Third set gets placebo.

Improved No Difference Worse
Placebo 18 17 15 50
Half-dose 20 10 20 50
Full-dose 25 13 12 50

Probability model: Ni1, . . . , N)ic ∼ Multinomial(ni+; pi1, . . . , pic) independently fori = 1, . . . , r
Null H0: p1j = p2j = · · · = prj ∀j = 1, . . . , c
Alternative H1: pi1, . . . , pic is any probability vector for each row i = 1, . . . , r.
Under H1:

L(p) =

r∏
i=1

ni+!

Ni1! . . . Nic!
pNi1
i1 . . . pNic

ic

l(p) = const +
∑
i,j

Ni,j log pij

To find the mle we use Lagranian method with
∑
j pij = 1 for each 1, . . . , r

=⇒ p̂ij =
Nij
ni+

Under H0: let pj = pij

l(p) = const +
∑
i,j

Ni,j log pij

= const +
∑
j

N+j log pj

Using Lagranian method with
∑
j pj = 1

=⇒ p̂j =
N+j

n+ ++

Hence

2 log Λ = 2
∑
i,j

Nij log

(
p̂ij
p̂j

)

= 2
∑
i,j

Nij log

(
Nij

ni+N+j/n++

)

Same statistic as for χ2 test for independence!
Furthermore if oij = Nij and eij = ni+ · p̂j =

ni+N+j

n++
, we have

2 log Λ = 2
∑
i,j

oij log

(
oij
eij

)
≈
∑
i,j

(oij − eij)2

eij

By Wilk’s theorem 2 log Λ ∼ χ2
p approx.

p = dim Θ1 − dim Θ0 = (r − 1)× (c− 1)

So limiting distribution of 2 log Λ is χ2
(r−1)×(c−1) same as independence test!
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Moral. Operationally χ2 tests for independence and Homogeneity are identical

Example (continued).
2 log Λ = 5.129∑

i,j

(oij − eij)
eij

= 5.173

we refer these to a χ2
(3−1)×(3−1) = χ2

4

χ2
4(0.05) = 9.488 . . .

Hence we do not reject H0 with size 5%

3.11 Relationship Between Tests and Confidence Sets

Definition. The acceptence region A of a test is the complement of the critical region

Notation. Let X ∼ fX(·|θ) for some θ ∈ Θ

Theorem. (i) Suppose for each θ0 ∈ Θ there is a test of size α with acceptance region A(θ0) for
the null H0 : θ = θ0. Then

I(X) = {θ : X ∈ A(θ)}

is a 100(1− α) confidence set
(ii) Suppose I(X) is a 100(1−α) confidence set for θ. Then A(θ0) : {x : θ0 ∈ I(x)} is the acceptence

region of a size α test

Proof. Observe that for both (i) and (ii)

θ0 ∈ I(x)︸ ︷︷ ︸
A

⇐⇒ X ∈ A(θ0) ⇐⇒ “accept” H0 : θ = θ0 in a test with data X︸ ︷︷ ︸
B

(i) Assume Pθ(B) = 1− α. Want to prove Pθ(A) = 1− α
(ii) Assume Pθ(A) = 1− α. Want to prove Pθ(B) = 1− α
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Example. X1, . . . , Xn ∼ N(µ, σ2
0); σ2

0 known. We found a 100(1− α)% C.I. for µ is

I(X) = (X ±
Zα/2σ0√

n
)

Using part (ii) of theorem we can find a test for H0 : µ = µ0 of size α

A(µ0) = {x : I(x) 3 µ0}

= {x : µ0 ∈ [X ±
Zα/2σ0√

n
]

This is equivalent to rejecting H0 when∣∣∣∣√n (µ0 − x)

σ0

∣∣∣∣ > Zα/2

This is what we call 2-sided test for a normal location

3.12 Multivariate Normal Distribution

Let X = (X1, . . . , Xn) be a vector of random variables

EX = (EX1, . . . ,EXn)T , Var(X) = (E((X1 − EXi)(Xj − EXj)))i,j

Linearity of expectation gave us:
Let A ∈ Rk×n, b ∈ Rk be constant

E(AX + b) = AEX + b

Var(AX + b) = AVar(X)AT

Definition. We say that X has a multivariate normal (MVN) distribution if for any t ∈ Rn fixed,
tTX ∼ N(µ, σ2) for some (µ, σ2)

