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0 Notation

Notation. Throughout this course a column vectorab
c


is to be interpreted as the vector x = aex + bey + cez where {ex, ey, ez} are basis vectors aligned
with the fixed Cartesian x, y, z axes in R3

y

z

x

e1 ≡ ex

e2 ≡ ey

e3 ≡ ez

i.e.

x ≡ xiei

≡

x1

x2

x3


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1 Differential Geometry of curves

1.1 Parametrised Curves and Arc Length

Definition. A parametrised curve C in R3 is just the image of a continuous map

x : [a, b]→ R3

in which
t 7→ x(t)

In caresian coordinates

x(t) =

x1(t)
x2(t)
x3(t)

 =

x(t)
y(t)
z(t)



O

x(a)

x(t1)

x(b)

Definition. We say C is differentiable if each of the components {xi(t)}3i=1 are differentiable.

Definition. We say C is regular if |x′(t)| 6= 0

Definition. If C is differentiable and regular say C is smooth
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Remark. Why “regular” condition?
Consider x(t) = (t2, t3). Clearly differentiabble but x(t) has cusp at t = 0.

Note. |x′(0)| = 0

Note. Recall that xi(t) is differentiable at t iff

xi(t+ h) = xi(t) + x′i(t)h+ o(h)

where o(h) represents function that obeys

o(h)

h
→ 0 as h→ 0

In terms of vectors
x(t+ h) = x(t) + x′(t)h+ o(h)

where o(h) a vector for which |o(h)|
h → 0
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Method. Finding length of a curve C.
Approximating C using straight lines,

C : t 7→ x(t), t ∈ [a, b]
Introduce partition P of [a, b] with t0 = a, tN = b and

t0 < t1 < t2 < · · · < tN

a

t0 t1 tN

b

Set ∆ti = ti+1 − ti and ∆t = max
i

∆ti

Define length of C relative to P by

l(C,P ) =

N−1∑
i=0

|x(ti+1 − ti)|

As ∆t gets smaller, expect l(C,P ) to give better approximation to length of C, l(C). Define length
of C by:

l(C) = lim
∆t→0

N−1∑
i=0

|x(ti+1 − ti)|

= lim
∆t→0

l(C,P )

If limit doesn’t exist, say curve is non-rectifiable.
Suppose C is differentiable. Then

x(ti+1) = x(ti + ti+1 − ti)
= x(ti + ∆ti)

= x(ti) + x′(ti)∆ti + o(∆ti)

It follows
|x(ti+1 − ti)| = |x′(ti)||∆ti + o(∆ti)|

So if C is differentiable,

l(C,P ) =

N−1∑
i=0

|x′(ti)||∆ti + o(∆ti)|
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Method (continued). Recall that o(∆)ti represents a dunction for which o(∆ti)
∆ti

→ 0 as ∆t→ 0.
So for any ε > 0, if ∆t = max

i
∆ti is sufficiently small, have

|o(∆ti)| <
ε

b− a
∆ti

for i = 0, . . . , N − 1. So

|l(C,P )−
N−1∑
i=0

|x′(ti)|∆ti| = |
N−1∑
i=0

o(∆ti)| <
ε

b− a

N−1∑
i=0

= ε

So the LHS → 0 as ∆t→ 0. Get

l(C) = lim
∆t→0)

l(C,P )

= lim
∆t→0)

N−1∑
i=0

|x′(ti)|∆ti

=

∫ b

a

|x′(t)|dt

Note. See Analysis I, definition of Reimann integral.
So in summary have equation below:

Equation. if C : t 7→ x(t), t ∈ [a, b]

l(C) =

∫ b

a

|x′(ti)|dt

=

∫
C

ds

ds = |x′(ti)|dt

s is the “arc-length element”
Similarly define ∫

C

f(x) ds =

∫ b

a

f(x(t))|x′(ti)|dt

7



Equation. If C is made up of M smooth curves C1, C2, . . . , CM

Wrtie C = C1 + C2 + · · ·+ CM and define∫
C

f(x) ds =

n∑
i=1

∫
Ci

f(x) ds

Note.

ds = |x′(t)|dt =

√
(
dx

dt
)2 + (

dy

dt
)2 + (

dz

dt
)2 dt

i.e. ds2 = dx2 + dy2 + dz2

Example. Let C be circle of radius r > 0 in R3

x(t) =

r cos t
r sin t

0

 t ∈ [0, 2π]

So

x′(t) =

−r sin t
r cos t

0

 t ∈ [0, 2π]

∫
C

ds =

∫ 2π

0

√
r2 sin2 t+ r2 cos2 tdt

=

∫ 2π

0

r dt

= 2πr

Also ∫
C

x2y ds =

∫ 2π

0

(r cos t)2(r sin t)r dt

= 0

(as r dt = |x′(t)|dt)
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Remark. Does l(C) depend on parametrisation? e.g.

x(t) =

r cos t
r sin t

0

 t ∈ [0, 2π]

˜x(t) =

r cos(2t)
r sin(2t)

0

 t ∈ [0, π]

Both give different parametrisation of circle of radius r
Suppose C has two different parametrisations

x = x1(t), a ≤ t ≤ b

x = x2(τ), α ≤ t ≤ β

Must have x2(τ) = x1(t(τ)) for some function t(τ). Assume dt
dτ 6= 0 so map between t and τ invertible

and differentiable. (see inverse function theorem in Analysis + Topology). Note

x2(τ) =
d

dτ
x2(t)

=
d

dτ
x1(t(τ))

=
dt

dτ
x′1(t(τ))

From definitions, ∫
C

f(x) ds =

∫ b

a

f(x(t))|x′(ti)|dt

Make substitution t = t(τ), and assume dt
dτ > 0, latter integral becomes∫ β

α

f(x2(τ)) |x′1(t(τ)| dt
dτ

dτ︸ ︷︷ ︸
|x′2(τ)| dτ

Which is precisely the same as
∫
C
f(x)ds using x2(τ) parametrisation. Similar holds when dt

dτ < 0
(exercise). So definition of

∫
C
f(x) ds does not depend on choice of parametrisation of C.

Definition. The arc-length function for a curve [a, b] 3 t 7→ x(t) by

s(t) =

∫ t

a

|x′(τ)|dτ

So s(a) = 0 and s(b) = l(c).
Also:

ds

dt
= |x′(t)| ≥ 0
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Definition. For regular curves have ds
dt > 0, so can invert relationship between s and t to find

t = t(s)

So we can parametrise regular curves wrt arc-length, If we write r(s) = x(t(s)) where 0 ≤ s ≤ l(C),
then by chain rule:

dt

ds
=

1
ds
dt

=
1

|x′(t(s))|

So

r′(s) =
d

ds
x(t(s))

=
dt

ds
x′(t(s))

=
x′(t(s))

|x′(t(s))|

i.e. |r′(s)| = 1. This (consistently) gives

l(C) =

∫ l(C)

0

|r′(s)|ds =

∫ l(C)

0

dsX

r(0)

r(s)

r′(0)
r′(s)

O

1.2 Curvature and Torsion

Note. Throughout this section talk about generic regular curve C parametrised by arc-length, write
s 7→ r(s)

Definition. Tangent vector
t(s) = r′(s)

Already know |t(s)| = 1. Since |t(s)| doesn’t change, the second dervative r′′(s) = t′(s) only measures
change in direction

So intuitively, if |r′′(s)| is large then curve rapidly changes direction, whereas if |r′′(s)| is small, expect
curve to be approximately flat.
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Definition. The curvature
κ(s) = |r′′(s)| = |t′(s)|

Example.
κ large

κ small

Since t = r′(s) is a unit vector, differentiating t · t = 1 gives t · t′ = 0.

Definition. The principle normal is defined by the formula

t′ = κn

n is the principle normal

Note. n is everywhere normal to C since

t · n = 0

Definition. Can extend {t,n} to orthonormal basis by defining the binormal

b = t× n

Since |b| = 1 have b′ · b = 0. Also since t ·=0 and n · b = 0

0 = (t · b)′ = t′ · b + t + t · b′

= κn · b︸ ︷︷ ︸
=0

+t · b′

So b′ is orthogonal to both t and b i.e. it is parallel to n.

Definition. The torsion of a curve is defined by the formula

b′ = −τn

τ is the torsion

Have two equations
t′ = κn, b′ = −τn
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Prop. The curvature κ(s) and torsion τ(s) define a curve up to translation/ orientation.

Proof. Since n = b× t, have
t′ = κ(b× t)

b′ = −τ(b× t)

This gives six equations for six unknowns.
Given κ(s), τ(s), t(0), b(0), can construct t(s), b(s) and hence n = b× t. Hence result
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1.3 Radius of Curvature

Taylor expand a generic curve s 7→ r(s) about s = 0. Write t = t(0), n = n(0) etc.

r(s) = r(0) + sr′(0) +
1

2
s2r′′(0) + o(s2)

= r + st +
1

2
s2κn + o(s2)

Suppose, WLOG, that t is horizontal.
What circle goes through curve tangentially at point r = r(0) is best fit?

O

C

r

n

t

Equation of circle
x(θ) = r +R(1− cos θ)n +R sin θt

Expand for |θ| small

x(θ) = r +Rθt +
1

2
Rθ2n + o(θ2)

Arc length on circle is s = Rθ. So

x(θ) = r + st +
1

2

1

R
s2n + o(s2)

To match equation for curve up to scond order, would require

R =
1

κ

Definition. We say R(s) = 1
κ(s) is the radius of curvature of curve s 7→ r(s)

1.4 Gaussian Curvature

Note. Non-examinable
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Definition. The Gaussian curvature: κG = κminκmax Where κ varies over fixed point on surface
curve in intersection of planes through normal rotating from [0, 2π)

Theorem (Remarkable Theorem). Gaussian curvature of surface S is invariant if you bend the
surface without stretching it.

2 Coordinates, Differentials + Gradients

2.1 Differentials + First Order Changes

Definition. The differential of f , written df , by

df =
∂f

∂ui
dui

Call {dui} differential forms. These are L.I. if {u1, . . . , un} are independent.
I.e. if αidui = 0 =⇒ αi = 0 for i = 1, . . . , n. Similarly, if x = x(u1, . . . , un we define

dx =
∂x

∂ui
ui

Example. If f(u, v, w) = u2 + w sin(v). Then

df = 2udu+ w cos(v) dv + sin(v) dw

If x(u, v, w) =

u2 − v2

w
ev

,
dx =

2u
0
0

 du+

−2v
0
ev

 dv +

0
1
0

 dw

14



Note. Differenials encode info about how a function/ vector field changes when we “wobble” our
coords. Indeed, by calculus:

f(u1 + δu1, . . . , un + δun)− f(u1, . . . , un) =
∂f

∂ui
δui + o(δu)

(δu = (δu1, . . . , δun)
o(δu)
|δu| → 0 as |δu| → 0

So if δf denotes change in f(u1, . . . , un) under perturbation of coords

(u1, . . . , un) 7→ (u1 + δu1, . . . , un + δun)

We have, to first order,

δf ' ∂f

∂ui
δui

Similarly for vector fields

δx ' ∂x

∂ui
δui

(this gives us the chain rule for free, see Ashton’s notes)

2.2 Coordinates and Line Elements

Already seen at least two different sets of coords for R2: Cartesian coordinates (x, y) and polar
coordinates (r, θ). Have invertible relationship:

x = r cos θ

y = r cos θ

A general set of coords (u, v) on R2 can be specified by its relationship to (x, y), i.e. specify smooth
functions

x = x(u, v)

y = y(u, v)

which can be inverted to give smooth functions

u = u(x, y)

v = v(x, y)

Similarly for R3, have (u, v, w) coords by specifying

x = x(u, v, w)

y = y(u, v, w)

z = z(u, v, w)
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Definition. Standard Cartesian coords

x(x, y) =

[
x
y

]
= xex + yey

{ex, ey} are orthonormal vectors. ex points in the direction of changing x with y fixed.

Said differently,

ex =
∂
∂xx(x, y)
∂
∂xx(x, y)

, ey =

∂
∂yx(x, y)
∂
∂yx(x, y)

Feature of Cartesian coords:

dx =
∂x

∂x
dx+

∂x

∂y
dy

= dx ex + dy ey

i.e. changing coord x 7→ x + δx, then the vector changes (to first order) by x 7→ x + δx ex. We call
dx the line element

Definition. The line element is:

dx =
∂x

∂u1
du1 +

∂x

∂u2
du2

It tells us how small changes in coord produce changes in position vectors.

For polars (r, θ)

x(r, θ) =

[
r cos θ
r sin θ

]
≡ rer

where we have used basis vectors {e2, eθ}

er =

[
cos θ
sin θ

]
, eθ = {− sin θ cos θ}

Warning. {er, eθ} are orthonormal at each (r, θ), but NOT the same for each (r, θ)

Note. As before,

er =
∂
∂rx(r, θ)

| ∂∂rx(r, θ)|
, eθ =

∂
∂θx(r, θ)

| ∂∂θx(r, θ)|

Since {er, eθ} are orthogonal, makes sense to call (r, θ) orthogonal curvilinear coordinates.
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For polars, have line element

dx =
∂x

∂r
dr +

∂x

∂θ
dθ

= er dr + r dθ eθ

See that a change θ 7→ θ + δθ produces a (first order) change

x 7→ x + rδθ eθ

Warning. NOT x 7→ x + δθ eθ

2.2.1 Orthogonal Curvilinear Coordinates

Definition. We say that (u, v, w) are a set of orthogonal curvilinear coords if the vectors

eu =
∂x
∂u

|∂x∂u |
, ev =

∂x
∂v

|∂x∂v |, ew =
∂x
∂w

| ∂x∂w |

form a right-handed handed basis for each (u, v, w)

Note. Right handed means eu × ev = ew

Warning. Just as with polar coordinates, {eu, ev, ew} form orthonormal basis for R3 at each (u, v, w),
but NOT necessarily the same basis at each point.