Prop. If X is MVN then AX + b is MVN

Proof. Take any t ∈ Rk, then

tT (AX + b) = (AT t)TX + tT b

This is N(µ+ tT b, σ2) where (µ, σ2) are the mean and variance of (AT t)TX
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Prop. A MVN is fully specified by its mean and covariance

Proof. Let X1, X2 be MVN, both with mean µ and variance Σ. We’ll show they have the
same MGF, hence the same distribution

MX1
(t) = Ee1·tTX1 = MtTX1

(t) = exp

(
1 · E[tTX1] +

1

2
Var(tTX1) · 12

)
= exp

(
tTµ+

tTΣt

2

)
This is only a function of µ,Σ. A similar argument yields some MGF for X2

3.13 Orthogonal Projections

Definition. We say P ∈ Rn×n is an orthogonal projection onto col(P ) if for all v ∈ col(P )⊥,
Pw = 0

Prop. P is an orthogonal projection if and only if
• Symmetry: P = PT

• Idempotency: PP = P

Proof. ⇐= : Take v ∈ col(P ), v = Pa for some a ∈ Rn
Then

Pv = PPa = Pa = v

Take w ∈ col(P )⊥, by definition PTw = 0 so

Pw = PTw = 0

=⇒ : We can write any a ∈ Rn uniquely as a = v +w where v ∈ col(P ), w ∈ col(P )⊥. Then

P 2a = PP (v + w) = Pv = P (v + w) = Pa

Since this holds for all a, P 2 = P . For symmetry, take u1, u2 ∈ Rn, note

(Pu1)T ((I − P )u2) = 0

Since this holds for all u1, u2, we have

uT1 (PT (I − P ))u2 = 0

=⇒ PT (I − P ) = 0

=⇒ PT − PTP = 0 =⇒ PT = PTP

Hence PT (and P ) are symmetric

Corollary. If P is orthogonal projection, so is (I − P )

Proof. If P is symmetric, so is I − P . Also

(I − P )(I − P ) = I − 2P + P 2 = I − P
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Prop. If P is an orthogonal projection, then

P = UUT

where columns of U are an orthonormal basis for col(P )

Proof. Check that UUT is projection. It is clearly symmetric, and

UUTUUT = UUT

Furthermore, by definition, col(P ) = col(UUT )

Prop. rank(P ) = Tr(P )

Proof. rank(P ) = Tr(UTU) = Tr(UUT ) = Tr(P )

42



Theorem. If X is MVN, X ∼ N(0, σ2I) and P is an orthogonal projection, then
• PX ∼ N(0, σ2P ), (I − P )X ∼ N(0, σ2(I − P )) are independent
•

‖PX‖2

σ2
= χ2

rank(P )

Proof. The vector
[

P
I − P

]
X is MVN as it is a linear function of X as it is a linear function

of X. Its distribution is fully specified by the mean and variance:

E
[

PX
(I − P )X

]
=

[
P

I − P

]
EX = 0

Var
[
PX (I − P )X

]
=

[
P

I − P

]
σ2I

[
P I − P

]
= σ2

[
P P (I − P )

P (I − P ) I − P

]
= σ2

[
P 0
0 I − P

]
Let Z ∼ N(0, σ2P ), Z ′ ∼ N(0, σ2(I − P )) independent. Then we can see that[

Z
Z ′

]
∼ N(0, σ2

[
P 0
0 I − P

]
)

Hence
[

PX
(I − P )X

]
=

[
Z
Z ′

]
hence PX ⊥⊥ (I − P )X.

For (ii) note that

‖PX‖2

σ2
=
XTPTPX

σ2

=
XT (UUT )T (UUT )X

σ2

=
‖UTX‖2

σ2

where cols of U are orthonormal basis of col(P ). But UTX ∼ N(0, σ2UTU) = N(0, σ2Urank(P ))
so

(UTX)i
σ

∼ N(0, 1) iid for i = 1, . . . , rank(P )

‖PX‖2

σ2
=

rank(P )∑
i=1

(
(UTX)i

σ

)2

∼ χ2
rank(P )

Example. X1, . . . , Xn ∼ N(µ, σ2) for some unknown µ ∈ R, σ2 > 0. Recall that the mles are

µ̂ = X =
1

n

∑
i

Xi σ̂2 =
SXX
n

=

∑
i(Xi −X)2

n
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Theorem. (i) X ∼ N(µ, σ2/n)
(ii) SXX/σ2 ∼ χ2

n−1

(iii) X, SXX are independent

Proof. Let

P =

1/n . . . 1/n
...