Notation. It is standard to write

hu =

∣∣∣∣∂x∂u
∣∣∣∣ , hv =

∣∣∣∣∂x∂v
∣∣∣∣ , hw =

∣∣∣∣ ∂x∂w
∣∣∣∣

Definition. Call {hu, hv, hw} scale factors

Note. Line element is

dx =
∂x

∂u
du+

∂x

∂v
dv +

∂x

∂w
dw

= hueu du+ hvev dv + hwew dw

Tells us how sall changes in coords “scale-up” to changes in position x
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2.2.2 Cylindrical Polar Coords

Definition. Cyclindrical polars (ρ, φ, z) defined by:

x(ρ, φ, z) =

ρ cosφ
ρ sinφ
z


with:

0 ≤ ρ <∞

0 ≤ φ < 2π

−∞ < z <∞

Find

eρ =

cosφ
sinφ

0

 , eφ
− sinφ

cosφ
0


ez =

0
0
1


hρ = 1, hφ = ρ, hz = 1

dx = dρ eρ + ρdφ eφ + dz ez

Note.

x =

ρ cosφ
ρ sinφ
z

 = ρ

cosφ
sinφ

0

+ z

0
0
1


= ρ eρ + z ez

Warning. STILL DEPENDENT ON φ AS eρ DEPENDS ON φ

2.2.3 Spherical Polar Coordinates

Definition. Spherical polars (r, θ, φ) defined by:

x(r, θ, φ) =

r cosφ sin θ
r sinφ sin θ
r cos θ


with:

0 ≤ r <∞

0 ≤ θ ≤ π

0 ≤ φ < 2π
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er =

cosφ sin θ
sinφ sin θ

cos θ

 , eθ −
cosφ cos θ

sinφ cos θ
− sin θ


eφ =

− sinφ
cosφ

0


hr = 1, hθ = r, hφ = r sin θ

i.e.
dx = dr er + r dθ eθ + r sin θ dφ eφ

Note.

x = r

r cosφ sin θ
r sinφ sin θ
r cos θ

 = r er

Warning. STILL DEPENDENT ON φ, θ AS er DEPENDS ON φ, θ

2.3 Gradient Operator

Definition. For f : R3 → R, define gradient of f , written ∇f , by

f(x + h) = f(x) +∇f(x) · h + o(h) (*)

Definition. Directional derivative of f in direction v, denoted by Dvf or ∂f
∂v , is defined by

Dvf(x) = lim
t→0

f(x + tv)− f(x)

t

I.e.
f(x + tv) = f(x) + tDvf(x) + o(t) (**)

Equation. Setting h = tv in (*)

f(x + tv) = f(x) + t∇f(x) · v + o(t)

Comparing to previous equation (**), we have:

Dv = v · ∇f

Note. By Cauchy-Schwarz know that a ·b is maximised when a points in same direction as b.

So ∇f points in direction of greatest increase of f
Similarly,
−∇f points in direction of greatest decrease of f
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Example. Suppose f(x) = 1
2 |x|

2. Then

f(x + h) =
1

2
(x + h) · (x + h)

=
1

2
|x|2 +

1

2
(2x · h) +

1

2
|h|2

= f(x) + x · h + o(h)

=⇒ ∇f(x) = x

Method. Suppose we have a curve t 7→ x(t). How does f change as we move along this curve. Write

F (t) = f(x(t))

δx = x(t+ δt)− x(t)

F (t+ δt) = f(x(t+ δt))

= f(x(t) + δx)

= f(x(t)) +∇f(x(t)) · δx + o(δx)

Since δx = x′(t)δt+ o(δt),

F (t+ δt) = F (t) + x′(t) · ∇f(x(t))δt+ i(δt)

I.e.
dF

dt
=

d

dt
f(x(t)) =

dx

dt
· ∇f(x(t))

20



Note. Suppose surface S is defined implicitly

S = {x ∈ R3 : f(x) = 0}

If t 7→ x(t) is ANY curve in S, then f(x(t)) = 0 identically. So

0 =
d

dt
f(x(t)) = ∇f(x(t)) · dx

dt

So ∇f is orthogonal to tangent vector of ANY curve in S.
I.e. ∇f(x) is normal to surface at x
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2.4 Computing the gradient

Equation. If working with orthogonal curbilinear coordinates (O.C.C), (u, v, w), not clear how to
compute ∇f , not clear how to change (u, v, w) so that x = x(u, v, w) changes to x + h.
In cartesian coordinates, life is easy: to get change

x 7→ x + h

just
7→ x+ h1

y 7→ y + h2

z 7→ z + h3

f(x + h) = f(x+ h1 + y + h2 + z + h3)

= f(x) +
∂f

∂x
h1 +

∂f

∂y
h2 +

∂f

∂z
h3 + o(h)

= f(x) +

∂f∂x∂f∂y
∂f
∂z

 · h+ o(h)

i.e.

∇f =

∂f∂x∂f∂y
∂f
∂z


Or, using suffix notation

∇f = ei
∂f

∂xi
, or [∇f ]i =

∂f

∂xi

See that ∇ is a kind of vector differential operator.In Cartesian coordinates

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

≡ ei
∂

∂xi

Example.

f =
1

2
(x2 + y2 + z2) =

1

2
|x|2

Then

∇f ]i =
∂

∂xi

[
1

2
xjxj

]
=

1

2
[δijxj + djδij ]

= xi

[So ∇f = eixi = x as expected]
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Equation. Recall, in Cartesian Coordinates,

dx = dxex + dyey + dzez

= dxiei

Also f = f(x, y, z) has differential

df =
∂f

∂xi
dxi

Then

∇f · dx =

(
ei
∂f

∂i

)
· (ejdxj)

=
∂f

∂xi
(ei · ej) dxi

= df

∇f · dx = df

Note. Coordinate independent statement!

Remark. Have been abusing notation.
Jumped from writing

f(x)→ f(x, y, z)

Really, we should write
F (x, y, z) = f(x(x, y, z))

Seems over the top in Cartesians, but would be more proper to write

F (u, v, w)− f(x(u, v, w))

We should do so as otherwise could have:

p(x) = p(x, y, z) pressure

p(x) = p̃(r, θ, φ) pressure

p(x) = ˜̃p(x, y, z) pressure

Too many different coordinate systems to choose from. Yuck!
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Prop. If (u, v, w) are O.C.C and f = f(u, v, w),

∇f =
1

hu

∂f

∂u
+ ev +

1

hv

∂f

∂v
ew +

1

hw

∂f

∂u
ew

Proof. If f = f(u, v, w) and x = x(u, v, w)

df =
∂f

∂u
du+ · · ·+ ∂f

∂w
dw, dx = hudu eu + · · ·+ h1dw ew

Using df = ∇f · dx, and writing

∇f = (∇f)ueu + · · ·+ (∇f)wew

We find
∂f

∂u
du+

∂f

∂v
dv +

∂f

∂w
dw = hu(∇f)u du+ · · ·+ hw(∇f)w dw

Since {du,dv.dw} are linearly independent,

(∇f)u =
1

hu

∂f

∂u

...

(∇f)w =
1

hw

∂f

∂w

Equation. In cyclindrical polars (ρ, φ, z), hρ = 1, hφ = ρ, hz = 1

∇f =
∂f

∂ρ
eρ +

1

ρ

∂f

∂φ
eφ +

∂f

∂z
ez

In spherical polars (r, θ, φ), hr = 1, hθ = r, hφ = r sin θ,

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ
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Example. Let f(x) = 1
2 |x|

2. Then

f =


1
2 (x2 + y2 + z2) Cartesians
1
2 (ρ2 + z2) Cylindrical
1
2r

2 Spherical

=⇒ ∇f =


xex + yey + zez Cartesians
ρeρ + zez Cylindrical
rer Spherical

= x

Note. Answer is same in each coord system.
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3 Integration over lines, surfaces and volumes

3.1 Line Integrals

Definition. For a vector field F = F(x) and piecewise smooth parametrised curve

C : [a, b] 3 t 7→ x(t)

We define line integral ∫
X

F · dx =

∫ b

a

F(x(t)) · dx

dt
dt

x(a)

x(b)

Remark. If we want to integrate in opposit direction, write
∫
C
F · dx. Can interpret as work fone

by particle moving along C in presence of force F.

x0

x1

x2∆x0

∆x1

x3

∆x2

∫
C

F · dx '
∑
i

F(xi) ·∆xi

∆xi = xi+1 − xi
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Example. Consider

F =

x2y
y2

2zx


Consider two courves connecting origin to

1
1
1



C:[0, 1] 3 t 7→

tt
t

 , C2 : [0, 1] 3 t 7→

 tt
t2


So ∫

C1

F · dx =

∫ 1

0

 t3t2
2t2

 ·
1

1
1

 dt =
5

4

∫
C2

F · dx =

∫ 1

0

 t3t3
2t3

 ·
 1

1
2t

 dt =
13

10

See that, in general, line integral between two points depends on path taken

Example. A particle at x experiences force in cylindrical polars

F(x) = zρeφ

Calculate work done by travelling along

C : [0, 2π] 3 t 7→

a cos t
a sin t
t

 (a > 0)

Recall line element in cylindrical polars

dx = dρ eρ + ρdφ eφ + dz ez

So
F · dx = z2ρ2 dφ

Also, on path

(ρ, φ, z) = (a, t, t)

=⇒ (dρ, dφ, dz) = (0, dt, dt)

=⇒ F · dx = a2tdt

Finally then ∫
C

F · dx = a2

∫ 2π

0

tdt = 2π2a2
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Definition. We say a curve
[a, b] 3 t 7→ x(t)

is closed if x(a) = x(b).
In this case, write ∮

C

F · dx

Sometimes call integrals of this form the circulation of F about C

Example. Take one before previous example with C = C1 − C2

C1

C2 C

∮
C

F · dx =

∫
C1

F · dx−
∫
C2

F · dx = − 1

20

3.2 Conservative Forces and Exact Differentials

We’ve seen how to interpret things like F · dx when they’re inside an integral. This is another
differential form i.e. in coords (u, v, w)

F · dx = ( )du+ ( )dv + ( )dw

Definition. We say that F · dx is exact if

F · dx = df

for some scalar f . Recall that
df = ∇f · dx

So F · dx is exact iff F = ∇f for some scalar f . Call such vector fields conservative.

Claim. So we have
F · dx is exact ⇐⇒ F is conservative.

Remark. Using properties d(αf + βg) = αdf +βdg (α, β) constant, d(fg) = gdf +fdg etc. usually
easy to see if form F · dx is exact
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Prop. If θ is exact differential form then ∮
C

θ = 0

for any closed curve C

Proof. By previous, if θ exact, then θ = ∇f · dx for some scalar f . If C is [a, b] 3 t 7→ x(t)∮
C

θ =

∮
∇f · dx =

∫ b

a

∇(x(t)) · dx

dt

=

∫ b

a

d

dt
[f(x(t))] dt

= f(x(a))− d(x(b))

= 0 if x(a) = x(b)

Warning. Might think e.g. in cylindrical polars, that f(ρ, φ, z) = φ is a nice “function” on R3

x

y

z

φ = 2π
φ = 0

It is multi-valued at a given position
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Prop. Equivalently, if F is conservative then circulation of F around any closed loop curve C vanishes∮
C

F · dx = 0

If F conservative (F · dx exact), then line integral between points A = x(a) and B = x(b) is indepen-
dent of path

Proof.

A

B
C1

C2

If C = C1 − C2, ∮
C

F · dx = 0

⇐⇒
∫
C1

F · dx =

∫
C2

F · dx

Claim. Let (u1, u2, u3) ≡ (u, v, w) be set of OCC. Let

F · dx = θ =
A(u, v, w)

θ1
du+

B(u, v, w)

θ2
dv +

C(u, v, w)

θ3
dw

= θi dui

A necessary condition for θ to be exact is

∂θi
∂uj

=
∂θj
∂ui

each i, j (†)

Proof. Indeed, if θ exact, then θ = df , so

θ =
∂f

∂ui
dui ⇐⇒ θi =

∂f

∂ui

and so
∂θi
∂uj

=
∂2f

∂uj∂ui
=

∂2f

∂ui∂uj
=
∂θj
∂ui

Definition. Call differential forms θ = θi that obey (†) closed. So

θ exact =⇒ θ closed
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Note. The reverse implication is true if the domain Ω ⊆ R3 on which θ is defined is simply-connected.

Definition (Non-examinable). Ω simply connected means all closed loops in Ω can be
continously shrunk to any point insider Ω without leaving it

Look at de Rham Cohomology.

Example. (i)
θ = y dx− xdy

Is it exact?
Check:is it closed

1 6= −1

So
∂

∂y
6= ∂

∂x

(ii) Compute line integral ∮
3x2y dx+ x3 dy

C : [α1, α100] 3 t 7→
[
cos[Im[ζ( 1

2 + it)]]
sin[Im[ζ( 1

2 + it)]]

]
where α1 and α100 are the 1st and 100th zero of ζ( 1

2 + it) i.e.

ζ

(
1

2
+ iα1

)
= ζ

(
1

2
+ iα100

)
= 0

∮
C

3x2y dx+ x3y dy = 0

As
3x2y dx+ x3 dy = d

(
x3y
)

Example.

Work done =

∫
C

F · dx

= m

∫ b

a

ẍ · ẋ dt

=
1

2
m|ẋ|2

∣∣∣∣b
a

If F = −∇V , i.e. F conservative,∫
C

F · dx = −
∫
C

∇V · dx = V (x(a))− V (x(b))

(
1

2
m|ẋ|2 + V (x(t))

)∣∣∣∣
t=a

=

(
1

2
m|ẋ|2 + V (x(t))

)∣∣∣∣
t=b
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3.3 Integration in R2

Want to integrate over bounded region D ⊂ R2.
To do this: cover D with small disjoint sets Aij , each with area δij , each contained in a disc of radius
ε > 0. Let (xi, yj) be points contained in each Aij

(xi, yj)

Aij

disc radius ε > 0

D

Now define ∫
D

f(x) dA = lim
ε→0

∑
i,j

f(xiyj)δAij

Say the integral exists if it is independent of choice Aij and choice (xi, yj)
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Obvious choice of partition would be to use rectangles with δAij = δxδy

x

y

y δy

D

Y

Xy (*)
Sum over horizontal strips of width δy, then take limit as δx→ 0

δy

∫
Xy

f(x, y) dx (where Xy = {x : (x, y) ∈ D})

Summing over each such strip, taking δy → 0 we get∫
D

f(c, y) dA =

∫
Y

(∫
Xy

f(x, y) dx

)
dy

where Y is as (*).
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If we instead sum over vertical strips, get∫
D

f(x, y) dA =

∫
X

(∫
Yx

f(x, y) dy

)
dx

x

y
δx

D

Yx

X

More concisely, we have
dA = dx dy = dy dx

Note. See Fubini’s theorem in Part II Probability and Measure:
If ∫

D

|f(x, y)|dA <∞

Then ∫ (∫
f(x, y) dx

)
dy =

∫ (∫
f(x, y) dy

)
dx =

∫
D

∫
f(x, y) dA
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Example. Let D be a triangle with vertices (0, 0), (1, 0), (0, 1)

x

y

D

y = 1− x

If f(x, y) = xy2 then if we integrate over horizontal strips

x

y

∫
D

f dA =

∫ 1

0

(∫ 1−y

0

xy2 dx

)
dy

=

∫ 1

0

y2

[
1

2
x2

]1−y

0

dy

=

∫ 1

0

1

2
y2(1− y)2 dy =

1

60

With vertical:

x

y

∫
D

f dA =

∫ 1

0

(∫ 1−x

0

xy2 dy

)
dx

=

∫ 1

0

x

[
1

3
y3

]1−x

0

dx

=
1

60
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Method. If f(x, y) = g(x)h(y) and D is a rectangle

D = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}

Then ∫
A

f(x, y) dA =

(∫ b

a

g(x) dx

)(∫ d

c

h(y) dy

)

Method. Often useful to introduce change of variables to compute∫ b

a

f(x) dx

If we introduce x = x(u) with x(α) = a and x(β) = b then:

∫ b

a

f(x) dx =


+
∫ β
α
f(x(u)) dx

du du (β > α, dx
du > 0)

−
∫ α
β
f(x(u)) dx

du du (α > β, dx
du < 0)

If I = [a, b] and I ′ = x(I) ∫
I

f(x) dx =

∫
I′
f(x(u))

∣∣∣∣dxdu

∣∣∣∣ du

Note. Similar formula in 2D
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Prop. Let x = x(u, v) and y = y(u, v) be a smooth, invertible transformation with smooth inverse
that maps the region D′ in the (u, v) plane to the region D in the (x, y)-plane. Write x = x(u, v),
then ∫

D

∫
f(x, y) dx dy =

∫
D′

∫
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv

Where
∂(x, y)

∂(u, v)
= det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
= det

[
∂x

∂u

∣∣∣∣ ∂x∂v
]

is the Jacobian, often denoted by J . Short version is dxdy = |J |dudv

Proof. form a partiton of D using the image of a rectangular partition of D′

u

v

D′

ui ui+1

δv

δu

x

y
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Prop (continued).

Proof (continued).

Aij

x(ui, vj)

x(ui, vj+1)

x(ui+1, vj)δu

δv
Aij

Note δAij ' Area(B)
B =

x(ui, vj)

x(ui, vj+1)

x(ui+1, vj)

x(ui+1, vj)− x(ui, vj) '
∂x

∂u
δu

x(ui, vj+1)− x(ui, vj) '
∂x

∂v
δv

Area(B) ' Area(C)

C =

∂x
∂v (ui, vj)δv

∂x
∂u (ui, vj)δu

Area(C) =

∣∣∣∣det

(
∂x

∂u
δu

∣∣∣∣ ∂x∂v δv
)∣∣∣∣

= |J(ui, vj)|δu δv︸ ︷︷ ︸
Aij
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Prop (continued).

Proof (continued).∫
D

f dA = lim
ε→0

∑
i,j

f(xi, yj)δAij

= lim
ε→0

∑
i,j

f(x(ui, vj), y(ui, vj))|J(ui, vj)|δu δv

=

∫
D′

∫
f(x(u, v), y(u, v))|J(u, v)|dudv

=

∫
D

∫
f(x, y) dxdy

Giving us
dx dy = |J |dudv

Equation.
dx dy = |J |dudv

39



Example. Use polar coords (ρ, φ)
x(ρ, φ) = ρ cosφ

y(ρ, φ) = ρ sinφ

Hence

|J | =
∣∣∣∣det

[
cosφ −ρ sinφ
sinφ ρ cosφ

]∣∣∣∣
= |ρ|
= ρ

If
D′ = {(x, y) : x > 0, y > 0, x2 + y2 < R2}

x

y

D

R

φ

D′

ρ

π
2

D′ = {(ρ, φ) : 0 < ρ < R, 0 < φ,
π

2
}∫

D

∫
f(x, y) dxdy =

∫
D′

∫
f(ρ cosφ, ρ sinφ)ρdρdφ

i.e.
dx dy − ρdρdφ

Take R→∞ ∫ ∞
x=0

∫ ∞
y=0

f(x, y) dy =

∫ π/2

φ=0

∫ ∞
ρ=0

f(ρ cosφ, ρ sinφ)ρdρdφ

Consider
I =

∫ ∞
0

e−x
2

dx

Have

I2 =

∫ ∞
0

e−x
2

dx ·
∫ ∞

0

e−y
2

dy

=

∫ ∞
x=0

∫ ∞
y=0

e−x
2−y2 dxdy

=

∫ π
2

φ=0

(∫ ∞
ρ=0

e−ρ
2

ρdρ

)
dφ

=
π

2

∫ ∞
0

d

dρ

(
−1

2
e−ρ

2

)
dρ =

π

4

=⇒ I =

√
π

2
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3.4 Integration in R3

Method. to integrate over regions V in R3, use similar ideas to those in section 3.3. Let∫
V

f(x) dV = lim
ε→0

∑
i,j,k

f(xi, yi, zi) δVijk

In this case the volume element satisfies

dV = dx dy dz

Note. Can do integrals in any order.

Example.

z = 1− x− y

y = 1− x

V

z

x

y

V bounded by plane x+ y + z = 1 and the three planes x = 0, y = 0 and z = 0∫
V

dV =

∫ 1

x=0

∫ 1−x

y=0

∫ 1−x−y

z=0

dz dy dx

=

∫ 1

x=0

dx

∫ 1−x

y=0

(1− x− y) dy

=
1

6

Could compute CoM of V , assuming density ρ = 1

X =
1

M

∫
V

ρx dV =
1

4

1
1
1


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Prop. Let x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) be a continuously differentiable bijection
with continuously differentiable inverse that maps the volume V ′ to the volume V .∫ ∫ ∫

V

f(x, y, z) dxdy dz =

∫ ∫ ∫
V ′

f(x(u, v, w), y(u, v, w), z(u, v, w))|J |dudv dw

Where
J =

∂(x, y, z)

∂(u, v, w)
= det

[
∂x

∂u

∣∣∣∣ ∂x∂v
∣∣∣∣ ∂x∂w

]
and

x =

x(u, v, w)
...

z(u, v, w)


Short version:

dx dy dz = |J |dudv dw

Proof. Jacobian comes from fact that volume of a parallelepiped generated by

∂x
∂uδu

∂x
∂v δv

∂x
∂w δw

is
det

[
∂x

∂u

∣∣∣∣ ∂x∂v
∣∣∣∣ ∂x∂w

]
δu δv δw

The rest is (almost) same as 2D case.

Example. Find in cylindrical polars (u, v, w) = (ρ, φ, z)

dV = ρdρdφdz |J | = ρ

In spherical polars (u, v, w) = (r, θ, φ)

dV = r2 sin θ dr dθ dφ |J | = r2 sin θ
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Example. Calculate volume of ball of radius R

V = {(x, y, z) : x2 + y2 + z2 ≤ R2}

x

y

z

∫
V

dV =

∫ R

z=−R

∫ √R2−z2

y=−
√
R2−z2

∫ √R2−z2−y2

x=−
√
R2−z2−y2

dxdy dz

=

∫ R

z=−R

[∫ √R2−z2

y=−
√
R2−z2

2
√
R2 − z2 − y2 dy

]
dz

=

∫ R

z=−R

[
y
√
R2 − z2 − y2 + (R2 − z2) tan−1

[
y√

R2 − z2 − y2

]]√R2−z2

y=−
√
R2−z2

dz

=

∫ R

−R
π(R2 − z2) dz

=
4πR3

3

Alternatively, use spherical polars

V ′ = {(r, θ, φ) : 0 ≤ r ≤ R, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π}

So

Volume =

∫ 2π

φ=0

[∫ π

θ=0

[∫ R

r=0

r2 sin θ dr

]
dθ

]
dφ

=

∫ π

θ=0

2πR3

3
sin θ dθ

=
4πR3

3

MUCH NICER COMPUTATION
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Example. Consider ball of radius a with cylinder of radius b < a removed

z

Symmetry suggests use of cylindrical polars

V = {(x, y, z) : x+y2 + z2 ≤ a2, x2 + y2 ≥ b2}

Or in cylindrical polars

{(ρ, φ, z) : b ≤ ρ ≤ a, 0 ≤ z2 + ρ2 ≤ a2, 0 ≤ φ < 2π}

∫
V

dV =

∫ a

ρ=b

[∫ 2π

φ=0

[∫ √a2−ρ2
z=−
√
a2−ρ2

dz

]
dφ

]
ρ

=|J|
dρ

= 2π

∫ a

b

2ρ
√
a2 − ρ2 dρ

=
4π

3
(a2 − b2)3/2

3.5 Integration over surfaces

Remark. A two dimensional in R3 can be defined implicitly using a function f : R3 → R

S = {x ∈ R3 : f(x) = 0}

Normal to S at x is parallel to ∇f(x).
Call surface regular if ∇f(x) 6= 0 for x ∈ S
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Example.
S = {(x, y, z) : x2 + y2 + z2 − 1 = 0}

So

∇f(x) =

2x
2y
2z

 = 2x

which is normal to S at x
Some surfaces have a boundary, e.g.

S = {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0}

Label the boundary by ∂S
∂S = {(x, y, z) : x2 + y2 = 1, z = 0}

In this course, a surface S will either have no boundary (∂S = ∅), or it will have boundary made of
piecewise smooth curves. If S has no boundary, say S is a closed surface.

Moral. It is often useful to parametrise a surface using some coordinates (u, v)

S = {x = x(u, v), (u, v) ∈ D}

D some region in (u, v)-plane

Example. For hemisphere, use spherical polars

S = {x = x(θ, φ) =

sin θ cosφ
sin θ sinφ

cos θ

 , 0 ≤< 2π}

Definition. Call parametrisation of S regular if

∂x

∂u
× ∂x

∂v
6= 0 on S

In this case, we can define normal

n =
∂x
∂u ×

∂x
∂v∣∣∂x

∂u ×
∂x
∂v

∣∣
Note. This normal will vary smoothly wrt (u, v).
Choosing a normal consistently over S gives us a way of orientating the boundary ∂S: make the
convention that normal vectors in your immediate vicinity should be on your left as you traverse ∂S
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Method. How should we compute area of

S = {x = x(u, v), )u, v) ∈ D}

Might think that it would be ∫∫
D

dudv (WRONG)

Patch of area δuδv in D will not in general correspond to patch of area δuδv on S
Note small changes u 7→ u+ δu produces

x(u+ δu, v)− x(u, v) ' ∂x

∂u
δu

Similarly, v 7→ v + δv produces change

x(u, v + δv)− x(u, v) ' ∂x

∂v
δv

So the patch of area δuδv in D corresponds (to first order) to a parallelogram of area

area(parallelogram) =

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ δuδv
Definition. This leads us to define the scalar area element and vector area element

dS =

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ dudv

dS =
∂x

∂u
× ∂x

∂v
dudv = n dS

Equation. Gives area of S:

area(S) =

∫
S

dS =

∫∫
D

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣dudv

and ∫
S

f dS =

∫∫
D

f(x(u, v))

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣dudv
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Example. Consider hemisphere of radius R

S = {x(θ, φ) =

R sin θ cosφ
R sin θ sinφ
R cos θ

 ≡ Rer, 0 ≤ θ ≤ π

2
, 0 ≤ φ < 2π}

So
∂x

∂θ
=

R cos θ cosφ
R cos θ sinφ
−R sin θ

 = Reθ

∂x

∂φ
=

−R sin θ sinφ
R sin θ cosφ

0

 = R sin θeφ

=⇒ dS = R2 sin θ|eθ × eφ|dθ dφ

= R2 sin θ dθ dφ

area(S) =

∫ 2π

θ=0

(∫ 2π

φ=0

R2 sin θ dφ

)
dθ = 2πR2

Example. Suppose velocity of fluid is written u = u(x). Given S, how to calculate how much fluid
passes through it per unit time? On small patch ∂S on S, fluid passing through would be (u · δS)δt
in time δt. So amount of fluid that passes over S in ∂t is

δt

∫
S

u · dS

This is the rate at which fluid passes through surface S times δt.
Called “flux” integrals.