. . .
...

1/n . . . 1/n

 ∈ Rn×n

Its easy to check P is symmetric and idempotent, hence a projection matrix.

PX =

X...
X


We’ll write

X =

µ...
µ

+ ε where ε ∼ N(0, σ2I)

Note:
• X is a function of Pε

X = (PX)1 = (P

µ...
µ

+ Pε)1

•

SXX =
∑
i

(Xi −X)2

= ‖X −

X...
X

 ‖2
= ‖(I − P )X‖2

= ‖(I − P )ε‖2

Hence SXX is a function of (I − P )ε. Therefore, X and SXX are independent

Remark. Noting that I − P is a projection with

rank(I − P ) = Tr(I − P ) = n− 1

we can apply the previous theorem to obtain

SXX = ‖(I − P )ε‖2 ∼ χ2
n−1
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4 Linear Models

Data (x1, Y1), . . . , xnYn) wher Yi ∈ R, xi ∈ Rp.
Yi: response or dependent variable
xi1, . . . , xip: predictors or independent random variables.
Goal: model EYi as a function of (xi1, . . . , xip)
We assume

Yi = α+ β1 + β1xi1 + β2xi2 + · · ·+ βpxip + εi

• α intercept
• β ∈ Rp: coefficients
• εi is a random variable, “the noise”

α, β are the parameters of interest

Remarks.
(i) We will eliminate the intercept by making xi1 = 1 for all i, so β1 plays the role of the intercept
(ii) A linear model can also model non-linear relationships

e.g. Yi = a+ bzi + cz2
i + εi. We can rephrase this as a linear model with xi = (1, zi, z

2
i )

(iii) βj can be interpreted as the effect on Yi of increasing xij by 1, while keeping
xi1, . . . , xi,j−1, xi,j+1, . . . , xip fixed. This effect cannot be interpreted causally, unless this is
a randomised control experiment.

4.1 Matrix Formulation

Equation.

Y =

Y1

...
Yn

 X =


xi1 . . . x1p

x21 . . . x2p

...
...

xn1 . . . xnp

 β =

β1

...
βn

 ε =

ε1

...
εn


Y = Xβ + ε

Y is random, Xβ is fixed, and ε is random

Moment assumptions:
(i) Eε = 0 =⇒ EYi = xTi β
(ii) Varε = σ2I ⇐⇒

• Varεi = σ2 “homokedasticity”
• Cov(εi, εj) = 0 for i 6= j

Initially, we won’t assume anything else about the distribution of ε.
We will always assume that X has full rank p. Since X ∈ Rn×p, this requires n ≥ p (we need at least
as many samples as predictors)
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Method. Least squares estimation: The least squares estimator β̂ minimises the residual sum of
squares

S(β) = ‖Y −Xβ‖2 =
∑
i

(Yi − xTi β)2

This is a P.D quadratic polynomial in β, so it is minimised at point where

∂S(β)

∂βk

∣∣∣∣
β=β̂

= 0 for all k = 1, . . . , p

=⇒ −2

n∑
i=2

xik(Yi −
∑
j

xij β̂j) = 0 ∀k = 1, . . . , p

=⇒ XTXβ̂ = XTY

as X has full rank, XTX is invertible

=⇒ β̂ = (XTX)−1XTY

Note. •
Eβ̂ = E[(XTX)−1XTY Y ] = (XTX)−1XTEY = (XTX)−1XTXβ = β

∴ β̂ is unbiased
•

Var(β̂) = Var((XTX)−1XTY )

= (XTX)−1XTVar(Y )[(XTX)−1XT ]T

= σ2(XTX−1)XTX(XTX)−1

= σ2(XTX)−1
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Theorem (Gauss-Markov). Let β∗ = CY be any other linear estimator, which is unbiased, Eβ∗ =
β (∀β). Then for any fixed t ∈ Rp