Are these surface integrals dependant on choice of parametrisation of S?
Let x = x(u, v) and x = x̃(ũ, ṽ) be two different parametrisations of S with (u, v) ∈ D and (ũ, ṽ) ∈ D̃.
Must have relationship

x(u, v) = x̃((ũ(u, v), ṽ(u, v))

∂x

∂u
× ∂x

∂v
=

(
∂x̃

∂ũ

∂ũ

∂u
+
∂x̃

∂ṽ

∂ṽ

∂u

)
×
(
∂x̃

∂ũ

∂ũ

∂v
+
∂x̃

∂ṽ

∂ṽ

∂v

)
=

(
∂ũ

∂u

∂ṽ

∂v
− ∂ũ

∂v

∂ṽ

∂u

)
∂x̃

∂ũ
× ∂x̃

∂ṽ

=
∂(ũ, ṽ)

∂(u, v)

∂x̃

∂ũ
× ∂x̃

∂ṽ
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Note. ∫
S

f dS =

∫∫
D̃

f(x̃(ũ, ṽ))

∣∣∣∣∂x̃∂ũ × ∂x̃

∂ṽ

∣∣∣∣ dũdṽ

Change of variables ũ = ũ(u, v) and ṽ = ṽ(u, v)∫
S

f dS =

∫∫
D

f(x(u, v))

∣∣∣∣∂x̃∂ũ × ∂x̃

∂ṽ

∣∣∣∣ ∣∣∣∣∂(ũ, ṽ)

∂(u, v)

∣∣∣∣ dudv

=

∫∫
D

f(x(u, v))

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ dudv

So
∫
S
ddS indep of parametrisation of S
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4 Divergence, Curl and Laplacians

4.1 Definitions

Seen gradient operator ∇, acts on functions f : R3 → R. In Cartesians,

∇ = ei
∂

∂xi

Definition. For a vector field F : R3 → R3, define divergence of F by

div(F) = ∇ · F

Equation. So in Cartesians,

∇ · F =

(
ei

∂

∂xi

)
· (Fjej)

= ei ·
[
∂

∂xi
(Fjej

]
= (ei · ej)︸ ︷︷ ︸

δij

∂Fj
∂xi

=
∂Fi
∂xi

Note. Divergence of a vector field is a scalar field.

Definition. For a vector field F : R3 → R3, define curl of F by

curl(F) = ∇× F

Equation. So in Cartesians

∇× F =

(
ej

∂

∂xj

)
× (Fkek)

= ej ×
[
∂

∂xj
(Fkek)

]
= (ej × ek)︸ ︷︷ ︸

εijkei

∂Fk
∂xj

=

(
εijk

∂Fk
∂xj

)
ei

So in Cartesians,

[∇× F]i = εijk
∂

∂xj
Fk
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Note. Curl of vector field is another vector field. In terms of a “formal” determinant

∇× F = det

 e1 e2 e3
∂
∂x1

∂
∂x2

∂
∂x3

F1 F2 F3



Definition. For scalar field f : R3 → R, define Laplacian of f

∇2f = ∇ · ∇f (= div(grad f))

In Cartesians, [∇f ] = ∂f
∂xi

, so

∇2f =
∂2f

∂xi∂xi
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Example. Consider F(x) = x. Then using Cartesians

∇ · F =
∂

∂xi
xi = δii = 3

[∇× F]i = εijk
∂

∂xj
xk

= εijkδkj

= εijj

= 0

x
x

∇ · F(x) > 0

∇ · F(x) < 0

x

∇ · F(x) = 0
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Example.

[∇× F]3 > 0
[∇× F]3 < 0

[∇× F]3 = 0
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Prop. For f, g scalar fields, F,G vector fields

∇ · (fg) = ∇f)g + (∇g)f

∇ · (fF) = (∇f) · F + f(∇ · F)

∇× (fF) = (∇f)× F + f(∇× F)

∇(F ·G) = F× (∇×G) + G× (∇× F) + (F · ∇)G + (G · ∇)F

∇× (F×G) = F(∇ ·G)−G(∇ · F) + (G · ∇)F− (F · ∇)G

∇ · (F×G) = (∇× F) ·G− F · (∇×G)

Proof.

Note.

[(F · ∇)G]i =

(
Fj

∂

∂xj

)
Gi

= Fj
∂Gi
∂xj

All similar so we only prove the 5th, leave rest as exercise.
By definitions, LHS is

[∇× (F×G)]i = εijk
∂

∂xj
(F×G)k

= εijk
∂

∂xj
(εklmFlGm)

= εijkεklm︸ ︷︷ ︸
δilδjm−δimδjl

[
Fl
∂Gm
∂xj

+Gm
∂Fl
∂xj

]

= Fi
∂Gj
∂xj

− Fj
∂Gi
∂xj

+Gj
∂Gi
∂xj
−Gi

∂Fj
∂xj

= [F(∇ ·G)]i − [(F · ∇)G]i + [(G · ∇)G]i − [(∇ · F)G]i

Remark. These identities hold in ANY OCC, but are most easily established using Cartesians
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Equation. For general OCC, divergence defined by same formula ∇ · F, i.e.(
eu

1

hu

∂

∂u
+ ev

1

hv

∂

∂v
+ ew

1

hw

∂

∂w

)
· (Fueu + · · ·+ Fwew)

Would get terms like (
eu

1

hu

∂

∂u

)
· (Fvev) =

1

hu
eu ·

[
∂

∂u
(Fvev)

]
=

1

hu
eu ·

[
∂Fv
∂u

ev + Fv
∂ev
∂u

]
=
Fv
hu

(
eu ·

∂ev
∂u

)

Remark. Gets quite messy as {eu, ev, ew} will depend on (u, v, w). Just state results:

∇ · F =
1

huhvhw

[
∂

∂u
(hvhwFu) +

∂

∂v
(huhwFv) +

∂

∂w
(huhvFw)

]

∇× F =
1

hvhw

[
∂

∂v
(hwFw)− ∂

∂w
(hvFv)

]
eu + cyc. perms

=
1

huhvhw
det

hueu hvev hwew
∂
∂u

∂
∂v

∂
∂w

huFu hvFv hwFw


AND

∇2f =
1

huhvhw

[
∂

∂u

(
hvhw
hu

∂f

∂u

)
+

∂

∂v

(
huhw
hv

∂f

∂v

)
+

∂

∂w

(
huhv
hw

∂f

∂w

)]
Since

[∇f ]u =
1

hu

∂f

∂u
etc.

Example. In cylindrical polars (ρ, φ, z),

(hρ, hφ, hz) = (1, ρ, 1)

So

∇2f =
1

ρ

[
∂

∂ρ

(
∂f

∂ρ

)
+

∂

∂φ

(
1

ρ

∂f

∂φ

)
∂

∂z

(
ρ
∂f

∂z

)]
=

1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2

∂2f

∂φ2
+
∂2f

∂z2
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Remark. For Laplacian of vector field, might guess

? ∇ · (∇F) ?

But haven’t defined ∇F. In Cartesians, it would make sense

∇2F = ∇2(F1ei)

= (∇2Fi)ei

Using suffix notation, can show

∇2F = ∇(∇ · F)−∇× (∇× F) (†)

i.e.

[∇(∇ · F)−∇× (∇× F)]i =
∂2fi
∂xj∂xj

= ∇2Fi

Since RHS of (†) is well-defined in any OCC, use it as a definition

Definition.
∇2F = ∇(∇ · F)−∇× (∇× F)

Remark. If f harmonic, i.e.
∂2f

∂x2
+
∂2f

∂y2
= 0( in R2)

(elliptic) f analytic
i.e.

f(x, y) =
∑
n,m

anmx
nym

But if
∂2f

∂x2
− ∂2f

∂y2
= 0

(hyperbolic) can’t say as much about nature
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4.2 Relations between div, grad and curl

Prop. For a scalar field f and a vector field F

∇×∇f = 0

∇ · (∇× F) = 0

i.e. curl · grad = 0, div · curl = 0

Proof.

[∇×∇f ]i = εijk
∂

∂xj

(
∂f

∂xk

)
]

= εijk
∂2f

∂xj∂xk

= 0

εijkis anti-symmetric in j, k but ∂2f
∂xj∂xk

is symmetric in j, k resulting in product being zero

∇ · (∇× F) =
∂

∂xi
εijk

∂

∂xj
Fk

= εijk
∂2Fk
∂xi∂xj

= 0

similarly.

Note. Recall F was conservative if F = ∇f .

Definition. Say F is irrotational if
∇× F = 0

Remark. So from proposition

F conservative =⇒ F irrotational

Reverse implication is true if domain of F is simply connected (or “1-connected”)
e.g. R3 is 1-connected byt R3\{z-axis} is not 1-connected

Remark. Similarly, if there exists a vector potential for F i.e.

F = ∇×A

then
∇ · F = 0

Here A is called the vector potential for F
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Definition. When ∇ · F = 0, say that F is solenoidal

Remark. So existence of vector potential for F =⇒ F solenoidal
Reverse implication is true if domain of F is 2-connected.

Definition. Say Ω ⊆ R3 is 2-connected if it is 1-connected and every sphere in Ωcan be continuously
shrunk to any point in Ω

Example. R3 is 2-connected. R3\{0} is 1-connected, but not 2-connected

get stuck trying to get passed origin
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5 Integral Theorems

5.1 Greens Theorem: Statement and Examples

Theorem. If P = P (x, y), Q = Q(x, y) are continuously differentiable functions on A ∪ ∂A and ∂A
is piecewise smooth, then ∮

∂A

P dx+Qdy =

∫ ∫
A

(
∂Q

∂x
− ∂P

∂y

)
dxdy

Orientation of ∂A is suhc that A lies to your left as you traverse it.

A ⊆ R2

Proof. Proved later through other integral theorems
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Note. It is easy to establish this result for

A = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}

In this case, RHS is ∫ d

c

(∫ b

a

∂Q

∂x
dx

)
dy −

∫ b

a

(∫ d

c

∂P

∂y
dy

)
dx

=

∫ d

c

[Q(b, y)−Q(a, y)] dy +

∫ b

a

[P (x, c)− P (x, d)] dx

≡
∮
∂A

P dx+Qdy

A

dx = 0
x = a

dx = 0
x = b

dy = 0
y = c

dy = 0
y = d

Example. Let P = − 1
2y, Q = 1

2x. Then:

area(A) =

∫ ∫
A

dxdy

=

∫ ∫
A

 1

2
= ∂Q
∂x

+
1

2
=− ∂P∂y

 dxdy

=
1

2

∮
∂A

xdy − y dx

If A is ellipse
x2

a2
+
y2

b2
≤ 1

Then ∂A
[0, 2π] 3 t =

[
a cos t
b sin t

]

area(A) =
1

2

∫ 2π

0

(ab cos2 t+ ab sin2 t) dt

= πab
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5.2 Stoke’s Theorem: Statement and Examples

Theorem. If F = F(x) is a continuously differentiable vector field and S is an orientable, piece-wise
regular surface with piecewise smooth boundary ∂S then∫

S

(∇× F) · dS =

∮
∂D

F · dx

Note. Generalisation of FTC

Remark. The “orientable” bitmeans there’s a consistent choice of normal vector at each point of S.
I.e. S has “two sides”.
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Example. Let S be a cap of a a sphere

S
α

S = {x(θ, φ) =

sin θ cosφ
sin θ sinφ

cos θ

 = er, 0 ≤ θ ≤ α, 0 ≤ φ < 2π}

F =

−x2y
0
0


=⇒ ∇× F =

 0
0
x2


On S:

dS =
∂x

∂θ
× ∂x

∂φ
dθ dφ

= eθ(sin θeφ) dθ dφ

= er sin θ dθ dφ

Note that since (x2ex · er) = (sin θ cosφ)2 cos θ on S:

∫
S

∇× F · dD =

∫ 2π

φ=0

∫ α

θ=0

cos2 φ sin3 θ cos θ︸ ︷︷ ︸
1
4

d
dθ

dθ

 dφ

=
π4

sin4 α

∂S is described by

[0, 2π] 3 t 7→

sinα cos t
sinα sin t

cosα


=⇒ dx =

dx

dt
dt = sinα

− sin t
cos t

0

 dt

And so ∮
∂S

F · dx = sin4 α

∫ 2π

0

(− cos2 t sin t)(− sin t) dt

=
π

4
sin4 α
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Example. If S is an orientable, closed surface and F is continuously differentiable then∫
S

∇× F · dS = 0

Prop. If F is continuously differentiable and for every loop X∮
C

F · dx = 0

then ∇× F = 0. SoF irrotational ⇐= F has zero circulation any closed loop.

Proof. Assume result is false i.e. ∃ unit vector is such that

k ·∇ × F(x0)︸ ︷︷ ︸
ε

> 0

for some x.
By continuity, for δ > 0, sufficiently small so that, by continuity

k · ∇ × F(x) >
1

2
ε for |x− x0| < δ

δ

Take loop in this ball {x : |x− x0| < δ} that lies entirely in a plane with normal k

k

S ∂S

Then:

0 =

∮
∂S

F · dx

=

∫
S

∇× F · k dS

>
1

2
ε

∫
dS

> 0
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Example. Let Sε denote a region contained inside a disc of radius ε > 0 centered at x, with normal k

k

Sε x
ε

∫
Sε

∇× F · dS =

∫
Sε

(∇× F(x)−∇× F(x0)) · dS +

∫
Sε

∇× F(x0) · k dS︸ ︷︷ ︸
area(Sε) k·∇×F(x0)

= area(Sε) k · ∇ × F(x0) +

∫
Sε

∇× F · dS +

∫
Sε

(∇× F(x)−∇× F(x0)) · dS︸ ︷︷ ︸
o(area(Sε)

)

= area(Sε) k · ∇ × F(x0) + o(area(Sε))

=⇒ k · ∇ × F(x0) = lim
ε→0

1

area(Sε)

∮
∂Sε

F · dx

So component of ∇× F(x0) in direction k is equal to infinitesimal circulation per unit area about k

5.3 Divergence Theorem: Statement and Examples (Gauss’ Theorem)

Theorem. If F = F(x) is continuously differentiable vector field and V is a volume with piecewise
regular boundar ∂V then ∫

V

∇ · F dV =

∫
∂V

F · dS

where normal to ∂V points OUT of V

Prop. If F = F(x) is continuously differentiable and D ⊆ R2 is a planar region with pievewise sooth
boundary ∂D then ∫

D

= ∇ · F dA =

∮
∂D

F · nds

(s arc-length)
again n points OUT of D.
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Example. Let V be a cylinder. In cylindrical polars (ρ, φ, z):