Var(tT β̂) ≤ Var(tTβ∗)

We say β̂ is the Best Linear Unbiased Estimator

Proof. Want to prove:

Var(tTβ∗)−Var(tT β̂) = tT (Varβ∗ −Varβ̂)t ≥ 0 ∀t ∈ Rp

⇐⇒ Var(β∗)−Var(β̂) is P.S.D.
Let A = C − (XTX)−1XT .
Note ∀β

EAY = Eβ∗ − Eβ̂ = 0

EAY = AEY = AXβ = 0

Thus
AX = 0

Now

Var(β∗) = Var((A+ (XTX)−1XT )Y ) = (A+ (XTX)−1XT )VarY︸ ︷︷ ︸
σ2I

[A+ (XTX)−1XT ]T

= σ2(AAT + (XTX)−1 +AX(XTX)−1 + (XTX)−1XTAT )

= σ2AAT + Var(β̂)

=⇒ Var(β∗)−Var(β̂) = σ2AAT

which is P.S.D

Remark. Think of t ∈ Rp as vector of predictors for a ew sample. Then tT β̂ is a prediction for EYi
for this new sample, when we use β̂, and tTβ∗ is prediction with β∗.
Note tT β̂, tTβ∗ are both unbiased

4.2 Fitted Values and Residuals

Definition. Fitted values are

Ŷ = Xβ̂ = X(XTX)−1XTY

Residuals are
Y − Ŷ = (I − P )Y
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Prop. P is orthogonal projection onto col(X)

Proof. If v ∈ col(X), i.e. v = Xb

Pv = X(XTX)−1XTXb = Xb = v

If w ∈ col(X)⊥

Pw = X(XTX−1)XTw = 0

Corollary. Ŷ = PY is orthogonal projection of Y onto col(X), and residuals Y − Ŷ = (I − P )Y is
a perpendicular vector

Y

Ŷ

Y − Ŷ

Rn

Col(X) subspace of dim p

4.3 Normal Linear Model

From now on, we will assume
ε ∼ N(0, σ2I)

parameters in model are (β, σ2)
Likelihood:

L(β, σ2) = fY (y|β, σ2)

= (2πσ2)−n/2 exp

{
− 1

2σ2

∑
i

(Yi − xTi β)2

}

4.4 Inference in Normal Linear Model

MLE for σ2?
Take

∂l( ˆβ, σ2)

∂σ2
= 0

=⇒ σ̂2 =
‖Y −Xβ̂‖2

n
=
‖Ŷ − Y ‖2

n
=
‖(I − P )Y ‖2

n
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Theorem. (i) β̂ ∼ N(β, σ2(XTX)−1)
(ii) nσ̂2/σ2 ∼ χ2

n−p
(iii) β̂, σ̂2 are independent

Proof. For (i), we already know Eβ̂ = β and Var(β̂) = σ2(XTX)−1. So enough to show that
β̂ is MVN. Have

β̂ = (XTX)−1XTY where Y ∼ N(Xβ, σ2I)

hence β̂ is MVN.
For (ii)

nσ̂2

σ2
=
‖(I − P )Y ‖2

σ2
=
‖(I − P )(Xβ + ε)‖2)

σ2

=
‖(I − P )ε‖2

σ2
∼ χ2

Tr(I−P ) as (I − P )X = 0

where Tr(I − P ) = n− Tr(P ) = n− p since X ∈ Rn×p has rank p
For (iii) observe that σ̂2 is a function of (I − P )ε, and also

β̂ = (XTX)−1XTY = (XTX)−1XT (Xβ + ε)

= β + (XTX)−1XT ε︸ ︷︷ ︸
=(XTX)−1XTPε

so β̂ is a function of Pε. But by Thm 1, Pε⊥(I − P )ε, hence β̂⊥σ̂2

Equation.

E
[
σ̂n

σ2

]
= E

[
χ2
n−p
]

= n− p

=⇒ Eσ̂2 = σ2n− p
n

< σ2

So σ̂2 is a biased estimator. It is asymptotically unbiased if p is fixed as n→∞.