V = {(ρ, φ, z) : 0 ≤ ρ ≤ R, −h ≤ z ≤ h, 0 ≤ φ ≤ 2π}

SR
n

n

n

S+

S−

Consider F = x. So
∇ · F = 3∫

V

∇ · F dV = 3

∫
v

dV = 6πR2h

Alternatively use Divergence Theorem. ∂V is made from

SR = {(ρ, φ, z) : 0 ≤ ρ ≤ R, −h ≤ z ≤ h, 0 ≤ φ ≤ 2π}

S± = {(ρ, φ, z) : 0 ≤ ρ ≤ R, z = ±h, 0 ≤ φ ≤ 2π}

On SR,
dS = eρR dφ dz

and
x · e + ρ = R

So ∫
SR

F · dS =

∫ h

z=−h

(∫ 2π

φ=0

R2 dφ

)
dz = eπR2h

On S±, find
dS = ±ezρdρdφ

and
x · ez = h

so ∫
S±

F · dS =

∫ 2π

φ=0

(∫ R

ρ=0

hρdρ

)
dφ = πR2h

In summary ∫
∂V

F · dS =

(∫
SR

+

∫
S+

+

∫
S−

)
F · dS

= 4πR2h+ πR2h+ πR2h

= 6πR2h X
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Prop. If F = F(x) is continuously differentiable and for every closed surface S∫
S

F · dS = 0

then ∇ · F = 0

Proof. Suppose result is false. So ∇ · F = ε > 0. By continuity, for δ > 0 sufficiently small

∇ · F(x) >
1

2
ε |x− x0| < δ

V

Choose a volume V inside ball |x− x0| < δ. Then by assumption

0 =

∫
∂V

F · dS =

∫
V

∇ · F dV >
1

2
ε

∫
V

dV > 0

Conclude that if vector field E has zero net flux through any closed surface then it is solenoidal
(∇ · F = 0)
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Example. Let Vε be a volume in R3 contained inside a ball of radius ε > 0, centered at x0

V ε

x0

ε

∫
Vε

∇ · FdV = vol(Vε)∇ · F(x0) +

∫
Vε

[∇ · F(x)−∇ · (F(x0)] dV︸ ︷︷ ︸
0(col(Vε))

(can bound integral considering a max)
Dividing both sides by vol(Vε), take ε→ 0, by Divergence Theorem

∇ · F(x0) = lim
ε→0

1

vol(Vε)

∫
∂Vε

F · dS

So ∇ · F measures “infinitesimal flux per unit volume.”

x0

∇ · F(x0) > 0

x0

∇ · F(x0) < 0

x0

∇ · F(x0) = 0
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Example. Many equations in mathematical physics can be written in the form

∂ρ

∂t
+∇ · J = 0 (†)

Call these CONSERVATION LAWS.
Suppose both ρ and |J| decrease rapidly as |x| → ∞. (ρ = (ρ(x, t), J = J(x, t). Define charge:

Q =

∫
R3

ρ(x, t) dV

We have conservation of charge:

dQ

dt
=

∫
R3

∂ρ

∂t
dV

= −
∫
R3

∇ · J dV

= − lim
R→∞

∫
|x|≤R

∇ · |J|dV

= − lim
R→∞

∫
|x|=R

J · dS

= 0

as |J | → 0 rapidly as |x| → ∞
So (†) gives “conservation of charge”
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5.4 Sketch Proofs

Prop. The divergence theorem is true

Proof. Suppose first that
F = Fz(x, y, z)ez

Then divergence thm says ∫
V

∂Fz
∂z

dV =

∫
∂V

Fzez · dS (†)

∂V

n

A

S+

S−n

x

y

z

∂V = S+ ∪ S−

We write:

S± = {x(x, y) =

 x
y

g±(x, y)

 , (x, y) ∈ A}

Then ∫
V

∂Fz
∂z

dV =

∫ ∫
A

[∫ g+(x,y)

g−(x,y)

∂Fz
∂z

dz

]
dxdy

=

∫ ∫
A

[Fz(x, y, g+)x, y)− Fz(x, y, g−(x, y))] dxdy

To calculate RHS of (†) over S±

dS =
∂x

∂x
× ∂x

∂y
dx dy =

−∂g±∂x−∂g±∂y
1

 dx dy

Since we want n to point OUT of V , on S±, we have

dS|S± = ±

−∂g±∂x−∂g±∂y
1

 dxdy

=⇒
∫
∂V

F · dS =

[∫
S+

+

∫
S−

]
Fzez · dS

=

∫ ∫
A

Fz(x, y, g+(x, y)) dx dy −
∫ ∫
A

Fz(x, y, g−(x, y)) dxdy

=

∫
V

∂Fz
∂z

dV
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Prop (cont.).

Proof (cont.). So (†) holds. In exactly the same way∫
V

∂Fx
∂x

dV =

∫
∂V

Fxex · dS

∫
V

∂Fy
∂y

dV =

∫
∂V

Fyey · dS

Adding these three together∫
V

∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

dV =

∫
∂V

Fxex + Fyey + Fzez · dS

which is the divergence thm
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Prop. Div thm =⇒ Green’s thm

Proof. Use 2D div thm with F =

[
Q
−P

]
. Then

∫ ∫
A

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
A

∇ · FdA =

∮
∂A

F · x ds

A

n

If ∂A is parametrised wrt arc length, so unit tangent vector is

t =

[
x′(s)
y′(s)

]
Then the normal vector must be

n =

[
y′(s)
−x′(s)

]
Check: if t points vertically upwards then A would be to our left:

A t =

[
0
1

]

And so

F · n ds =

[
Q
−P

]
·
[
y′(s)
−x′(s)

]
ds

= P
dx

ds
ds+Q

dy

ds
ds

= P dx+Qdy

i.e. ∫ ∫
A

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
∂A

F · x ds

70



Prop. Green’s thm =⇒ Stoke’s thm

Proof. Consider regular surface

S = {x = x(u, v) : (u, v) ∈ A}

Then the boundary is
∂S = {x = x(u, v) : (u, v) ∈ ∂A}

Green’s thm gives ∮
∂A

P du+Qdv =

∫ ∫
A

(
∂Q

∂u
− ∂P

∂v

)
dudv

Make choices
P (x, y) = F(x(u, v)) · dx

du

Q(x, y) = F(x(u, v)) · dx

dv

Then

P du+Qdv = F(x(u, v)) ·
(
∂x

∂u
du+

∂x

∂v
dv

)
= F(x(u, v)) · dx(u, v)

And so ∮
∂A

P du+Qdv =

∮
∂S

F · dx
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Prop (cont.).

Proof (cont.). For the other side of Stokes’

∂Q

∂u
=
∂xj
∂u

∂Fi
∂xj

∂xi
∂v

+ Fi
∂2xi
∂v∂u

∂P

∂v
=
∂xj
∂v

∂Fi
∂xj

∂xi
∂u

+ Fi
∂2xi
∂u∂v

So:

∂Q

∂u
− ∂P

∂v
=

(
∂xi
∂v

∂xj
∂u
− ∂xi
∂u

∂xj
∂v

)
∂Fi
∂xj

= (δipδjq − δiqδjp)
∂Fi
∂xj

∂xp
∂v

∂xq
∂u

= εijkεpqk
∂Fi
∂xj

∂xp
∂u

∂xq
∂u

= [−∇× F]k

(
−∂x
∂u
× ∂x

∂v

)
k

= (∇× F) ·
(
∂x

∂u
× ∂x

∂v

)
So ∫ ∫

A

(
∂Q

∂u
− ∂P

∂v

)
dudv =

∫ ∫
A

(∇× F) ·
(
∂x

∂u
× ∂x

∂v

)
dudv

=

∫
S

∇× F · dS

This is Stokes’ theorem.

6 Maxwell’s Equations

6.1 Brief Introduction to Electromagnetism

Notation. Denote by
B = B(x, t)

the magnetic field and
E = E(x, t)

electric field. These fields will depend on charge density

ρ = ρ(x, t)

(electric charge per unit volume) and on current density

J = J(x, t)

(electric current per unit area)
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Equation.

∇ ·E =
ρ

ε0
(1)

∇ ·B = 0 (2)

∇×E +
∂B

∂t
= 0 (3)

∇×B− µ0ε0
∂E

∂t
= µ0J (4)

The constants ε0 and µ0 are the permittivity and permeability of free space, which obey

1

µ0ε0
= c2

where c = 299, 792, 458ms−1 is the speed of light.

Method. Of we take div of (4), using ∇ · ∇ ×B = 0,

0 = µ0ε0
∂

∂t
(∇ ·E) + µ0∇ · J

Use (1), ∇ ·E = ρ
ε0
, we get

∂ρ

∂t
+∇ · J = 0

conservation law.
This gives rise to conservation of charge.
(Corresponds to “gauge symmetry”)

6.2 Integral Formulations

Method. Integrating (1) over volume V and using divergence theorem,∫
∂V

E · dS =
1

ε0

∫
V

ρdV ≡ Q

ε0

where Q is the “total charge in V ”
This is called Gauss’ Law.
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Method. For magnetic fields, (2) gives ∫
∂V

B · dS = 0

There is no net magnetic flux over any closed surface ∂V .

E
B

i.e. there are no magnetic monopoles

Method. Integrating (3) over surface S and use Stoke’s theorem∮
∂S

E · dx = −
∫
S

∂B

∂t
· dS = − d

dt

∫
S

B · dS

E

B

The CHANGE in magnetic flux through S induces circulation in E about ∂S

Method. Integrate (4) over S and use Stokes∮
∂S

B · dx = µ0

∫
S

J · dS + µ0ε0
d

dt

∫
S

E · dS

J B

B
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6.3 Electromagnetic Waves

Equation. In Empty space, ρ = 0,J = 0, so (1) - (4) become

∇ ·E = 0 (1)
∇ ·B = 0 (2)

∇×E +
∂B

∂t
= 0 (3)

∇×B− µ0ε0
∂E

∂t
= µ0J (4)

Equation. Recall Laplacian of vector field F

∇2F = ∇(∇ · F)−∇× (∇× F)

Using (1),(3),(4)

∇2E = ∇(0)−∇×
(
−∂B
∂t

)
=

∂

∂t

=
∂

∂t

(
µ0ε0

∂E

∂t

)
Using

µ0ε0 =
1

c2

we get

∇2E− 1

c2
∂2E

∂t2
= 0

(this is the wave equation in 3-D) So in vacuum, electric field travel at speed c.

Equation. Similarly, using (2), (3), (4)

∇2B = ∇(0)−∇× (µ0ε0
∂2E

∂t2
)

= −µ0ε0
∂

∂t

= +µ0ε0
∂2B

∂t2

i.e.

∇2B = − 1

c2
∂2B

∂t2
= 0

So electromagnetic waves always travel at speed c in a vacuum
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6.4 Electrostatics + Magnetostatics

Equation. Suppose all fields and source terms are independent of t. Then Maxwell’s equations
decouple

(A)

{
∇ ·E = ρ

ε0

∇×E = 0

(B)

{
∇ ·B = ρ

ε0

∇×B = µ0J

If we are working on all of R3 (which is 2-connected), then ∇×E = 0 and ∇ ·B = 0 implies

E = −∇φ, B = ∇×A

Call φ the electric potential and A the magnetic potential.
Maxwell’s equations (A) and (B) become

−∇2φ =
ρ

ε0

∇× (∇×A) = µ0J

The first is called Poisson’s equation, see section 7
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6.5 Gauge Invariance (non-examinable)

Equation. The second of Maxwell’s equations is

∇ ·B = 0

Assuming we are working on all of R3, can always write

B = ∇×A

A is not defined uniquely, can always change A 7→ A +∇χ and B is unchanged since ∇×∇χ = 0.
Called gauge invariance, it gives rise to conservation of charge via Noether.
Using B = ∇×A in (3)

∇×
(
E +

∂A

∂t

)
= 0

so we can write this term in brackers in terms of a scalar potential. So

E = −∇φ− ∂A

∂t

So Maxwell’s equations reduce to

(1) =⇒ −∇2φ− ∂

∂t
=

ρ

ε0

(4) =⇒ ∇× (∇×A) + µ0ε0∇
(
∂φ

∂t

)
+ µ0ε0

∂2A

∂t2
= µ0J

Recall
∇× (∇×A) = ∇(∇ · a)−∇2A

and
µ0ε0 =

1

c2

So 2nd equation becomes

−
(
∇2A− 1

c2
∂2A

∂t2

)
+∇

(
∇ ·A +

1

c2
∂φ

∂t

)
= µ0J

Now exploit gauge freedom: change
A 7→ A +∇χ

in such a way that

∇ ·A +
1

c2
∂φ

∂t
→ 0

So Maxwell’s equations become

(1)→ −∇2φ+
1

c2
∂2φ

∂t2
=

ρ

ε0

(4)→ −∇2A +
1

c2
∂2A

∂t2
= µ0J

Solve these to get
B = ∇×A

E = −∇φ− ∂A

∂t
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7 Poisson’s and Laplace Equations

7.1 The Boundary Value Problem

Remark. Many problems in mathematical physics can be reduced to the form

∇2ϕ = F

Called Poisson’s Equation, or if F ≡ 0, call it Laplace’s equation. We solve this equation on Ω = Rn
or Ω ⊂ Rn, n = 2, 3.
Physical problems involve boundary conditions,
i.e. ϕ will have prescribed behaviour on ∂Ω (or as |x| → ∞ if Ω = Rn).

Example. The Dirichlet Problem is {
∇2ϕ = F in Ω

ϕ = f on ∂Ω

Example. The Neumann problem is {
∂2ϕ = F in Ω
∂ϕ
∂n = g on ∂Ω

where we have the normal derivative
∂ϕ

∂n
= n · ∇ϕ

Must interpret boundary conditions in an appropriate manner: we assume that ϕ (or ∂$
∂n approaches

the boundary data f (or g) continuously as x → ∂Ω. That is to say, we assume ϕ and ∇ϕ are
continuous on Ω ∪ ∂Ω.