Example (Student-t distribution). Let U ∼ N(0, 1), V ∼ χ2
n, U⊥V . Then we say T = U/

√
V/n

has a tn distribution

Examples (F distribution). If V ∼ χ2
n, W ∼ χ2

m, V⊥W then we say that F = V/n
W/m has an Fn,m

distribution.
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Method. Confidence interval for β1: We’d like to find a 100 · (1− α)% for one of the coefficients in
β, WLOG take β1.
Note:

β1 − β̂1√
σ2 − (XTX)−1

11

∼ N(0, 1)⊥ σ̂
2

σ2
n ∼ χ2

n−p

taking matrix inverse first, then index. We construct a pivot

β1−β̂1√
σ2(XTX)−1

11√
σ̂2n

σ2(n−p)

∼ U

V/(n− p)
∼ tn−p

Then

Pβ,σ2

−tn−p(α/2) ≤ β̂1 − β1√
(XTX)−1

11

√
n− p
nσ̂2

≤ tn−p(α/2)

 = 1− α

Rearrange to obtain:

Pβ,σ2

β̂1 − tn−p(α/2)

√
(XTX)−1

11 σ
2√

(n− p)/n
≤ β1 ≤ β̂1 + tn−p(α/2)

√
(XTX)−1

11 σ
2√

(n− p)/n


Hence

I = [β1 ± tn−p(α/2)

√
(XTX)−1

11 σ
2√

(n− p)/n
]

is a 100 · (1− α) CI for β1

Example. Test for H0 : β1 = 0 vs H1 : β1 6= 0?
By connection between tests and C.I.s, we can test H0 with size α if we reject H0 whenever 0 6∈ I

Example (Q10, ES2). We have special case: Y1, . . . , Yn ∼ N(µ, σ2), µ ∈ R, σ2 > 0 are both
unknown. Want to do inference on µ.
Note: this is a normal linear model with

X =

1
...
1

 β =
[
µ
]

i.e. β1 = µ
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4.5 Confidence Sets for β

β̂ − β ∼ N(0, σ2(XTX)−1).
Then

(XTX)1/2(β̂ − β) ∼ N(0, σ2 (XTX)1/2(XTX)−1(XTX)1/2︸ ︷︷ ︸
I

)

Hence
‖(XTX)−1/2( ˆβ − β)‖2

σ2︸ ︷︷ ︸
=‖X(β̂−β)‖2/σ2

∼ χ2
p

This is independent of σ̂2n/σ2 ∼ χn−p by Theorem 1. Form a pivot

‖X(β̂ − β)‖2/σ2p

σ2n/(σ2(n− p))
∼ χp/p

χ(n−p)/(n− p)
∼ Fp,n−p

Therefore for all β, σ2,

Pβ,σ2

(
‖X(β̂ − β)‖2/p
σ2n/(n− p)

≤ Fp,n−p

)
= 1− α

But we can say

{β′ ∈ Rp :
‖X(β̂ − β′)‖2/p
σ̂2n/(n− p)

≤ Fp,n−p(α)}

is a 100(1− α)% confidence set for β.
This set is an ellipsoid

(β̂1, β̂2)

principal axes are given by eigenvectors of XTX

β′1

β′2
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4.6 F -test

Method. We wish to test whether a whole collection of predictors has no effect on the response.
WLOG take the first p0 ≤ p predictors

H0 : β1 = β2 = · · · = βp0 = 0

H1 : β ∈ Rp

Write X = ( X0︸︷︷︸
n×p0

, X1︸︷︷︸
n(p−p0)

)

β =

[
β0

β1

]
β0T = (β1, . . . , βp0)

The null model has β0 = 0, so it is a linear model:

Y = Xβ + ε = X1β
1 + ε

We’ll write
P = X(XTX)−1XT P1 = X1(XT

1 X1)−1XT
1

Note that as X,P have full rank, so must X1, P1

Lemma. • (I − P )(P − P1) = 0
• P − P1 is orthogonal projection with rank p0

Proof. P − P1 is clearly symmetric. Also idempotent:

(P − P1)(P − P1) = P 2 − PP1 − P1P + P 2
1

= P − P1 − P1 + P1

= P − P1

rank(P − P1) = Tr(P − P1) = Tr(P )− Tr(P1) = p− (p− p0) = p0

Also
(I − P )(P − P1) = P − P1 − P + PP1 = 0
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Method (continued). Recall that the maximum log-likelihood in the normal linear model

max
β∈Rp,σ2>0

l(β, σ2) = l(β̂, σ̂2)

= −n
2

log
(
σ̂2
)
− n

2
+ const.