Warning. If ∇2ϕ = 0 in Ω then ϕ needs to be well-defined on all of Ω. Don’t fall into trap of
assuming things like

∇2

(
1

|x|

)
= 0

for all x ∈ R3. It is only true for x 6= 0
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Example. As usual, let r = |x|. Consider boundary value problem{
∇2ϕ = r in r < a

ϕ = 1 on r = a
(†)

Guess solution of form ϕ = ϕ(r). Using

∇2ϕ =
1

r2

d

dr

(
r2 dϕ

dr

)
and subbing into (†) {

(r2ϕ′)′ = r3 in r < a

ϕ(a) = 1

General solution to (†)(a)

ϕ(r) = A+
B

r︸︷︷︸
=0

+
1

12
r3

MUST have B ≡ 0 or else ϕ not well-defined throughout Ω = {r < a}. Using (†)(b)

1 = ϕ(a) = A+
a3

12

=⇒ A = 1− a3

12

So our solution is
ϕ(r) = 1 +

1

12
(r3 − a3)

Remark. Want solutions to be unique (or very almost unique)

Method. Consider generic linear problem{
Lϕ = F in Ω

Bϕ = f on ∂Ω
(††)

where L,B linear differential operators.
If ϕ1 and ϕ2 both solve (††), consider ψ = φ1 − φ2. By linearity{

Lψ = 0 in Ω

Bψ = 0 on ∂Ω
(†††)

If we can show that the ONLY solution to (†††) is ψ = 0, must conclude that ϕ1 = ϕ2, i.e. solution
to (††) is unique.

Moral. The solution to a linear problem is unique iff the only solution to the homogenous problem
is the zero solution
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Prop. The solution of the Dirichlet problem is unique.
The solution to the Neumann problem is unique up ot the addition of a constant.

Proof. Let ψ = ϕ1 − ϕ2 be the difference of two solutions to Dirichlet or Neumann problem.
so

∇2ψ = 0 in Ω

Bψ = 0 on ∂Ω

where Bψ ≡ ψ (Dirichlet) or Bψ ∂ψ∂n (Neumann)
Consider the non-negative functional:

I[ψ] =

∫
Ω

|∇ψ|2 dV ≥ 0

Clearly I[ψ] = 0 if and only if ∇ψ = 0 in Ω.
Note:

I[ψ] =

∫
Ω

∇ψ · ∇ψ dV

=

∫
Ω

∇ · (ψ∇ψ)− ψ∇2ψ︸ ︷︷ ︸
=0

 dV as ∇2ψ = 0 in Ω

=

∫
∂Ω

(ψ∇ψ) · dS (Div thm)

=

∫
∂Ω

ψ
∂ψ

∂n
dS

= 0

using

dS = ndS, n · ∇ψ =
∂ψ

∂n

Since ψ = 0 on ∂Ω (Dirichlet) or ∂ψ∂n = 0 on ∂Ω (Neumann). Conclude that∇ψ = 0 throughout
Ω =⇒ ψ = const. throughout Ω.
(i) For Dirichlet, ψ = 0 on ∂Ω, so by continuity of ψ on Ω∪∂Ω, must have ψ = 0 everywhere.

So solution to Dirichlet problem is unique.
(ii) From Neumann, only know dψ

dn = 0 on boundary so can’t say any more, so since ψ =
const. deduce that

ϕ1 = ϕ2 + const.

Any two solutions differ only by a constant.
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Example. From electrostatics, consider charge density

ρ(x) =

{
0 r < a

F (r) r ≥ a

Claim. No electric field in r < a.

Proof. Indeed know that electric potential φ satisfies

∇2φ = −ρ(x)

ε0
= 0 r < a

By spherical symmetry, φ = φ(r). So

φ = φ(a) = const. on r = a

Note that unique solution to {
∇2φ = 0 r < a

φ = const. r = a

is φ = const throughout r ≤ a by proposition
=⇒ E = −∇φ = 0 throughout r < a.
“Newton’s Shell thm”
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7.2 Gauss’ Flux Method

Method. Suppose source term F is spherically symmetric, ie. F = F (r), where r = |x|. Write our
problem as:

∇ · ∇ϕ = F (r) (*)

and assume Ω = R3. Since RHS only depends on r, same is true of LHS. So assume that ϕ = ϕ(r),
in which case

∇ϕ = ϕ′(r)er

Integrating (*) over region |x| < R, and use divergence theorem∫
|x|<R

∇ · ∇ϕdV =

∫
|x|<R

∇ϕ · dS =

∫
|x|<R

F (r) dV

The RHS represents the amount of, e.g. mass, inside ball of radius R > 0. Set∫
|x|<R

F dV = Q(R)

where Q(R) is “the amount of stuff inside ball |x| < R”
So our equation is ∫

|x|<R
∇ϕ · dS = Q(R)

Recall that on sphere of radius R
dS = erR

2 sin θ dθ dφ

So on |x| = R:

∇ϕ · dS = ϕ′(r)er · (er R2 sin θ dθdφ︸ ︷︷ ︸
dS

)

∣∣∣∣∣∣
|x|=R

= ϕ′(R) dS

So
Q(R) =

∫
|x|<R

ϕ′(R) dS = ϕ′(R)

∫
|x|<R

dS︸ ︷︷ ︸
4πR2

In summary

ϕ′(R) =
Q(R)

4πR2
∀R > 0

=⇒ ∇ϕ =
Q(R)

4πr2
er
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Example (Electrostatics). Recall Maxwell’s first equation

∇ ·E =
ρ

ε0

If we use electric potential φ so
E = −∇φ

get
−∇2φ =

ρ

ε0

Consider charge density

ρ(r) =

{
ρ0, 0 ≤ r ≤ a
0, r > a

By previous result

φ′(r) = − 1

4πε0

Q(r)

r2

Q(r) =

∫
|x|<r

ρ(R) dV

Note if r > a then
Q(r) = Q(a) = Q

(the total charge)
So we find, using E = −∇φ:

E(x) =

{
1

4πε0

Q(r)
r2 er r ≤ a

1
4πε0

Q
r2 er r > a

Q = total charge

Take a→ 0, keeping the total charge Q fixed (i.e. point charge)

E(x) =
Q

4πε0

er
r2

=
Q

4πε0

x

|x|3

The corresponding charge density ρ(x) = Qδ(x)∫
|x|<R

ρ dV = Q ∀R > 0
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Method. What if our problem is symmetric about the z-axis i.e.

∇2ϕ = F (ρ) ρ2 = x2 + y2

Have “cylindrical symmetry”. Integrate

∇ · ∇ϕ = F (ρ)

over cylinder of radius R, height a.
Assuming ϕ = ϕ(ρ), have

∇ϕ = ϕ′(ρ) eρ (cylindrical polars)∫
V

∇ · ∇ϕdV =

∫
F

(ρ) dV

where V is cylinder

dS = Rdφdzeρ

n = ez

n = −ez

=⇒ n · ∇ϕ = 0

=⇒ n · ∇ϕ = 0

∇ϕ · dS = Rϕ′(R)dφdz

LHS =

∫
∂V

∇ϕ · dS

=

∫ 2π

φ=0

∫ z0+a

z=z0

ϕ′(R)R dφ dz

= 2πaRϕ′(R)

so
ϕ′(R) =

1

R
· 1

2πa

∫
V

F (ρ) dV︸ ︷︷ ︸
(†)

(†) =

∫ z0+a

z=z0

(∫ 2π

φ=0

(∫ R

ρ=0

F (ρ)ρdρ

)
dρ

)
dρ

= 2πa

∫ R

0

F (ρ)ρdρ

In conclusion
ϕ′(ρ) =

1

ρ

∫ ρ

0

sF (s) ds
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Example. How might we describe a line of charge density with constant charge density λ per unit
length? Could proceed as before, consider cylinder of radius a, constant charge density. Take a→ 0
keep charge per unit length fixed.
Alternatively, let F (ρ) be the desired charge density. So if we integrate over any cylinder of length 1

1

z

Should have total charge contained to be λ

λ =

∫
V

F (ρ) dV

=

∫ z0+1

z=z0

(∫ 2π

φ=0

(∫ R

ρ=0

F (ρρ dρ

)
dφ

)
dz

= 2π

∫ R

0

ρF (ρ) dρ

So we see that choosing

F (ρ) =
λδ(ρ)

2πρ

corresponding electric potential would satisfy

φ′(ρ) = − 1

ε0

1

ρ

∫ ρ

0

λ

2π
δ(s) ds = − λ

2πε0

1

ρ

=⇒ E(x) =
1

2πε0

eρ
ρ
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7.3 Superposition Principle

Remark. Linear problems are relatively easy because of the following:

Lψn = Fn n = 1, 2, 3, . . .

then

L

(∑
n

ψn

)
=
∑
n

F )n

We can superimpose solutions. Can often break up forcing term F =
∑
n Fn, solve each problem

Lψn = Fn

To get solution to Lψ = F , write ψ =
∑
n ψn

Example. Consider electric potential due to pair of point charges Qa at x = a, Qb at x = b. Charge
density would be

ρ(x) = Qaδ(x− a) +Qbδ(x− b)

For one point charge, electric potential obeys

−∇2φ =
Qa

ε0
δ(x− a)

Solution would be
φ(x) =

Qa

4πε0

1

|x− a|
So by superposition principle, electric potential due to point charges at x = a and x = b is

φ(x) =
Qa

4πε0

1

|x− a|
+

Qa

4πε0

1

|x− b|
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Example. Consider electric potential outside ball of radius |x| < R of uniform charge density ρ0,
that has several balls removed from its interior

|x− ai| < Ri i = 1, . . . , N

|ai|+Ri < R, |ai − aj | > Ri +Rj for each i, j

ρ0 ρ0

ρ0

= −

Use superposition principle: represent each hole to be a ball of uniform charge density −ρ0.
Effective potential in |x| > R from each hole is

φ(x) = − 1

4πε0

Qi
|x− ai

using

Q =

(
4πR3

i

3

)
ρ0

by superposition principle

φ(x) =
1

4πε0

[
Q

|x|
−

N∑
i=1

Qi
|x− ai|

]

7.4 Integral Solutions

We know electric potential due to point charge at x = a is proportional to

1

|x− a|

or collection of point charges ∑ Qi
|x− a|

This leads us to consider superpositions of form∫
R3

F (y)

|x− y|
dV (y)
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Prop. Assume F → 0 rapidly as |x→∞. The unique solution to the Dirichlet problem{
∇2ϕ = F x ∈ R3

|ϕ| → 0 |x| → ∞

is given by

ϕ(x) = − 1

4π

∫
R3

F (y)

|x− y|
dV (y)

Proof. Note that for r 6= 0

∇2

(
1

r

)
=

∂2

∂xi∂xi

(
1

r

)
− ∂

∂xi

(
−xi
r2

)
= −δii

r3
+

3xixi
r5

= − 3

r3
+

3

r3

= 0

Certainly have

∇2

(
− 1

4π

1

|x|

)
= δ(x) x 6= 0

If we assume divergence thm works with delta function, on any ball |x| < R∫
|x|<R

∇2

(
1

|x|

)
dV =

∫
x=R

∇
(

1

|x|

)
· dS

=

∫ π

θ=0

∫ 2π

φ=0

(
− er
R2

)
· erR2 sin θ dφ dθ

= −4π

So for any R > 0 ∫
|x|<R

∇2

(
1

4π

1

|x|

)
dV = 1 =

∫
|x|<R

δ(x) dV

We conclude
∇2

(
− 1

4π

1

|x|

)
= δ(x)

so proposition follows.
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Remark. This result is another way of saying

∇2

(
− 1

4π

1

|x|

)
= δ(x)

Since by differentiating under integral sign

∇2

(
− 1

4π

∫
R3

F (y)

|x− y|
dV (y)

)
= − 1

4π

∫
R3

F (y)∇2

(
1

|x− y|

)
dV (y)

=

∫
R3

F (y)δ(x− y) dV (y)

= F (x)

7.5 Harmonic Functions

Definition. When the forcing term in Poisson’s equation is identically zero, we call it Laplace’s
equation:

∇2ϕ = 0 (†)

Solutions to Laplace’s equation are called harmonic functions
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Prop. If ϕ harmonic on Ω ⊆ R3, then

ϕ(a) =
1

4πr2

∫
|x−a|=r

ϕ(x) dS (*)

for a ∈ Ω and r sufficiently small.

a
rΩ

Proof. Let F (r) denote RHS of (*). Then

F (r) =
1

4πr2

∫
|x|=r

ϕ(a + x) dS

=
1

4πr2

∫ 2π

φ=0

[∫ π

θ=0

ϕ(a + rerr
2 sin θ dθ

]
dφ

=
1

4π

∫ 2π

φ=0

[∫ π

θ=0

ϕ(a + rer sin θ dθ

]
dφ

Computing F ′(r), using
d

dr
ϕ(a + rer) = er · ∇ϕ(a + rer)

as
d

dt
fx(t)) = x′(t) · ∇f(x(t))

F ′(r) =
1

4πr2

∫ 2π

φ=0

∫ π

θ=0

er · ∇ϕ(a + rer)r
2 sin θ dθ dφ

=
1

4πr2

∫
|x|=r

er · ∇ϕ(a + rer) dS

=
1

4πr2

∫
|x|=r

∇ϕ(a + x) · dS

=
1

4πr2

∫
|x−a|=r

∇ϕ · dS

=
1

4πr2

∫
|x−a|<r

∇2ϕ · dV

= 0

So F (r) is constant and we note from (†) that

lim
r→0

F (r) = ϕ(a)

So
F (r) = ϕ(a)

and result follows.
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Moral. Can use central idea in this proof to examine what the Laplacian helps us measure

Prop. For any smooth ϕ : R3 → R

∇2ϕ(a) = lim
r→0

6

r2

[
1

4πr2

∫
|x−a|=r

ϕ(x) dS − ϕ(a)

]

In particular, if ϕ satisfies the MVP then it is harmonic.