= −n
2

log

(
‖(I − P )Y ‖2

n

)
+ const.

The generalised LRT statistic is

2 log Λ = 2{ max
β∈Rp,σ2>0

l(β, σ2)− max
β0=0,β1∈Rp−p0 ,σ2>0

l(β, σ2)

= n{− log

(
‖(I − P )Y ‖2

n

)
+ log

(
‖(I − P1)Y ‖2

n

)
}

Wilk’s theorem says this is approximately χ2
p0 if n→∞ with p, p0 fixed.

Note that 2 log Λ is monotone in

‖(I − P1)Y ‖2

‖(I − P )Y ‖2
=
‖(I − P )Y ‖2 + ‖(P − P1)Y ‖2

‖(I − P )Y ‖2

So generalised LRT rejects when the folloring statistic is large

‖(P − P1)Y ‖2

‖(I − P )Y ‖2
· 1/p0

1/(n− p)
:= F

Theorem. F has an Fp0,n−p distribution under the null hypothesis

Proof. Recall
‖(I − P )Y ‖2 = ‖(I − P )ε‖2 ∼ χ2

n−p · σ2

Need to show that this is indep from ‖(P − P1)Y ‖2 ∼ χp0 · σ2. Under the null,

(P − P1) = (P − P1)(Xβ + ε)

= (P − P1)(X1β
1 + ε)

(P − P1)ε

So indeed
‖(P − P1)Y ‖2

σ2
=
‖(P − P1)ε‖2

σ2
∼ χ2

rank(P−P1) = χp0

To show independence of ‖(I − P )Y ‖2 and ‖(P − P1)Y ‖2 note that these depend on (I −

P )ε and (P − P1)ε, respectively and these are independent as
[

(I − P )ε
(P − P1)ε

]
is MVN and

∼ N(0,

[
I − P (I − P )(P − P1)

(I − P )(P − P1) P − P1

]
) = N(0,

[
I − P 0

0 P − P1

]
) by lemma.

Hence (I − P )ε and (P − P1)ε are normal, uncorrelated, therefore independent.

So the generalised LRT of size α rejects H0 when

F > Fp0,n−p(α)
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Remarks.
• This is exact for every n, p, p0

• Previously, we found test for H0 : β1 = 0 vs H1 : β1 6= 0. This is a special case of the current
setting where p0 = 1.
The test we found (of size α) rejects when

|β̂1| > tn−p

(α
2

)√ σ̂2n(XTX−1
11 )

n− p

We will show this is some critical region as the F -test. We have above iff

β̂2
1 > tn−p

(α
2

)2 σ̂2n(XTX−1
11 )

n− p

Recall
T =

U√
W/n

, U ∼ N(0, 1) ⊥⊥W ∼ X2
n

T 2 =
U2

W/n
∼ χ2

1/1

W/n
∼ F1,n

So previously reject when
β̂1/(X

TX)−1
11

σ̂2n/(n− p)
> F1,n−p(α)

Enough to show that

β̂1

(XTX)−1
11

=
‖(P − P1)Y ‖2

p0
,

σ̂2n

n− p
=
‖(I − P )Y ‖2

n− p

Note P − P1 is rank-1 projection onto the 1dim subspace spanned by

(I − P )X0 = v

‖(P − P1)Y ‖2 = ‖ v

‖v‖

(
v

‖v‖

)T
Y ‖2

=
(vTY )2

‖v‖2

=
(XT

0 (I − P1)Y )2

‖(I − P1)X0‖2
=

(XT
0 (I − P1)PY )2

‖(I − P1)X0‖2

=
(XT

0 (I − P1)Xβ̂)2

‖(I − P1)X0‖2

(I − P1)X = [(I − P1X0), 0, 0, . . . , 0]

So
‖(P − P1)Y ‖2 = ‖(I − P1)X0‖2β̂1

Finally, we show

(XTX)−1
11 =

1

‖(I − P1)X0‖2

(exercise, apply woodbury identity to XTX)
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