Proof. Consider function G(r) defined by

G(r) =
1

4πr2

∫
|x−a|=r

ϕ(x) dS − ϕ(a)

So G measures extent to which ϕ differs from its average. we have from previous proof

G′(r) = F ′(r) =
1

4πr2

∫
|x−a|<r

∇2ϕdV

Obviously, this vanishes if ϕ harmonic. Note∫
|x−a|=r

= ∇2ϕ(a)

∫
|x−a|<r

dV +

∫
|x−a|<r

(∇2ϕ(x)−∇2ϕ(a) dV

=
4π

3
r2∇2ϕ(a) + o(r3) (r → 0)

So

G′(r) =
1

4πr2

∫
|x−a|<r

∇2ϕ(a) dS

=
1

4πr2

[
4π

3
r3∇2ϕ(a) + o(r3)

]
=
r

3
∇2ϕ(a) + o(r) (r → 0)

Compare this with Taylor expansion

G′(r) = G′(0) + rG′′(0) + o(r) (r → 0)

we deduce:
G′(0) = 0, G′′(0) =

1

3
∇2ϕ(a)

So

G(r) = G(0)︸︷︷︸
=0

+r G′(0)︸ ︷︷ ︸
=0

+
r2

2
G′′(0) + o(r2)

=
1

6
∇2ϕ(a)r2 + o(r2) (r → 0)

=⇒ ∇2ϕ(a) = lim
r→0

[
6

r2
G(r)

]
=⇒ result
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Prop. If ϕ is harmonic on Ω ⊆ R3 then cannot have a maximum at any interior point of Ω unless ϕ
is constant.

Proof. Suppose a ∈ Ω is such that
ϕ(a) ≥ ϕ(x)

for all x ∈ Ω. So certainly
ϕ(a) ≥ ϕ(x) on 0 < |x− a| ≤ ε

for some ε > 0. But by mean value thm

ϕ(a) =
1

4πε2

∫
|x−a|=ε

∫
ϕ(x) dS

i.e.
0 =

1

4πε2

∫
|x−a|=ε

∫
ϕ(a)− ϕ(x)︸ ︷︷ ︸

≥0

dS

Consider that ϕ(x) = ϕ(a). Apply same argument to

|x− a| = ε′ < ε

Deduce ϕ(x) = ϕ(a) on |x− a| ≤ ε

a y

Introduce bunch of overlapping balls such that the centre of the (n + 1)th ball is contained
inside the nth.

Everywhere inside 1st ball, have ϕ(x) = ϕ(a).
In particular, on center of second ball have ϕ(x) = ϕ(a).
Using previous argument get ϕ(x) = ϕ(a) throughout second ball. Carry on until you get to
y. Find ϕ(y) = ϕ(a) i.e. ϕ constant.
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Corollary. If ϕ is harmonic on Ω then

ϕ(x) ≤ max
y∈∂Ω

ϕ(y) (x ∈ Ω)

(Maximum principle)
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8 Cartesian Tensors

Remark. Throughout this section we deal solely with Cartesian coordinate systems

8.1 A Closer Look at Vectors

Method. Let {ei} be a right-handed, orthonormal basis with respect to a fixed set of Cartesian
axes

e1

e2

e3

e′1

e′2

e′3

Write vector as
x = xiei

We shouldn’t identify x with the components {xi} since these will change if we use a different basis.
If we instead used {e′i} (also right-handed and orthonormal), then same vector is

x = x′ie
′
i

We have
xjej = x′je

′
j (*)

Since {ej} and {e′j} orthonormal
ei · ej = δij

e′i · e′j = δij
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Method (cont.). From (*)

x′i = δijx
′
j = (e′i · e′j)xj = e′i · (e′jx′j) = (e′i · ej)xj

Set Rij = e′i · ej , then
x′i = Rijxj

Alternatively
x′i = δijx

′
j = (ei · ej)xj = ei · (e′jx′j) = (e′j · ei)xj

i.e.
xi = Rjix

′
j = Rkix

′
k

xj = Rkjx
′
k

x′i = Rijxj = RijRkjx
′
k

So we find
(δik −RijRjk)s′k = 0

Since this true for ALL choices {x′k} get

RijRkj = δik

If R is matrix with entries {Rij}, this reads

RRT = I

So {Rij} are components of an orthogonal matrix.
Since:

xjej = x′ie
′
i = Rijxje

′
i

holds for ALL {xj}, also have
ej = Rije

′
i

and since both {ei} and {e′i} right-handed

1 = e1 · (e2 × e3) = Ri1Rj2Rk3e
′
i · (e′j × e′k)

= Ri1Rj2Rk3εijk = det(R)

Remark. So matrix R s=is orthogonal and detR = 1. So {Rij} are components of a rotation matrix

Moral. If we transform fom {ei} to {e′i} then the components of a vector v transform as

v′i = Rijvj

where Rij = e′i · ej are components of a rotation matrix. Call objects whose components transform
in this way rank 1 tensors, or vectors.
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8.2 A Closer Look at Scalars

Method. Consider
σ = a · b

Using {ei} with a = aiei etc.

σ = aibj(ei · ej)
= aibjδij

= aibjδij

= aibi

Instead use {e′i} would find
σ′ = a′ib

′
i

Using a′i = Ripap, b
′
i = Riqbq

σ′ = RipRiqapbq = δpqapbq = apbp = σ

We call objects that transform in this way scalars.

Moral. objects that transform as
σ′ = σ

when we change from {ei} to {e′i} are called scalars, or rank 0 tensors.
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8.3 A Closer Look at Linear Maps

Method. Let n ∈ R3 be a fixed unit vector and define linear map

T : x 7→ y = T (x) = x− (x · a)n

Using {ei} with x = xiei, y = yiei etc.

yiei = T (xjej)

= xjT (ej)

= xj(ej − ninjei
= (δij − ninj)xjei

Set Tij = δij − ninj . Then
yiδij − ninj)xj = Tijxj

Call {Tij} components of linear map T : R3 → R3 wrt {ei}
If we had instead used {e′i} would have found

y′i = T ′ijx
′
j

where T ′ij = δij − n′in′j . Using n′i = Rijnj give

T ′ij = δij −RipRjqnpnq
= RipRjp(δpq − npnq)
= RipRjqTpq

Components of T transform according to

T ′ij = RipRjqTpq

Objects that transform in this way are called rank 2 tensors.

8.4 Cartesian Tensors of Rank n

Definition. An object whose components Tij . . . k︸ ︷︷ ︸
n indices

transform (when we go from {ei} to {e′i}) ac-

cording to

T ′ij...k =

n Rs︷ ︸︸ ︷
RipRjq . . . Rkr Tpq...r

is called a (Cartesian) tensor of rank n.
Here

Rij = e′i · ej
are components of rotation matrix, so

RipRjp = δij
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Example. If ui, vk, . . . , wk are components of n vectors, then

Tij...k = uivj . . . wk

define components of a tensor of rank n.
Can check:

T ′ij...k = u′iv
′
j . . . w

′
k

= RipupRjqvq . . . Rkrwr

= RipRjq . . . RkrTpq...r

Example. Kronecker delta is defined without reference to any vasis via

δij =

{
1 if i = j

0 if i 6= j

So δ′ij = δij by definition. But note

RipRjqδpq = RipRjp = δij

So we have
δ′ij = RipRjqδpq

i.e. δij is a rank 2 tensor.

Example. The Levi Civita symbol is defined without reference to any basis

εijk =


1 if (i j k) is an even perm of (1 2 3)

−1 if (i j k) is an odd perm of (1 2 3)

0 otherwise

By definition, ε′ijk = εijk. But

RipRjqRkrεpqr = det(R)εijk

= εijk

So we have
ε′ijk = RipRjqRkrεpqr

So εijk is a tensor of rank 3.
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Example. Experimental evidence suggests a linear relationship between current J produced in con-
ductive medium exposed to electric field E, so

J = σE

or using suffix notation
Ji = σijεj

σij is called the electrical conductivity tensor, it really is a rank 2 tensor. Under change of basis

σ′ijE
′
j = J ′i = RipJp = RqpσpqEq

Using
E′j = RjqEq ⇐⇒ Eq = RjqE

′
j

we get
σijE

′
j = RipRjqσpqE

′
j

This holds for ANY {E′j}, so
σ′ij = RipRjqσpq

i.e. σij is a rank 2 tensor.
See Quotient Theorem later in course.

Example. Not all things are tensors. For given Cartesian right handed basis {ei} we define array

(Aij) =

 π 7 0√
2 e −3
γ 1 12


and set A′ij = 0 in all other bases {ei}. Then Aij are NOT the components of a rank 2 tensor.

Definition. If Aij...k and Bij...k are n-th rank tensors, define

(A+B)ij...k = Aij...k +Bij...k

This is also n-th rank tensor, If α is a scalar then

(αA)ij...k = αAij...k

is an n-th rank tensor.
We define the tensor product of an m-th rank tensor Uij...k and a an n-th rank tensor Vpq...r by

(U ⊗ V )ij...kpq...r = Uij...kVpq...r

where
ij . . . k︸ ︷︷ ︸
m indices

pq . . . r︸ ︷︷ ︸
n indices
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Claim. This is a tensor of rank n+m.

Proof.

U ′i...jV
′
p...q = Ria . . . RjbU)a . . . bRpc . . . RqdVc...d

= Ria . . . RjbRpc . . . Rqd︸ ︷︷ ︸
n+m terms

Ua...bVc...d︸ ︷︷ ︸
(U⊗V )a...bc...d

Method. Given n-th rank tensor Tijk...d n ≥ 2, we can define tensor of rank n − 2 by contracting
on pair of indices. For instance, contracting on i and j is defined by

δijTijk...d = Tiik...d

Note.

T ′ijk...d = RipRiq︸ ︷︷ ︸
δpq

Rkr . . . RlsTpqr...s

= Rkq . . . RlsTppr...s

So Tiik...d transforms as tensor of rank n− 2

Definition. Say Tij...k is symmetric in (i, j) if

Tih...k = Tji...k

This really is well-defined property of the tensor

T ′ij...k = RipRjq . . . RkrTpq...r

= RipRjq . . . RkrTqp...r

= RiqRjp . . . RkrTpq...r

= T ′ji...k

Similarly, we say Aij...k is anti-symmetric in (i, j) if

Aij...k = −Aji...k

Say a tensor is totally (anti-)symmetric if it is (anti-)symmetric in every pair of indices.
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Example. Tensors δij and aiajak are both totally symmetric.
εijk is a totally anti-symmetric tensor.
In fact, the only totally anti-symmetric tensor on R3 of rank n = 3 is proportional to εijk, and there
are no non-zero high rank ones. Indeed, if Tij...k totally anti-symmetric of rank n, then Tij...k = 0 if
any two indices are the same

T22...k = −T22...k =⇒ T22...k = 0

So by pigeonhole principle, there will always be two or more matching indices if n > 3. If n = 3,
there are only 3! = 6 non-zero components. If

T123 = T231 = T312 = λ

T213 = T321 = T132 = −λ

Thus Tijk = λεijk

8.5 Tensor Calculus

Remark. “vector field” gives vector v(x) for x ∈ R3

“scalar field” gives vector ϕ(x) for x ∈ R3

A tensor field of rank n, Tij...k(x), gives an n-th rank tensor at each x ∈ R3.

Equation. Recall
x′i = Rijxj ⇐⇒ xj = Rijx

′
i

Differentiating RHS wrt x′k
∂xj
∂x′k

= Rij
∂x′i
∂x′k

= R+ ojδik = Rkj

So by chain rule
∂

∂x′i
=
∂xj
∂x′i

∂

∂xj
= Rij

∂

∂xj

“ ∂
∂xi

transforms like a rank 1 tensor”

Prop. If Ti...j(x) is tensor field of rank n then(
∂

∂xp

)
. . .

(
∂

∂xq

)
︸ ︷︷ ︸

m terms

Ti...j(x) = tensor field of rank n+m

Proof. Label LHS by Ap...qi...j

Ap...qi...j =

(
∂

∂x′p

)
. . .

(
∂

∂x′q

)
T ′i...j(x)

=

(
Rpa

∂

∂xa

)
. . .

(
Rqb

∂

∂xb

)
Ric . . . RjdTc...d

= Rpa . . . RqbRic . . . RjdAa...bc...d

So have tensor field of rank n+m.
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Example. If ϕ = ϕ(x) scalar field then

[∇ϕ]i =
dϕ

dxi

So ∇ϕ is rank 0 + 1 = 1 tensor field, i.e. a vector field.

Example. For vector field v have divergence

∇ · v =
∂vi
∂xi

Note:

∂v′i
∂x′i

= Rip
∂

∂xp
Riqvq

= RipRiq
∂vq
∂xp

= δpq
∂vq
∂xp

=
∂vp
∂xp

i.e. ∇ · v is scalar field.

Example. If v vector field, consider curl ∇× v. Then

[∇× v]i = εijk
∂vk
∂xj

Then:

ε′ijk
∂v′k
∂x′j

= RiaRjbRkcεabcRjp
∂

∂xp
Rkpvq

= RiaεabcRjbRjp︸ ︷︷ ︸
δpb

RkcRkq︸ ︷︷ ︸
δcq

∂vp
∂xp

= Riaεabx
∂vc
∂xb

So ∇× v is vector field.
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Prop. For tensor field Tij...k...l(x):∫
V

∂

∂xk
Tij...k...l dV =

∫
∂V

Tij...k...lnk dS

V

n

Proof. Apply divergence theorem to

vk = aibj . . . clTij...k...l (†)

where ai, bj , . . . , cl are components of constant vector fields. So by div theorem∫
V

∂vk
∂xk

dV = aibj . . . cl

∫
V

∂

∂xk
Tij...k...l dV

=

∫
∂V

vknk dS (div thm on LHS)

= aibj . . . cl

∫
∂V

Tij...k...lnk dS

Result now follows because the constant vector fields a, b, c were arbitrary.
E.g. if we wanted to check (†) when a;; free indices i, j, . . . , l were = 1

ai = δi1, bj = δj1, . . . , cl = δl1

LHS =

∫
V

∂

∂xk
T11...k...1 dV

RHS =

∫
∂V

T11...k...1nk dS

Similar idea for other choice of free indices.
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8.6 Rank 2 Tensors

Remark. Observe for rank 2 tensor Tij

Tij =
1

2
(Tij + Tji) +

1

2
(Tij − Tji)

= Sij +Aij

which is symmetric + anti-symmetric∗ ∗ ∗∗ ∗
∗


6 indep components

0 ∗ ∗
0 ∗

0


3 indep components

This is food since 3 + 6 = 9. Intuitively, seems like info contained in Aij caould be written in terms
of some vector (3 indep components).

104



Prop. Every ran 2 tensor can be written uniquely as

Tij = Sij + εijkωk

where
ωi =

1

2
εijkTjk

and
Sij is symmetric

Proof. We can identify (from earlier)

Sij =
1

2
(Tij + Tji

Remains to show that
eijkωk =

1

2
(Tij − Tji)

εijkωk =
1

2
εijkεklmTlm

=
1

2
(δilδjm − δimδjl)Tlm

=
1

2
(Tij − Tji

For uniqueness, suppose
(Tij =)Sij +Aij + S̃ij + Ãij(= T̃ij)

Take symmetric parts of both side i.e.

1

2
(Tij + Tji) =

1

2
(T̃ij + T̃ji)

Then Sij = S̃ij and so Aij = Ãij . i.e. decomposition is unique

εijkωk = εijkω̃k ⇐⇒ ωk = ω̃k

Note. See Truesdell + Noll, Nonlinear Continuum Mechanics
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Example. Each point x in an elastic body undergoes small displacement u(x)

x

x + u(x)

u(x)

Two nearby points x + δx and x that were initially separated by δx become separated by

(x + δx + u(x + δx))− (x + u(x)) = δx + [u(x + δx)− u(x)]︸ ︷︷ ︸
change in displacement

Change in displacement:
u(x + δx)− u(x)]

This tells us how much deformation happens to the body. Using Taylor’s theorem:

ui(x + δx)− ui(x) =
∂ui
∂xj

δxj + o(δx)

We decompose ∂ui
∂xj

as follows:
∂ui
∂xj

= eij + εijkωk

where
eij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is called LINEAR STRAIN TENSOR and

ωi =
1

2
εijk

∂uj
∂xk

= −1

2
(∇× u)i

So:
ui(x + δx)− ui(x) = eijδxj︸ ︷︷ ︸

measure of deformation

+ [δx× ω]i︸ ︷︷ ︸
corresponds to rotation

+o(δx)

So eij gives info about how much body compresses or stretches.
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A well known symmetric rank 2 tensor is the inertia tensor. Suppose body with density ρ(x) occupies
volume V ⊆ R3. Each point in the body rotating at constant angular velocity ω

ω

O

So elocity of point x ∈ V is v = ω × x. Total angular velocity about origin is:

L =

∫
V

ρ(x)(x× v) dV

=

∫
V

ρ(x)[x× (ω × x)] dV

Using suffix notation

Li =

∫
V
ρ(x)(xkxkωi − xixkωj) dV

= Iijωj

(by writing ωi = δijωj)
where we have defined inertia tensor

Iij =

∫
V
ρ(x)(xkxkδij − xixj) dV

where integral is taken over
V = {xi : xiei ∈ V }

Had we used different frame {e′i} where x = x′ie
′
i etc, would have found

I ′ij =

∫
V′
ρ(x)(x′kx

′
kδij − x′ix′j) dV

= RipRjq

∫
V
ρ(x)(xkxkδpq − xpxq) dV

= RipRjqIpq

where V ′ = {x′i : xie
′
i ∈ V }. So Iij is a rank 2 tensor. It is symettric, Iij = Iji.
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Example. Consider ellipsoid described by

x1

x2

x3

x2
1

a2
+
x2

2

b2
+
x2

3

c2
≤ 1

with uniform mass density ρ0 so mass is

M = ρ0
4π

3
abc

To compute components of inertia in this frame, use scaled spherical polars to compute integrals.

x1 = ar cosφ sin θ 0 ≤ φ < 2π

x2 = br sinφ sin θ 0 ≤ θ ≤ π

x3 = cr cos θ 0 ≤ r ≤ 1

Note that if i 6= j then ∫
v

ρ0xixj = 0 by symmetry
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Example (cont.). Also

I11 = ρ0

∫
V

(x2
2 + x2

3) dV

= ρ0abc

∫ 2π

φ=0

∫ π

θ=0

∫ 1

r=0

r2b2 sin2 φ sin2 θ + c2 cos θ)r2 sin θ dr dθ dφ

= ρ0
abc

5

∫ π

0

(πb2 sin2 θ + 2πc2 cos θ) sin θ dθ

=
3M

4

1

5

∫ π

0

(b2 sin2 θ + (2c2 − b2) cos2 θ sin θ) dθ

=
3M

20

(
2b2 +

2

3
(2c2 − b2)

)
=
M

5
(b2 + c2)

By symmetry

I22 =
M

5
(a2 + c2), I33 =

M

5
(a2 + b2)

i.e.

(Iij) =
M

5

b2 + c2 0 0
0 a2 + c2 0
0 0 a2 + b2


If a = b = c:

Iij =
2

5
Mδij

Prop. If Tij is symmetric then there exist choice of {ei} for which

(Tij) =

α 0 0
0 β 0
0 0γ


The corresponding coordinate aces are called the principal axes of the tensor.

Proof. Direct consequence of the fact that any real symmetric matrix can be diagonalised via
orthogonal transformation R for which det(R) = 1 WLOG.

[T ′ = RTTR] see IA V+M

Moral. So can always choose set of axes so that Iij is diagonal.
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8.7 Invariant and Isotropic Tensors

Definition. We say that a tensor is isotropic if it is invariant under changes in Cartesian coords,
i.e.

T ′ij...k = RipRjq . . . RkrTpq...r = Tij...k

for any choice of rotation R.

Example.
(i) Every scalar (rank 0 tensor) is isotropic
(ii) The Kronecker delta is isotropic

δ′ij = RipRjqδpq

= RipRjp

= δij

(iii) The Levi-Civita tensor

ε′ijk = RipRjqRkrεpqr = det(R)εijk = εijk

Remark. We can actually classify ALL isotropic tensors on R3 [General result: Herman Weyls: The
Classical Groups]
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Prop. Isotropic tensors on R3 are classified as:
(i) All rank 0 tensors isotropic
(ii) There are no non-zero rank 1 tensors
(iii) The most general isotropic tensor of rank 2 is αδij (α scalar)
(iv) The most general isotropic tensor of rank 3 is βεijk (β scalar)
(v) The most general isotropic tensor of rank 4 is

αδijδkl + βδikδjl + γδilδjk

(vi) The most general isotropic tensor of rank >4 is a linear combination of products of δ and ε (e.g.
δijεklm

Proof (Sketch).

(i) By definition
(ii) If vi are components of an isotropic tensor of rank 1 then

vi = Rijvj = v′i

holds for ANY rotation. Take

(Rij) =

−1 0 0
0 −1 0
0 0 1

 π about z-axis

then:
v1 = R1jvj = −v1

v2 = R2jvj = −v2

i.e. v1 = v2 = 0. Using

(Rij) =

1 0 0
0 −1 0
0 0 −1

 π about x-axis

then
v3 = R3jvj = −v3

i.e. v3 = 0 so vi = 0 and this holds in all frames.
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Prop.

Proof.
(iii) If Tij isotropic then

Tij = RipRjqTpq

holds for ANY R. Take R to be rotation by π/2 about each axis.

(Rij) =

 0 1 0
−1 0 0
0 0 1


Then

T13 = R1pR3qTpq = R12R33T23 = T23

T23 = R2pR3qTpq = R21R33T13 = −T13

So
T13 = T23 = 0

Also
T11 = R1pR1qRpq = R12R12T22 = T22

i.e. T11 = T22

Now choosing

(Rij =

1 10 0
0 0 1
0 −1 1


Then

T32 = R3pR2qTpq = R32R23T23 = −T23

So
T32 = 0

T12 = R1pR2qTpq = R11R23T13 = −T13 = 0

T12 = 0

T31 = R3pR1qTpq = R32R11T21 = −T21

T21 = R2pR1qTpq = R23R11T31

i.e.
T31 = T21 = 0

.
Finally

T22 = R2pTpq = R2323T33 = T33

i.e.
T22 = T33 = T11

In conclusion Tij = 0 if i 6= j and T11 = T22 = T33. So

Tij = αδij

for some scalar α
(iv) Same idea, more indices.
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Method. Consider integral of form

Tij...k =

∫
|x|<R

= f(r)xixj . . . xk dV (x)

where xkxk = r2 and V (x) = dx1 dx2 dx3.
Note f(r) and {x : |x| < R} are invariant under rotations.
We have:

Tij...k =

∫
|x|<R

f(r)x′ix
′
j . . . x

′
k dV (x)︸ ︷︷ ︸

dx′1 dx′2 dx′3

=

∫
|x|<R

f(r)RipxpRjqxq . . . Rkrxr dV (x)

Make substitution yi = Rijxj , dV = dy1 dy2 dy3

T ′ij...k =

∫
|x|<R

f(r)yiyi . . . yk dV (y)

Sine {y} is dummy variable

T ′ij...k =

∫
x|<R

f(r)xixj . . . xk dV (x) = Tij...k

So Tij...k is isotropic!
Take R→∞ corresponds to integrating over all R3.

Example. Consider

Tij =

∫
R3

e−r
5

xixj dV

By previous, Tij = αδij . Contracting on (i, j)

αδii = 3α =

∫
R3

e−r
5

r2 dV

= 4π

∫ ∞
0

r2e−r
5

r2 dr

= 4π

∫ ∞
0

1

5

d

dr

(
e−r

5
)

dr

=
4π

5

i.e. α = 4π
15 and

Tij =
4π

15
δij

113



Example. The inertia tensor of ball of radius R, constant density ρ0 [mass M = 4π
3 R

3ρ0]

Iij =

∫
|x|<R

ρ0(xkxkδij − xixj) dV

This is sum of two isotropic tensors, hence

Iij = αδij for some α

Contracting on (i, j)

3α =

∫
|x|<R

ρ0[3r2 − r2] dV

= 4πρ0 · 2
∫ R

0

r4 dr

=

[
4π

3
ρ0R

4

]
3

R3
· 2 · R

5

5

=
6MR2

5

So α = 2MR2

5 and

Iij =
2M

5
R2δij

8.8 Tensors as Multi-Linear Maps and the Quotient Rule

Method. For a tensor Tij consider bilinear map t : R3 × R3 → R defined by

t(a,b) := Tijaibj

LHS well defined since RHS does not depend on which basis we use (it’s a scalar).
So rank two tensor gives rise to bilinear map.
Conversely, suppose t : R3×R3 → R is bilinear, then for a given basis {ei} it defines an array Tij via

t(a,b) = t(aiei, bjej)

= aibjt(ei, ej)

:= aibjTij

If we use different basis {e′i} with e′i = Ripep then by linearity

T ′ij = t(e′i, e
′
j)

= t(Ripep, Rjqeq)

= RipRjqt(ep, eq)

= RipRjqTpq

So Tij is rank 2 tensor I.e. bilinear map t gives rise to rank 2 tensor.
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Moral. Have a one-to-one correspondence between bilinear maps and rank 2 tensors. In particular
if the map

(a,b) 7→ Tijaibj

is genuinely bilinear, independent of basis, then Tij are components of rank 2 tensor.

Remark. Same idea works for higher rank tensors: if the map

(a,b, . . . , c) 7→ Tij...kaibj . . . ck

genuinely defines a n-multilinear map (indep of basis) then Tij...k are components of rank n tensor.

Note. Recall from earlier that we showed σij (conductivity tensor) was tensor from definition

Ji = σijEj

Could have used quotient theorem.

Prop. Let Ti...jp...q be an array of numbers defined in each Cartesian coord system such that

vi...j︸︷︷︸
A

:= Ti...jp...q︸ ︷︷ ︸
A+B

up...q︸ ︷︷ ︸
B

is a tensor for each tensor up...q. Then Ti...jp...q is a tensor.

Proof. Take special case up...q = cp . . . dq for vectors {c, . . . ,d}. Then

vi...j := Ti...jp...qcp . . . dq

is a tensor and in particular

vi...jai . . . bj = Ti...jp...qai . . . bjcp . . . dq

is a scalar for each {a, . . .b, c, . . . ,d}. So RHS is scalra (indep of basis) and gives rise to
well-defined multilinear map via

t(a, . . . ,b, c, . . . ,d) := Ti...jp...qai . . . bjcp . . . dq

so by previous discussion, Ti...jp...q is a tensor.
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Example. Seen linear strain tensor

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
where u(x) measures change in displacement at x
Experiment suggests that the internal forces experiences by a body that has undergone deformation
depend linearly on strain at each point.
Stresses are described by a stress tensor σij

σ11

σ12

σ13

σ31

σ32

σ33

σ21

σ22

σ23

x1

x2

x3

(shows stress in each direction on 3 faces)
So ∃ an array of 34 = 81 numbers cijkl such that

σij = cijklekl (†)

Warning. CAN’T APPLY QUOTIENT THEOREM at this point as ekl symmetric

If cijkl = cijlk then can apply quotient theorem (ES4) - call this the stiffness tensor (it is a property
of the material under deformation). Suppose our material is isotropic, then we should write

cijkl = λδijδkl + βδikδjl + γδilδkl

Use this in (†)

σij = λδijekk + βeij + γji = λδijekk + 2µeij

where 2µ = β + γ, This is higher dimension version of Hooke’s law (F = −kx).
Can invert - contract on (i, j)

σii = (3λ+ 2µ)eii

i.e.
ekk =

σkk
3λ+ 2µ

(3λ+ 2µ 6= 0)

So we get:

2µeij = σij −
(

λ

3λ+ 2µ

)
σkkδij
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