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Notation

Notation. Throughout this course a column vector

a
b

Cc

is to be interpreted as the vector x = ae, + be, + ce, where {e,,e,,e.} are basis vectors aligned
with the fixed Cartesian z,v, z axes in R?

z
A

€] =€,

€y =

I
(¢]
<

€3 €,

i.e.

X =7;€;
L1
T2
T3




1 Differential Geometry of curves

1.1 Parametrised Curves and Arc Length

Definition. A parametrised curve C in R? is just the image of a continuous map

x : [a,b] —» R3

in which
t— x(t)
In caresian coordinates
z1(t) x(t)
x(t) = |z2(t) | = |y(t)
z3(t) z(t)

x(b)

Definition. We say C is differentiable if each of the components {z;(t)}3_; are differentiable.

Definition. We say C is regular if |x'(t)| # 0

Definition. If C' is differentiable and regular say C' is smooth




Remark. Why “regular” condition?
Consider x(t) = (2,¢3). Clearly differentiabble but x(¢) has cusp at t = 0.

Note. [x/'(0)] =0

N

Note. Recall that z;(t) is differentiable at ¢ iff
zi(t + h) = z;(¢) + 2 (t)h + o(h)
where o(h) represents function that obeys

@—)0&5]1%0

In terms of vectors
x(t + h) = x(t) +x'(t)h + o(h)

where o(h) a vector for which ‘O(Th)l -0




Method. Finding length of a curve C.
Approximating C' using straight lines,

C:t—x(t), t €la,b]
Introduce partition P of [a, b] with tg = a, t;y = b and

to <t <t <. - -<tn

to t1 tN

@ b
Set At; =t; 41 —t; and At = maxAt;
Define length of C' relative to P by

N-1

I(C,P) = Z |x(tiv1 —ts)]

=0

As At gets smaller, expect [(C, P) to give better approximation to length of C, I(C). Define length
of C by:

N-1
0C) = AI%T_I}O 2 |x(tit1 —t5)]

1=

= lim 1(C, P)

At—

If limit doesn’t exist, say curve is non-rectifiable.
Suppose C' is differentiable. Then

X(t; +tiy1 — ;)
X(ti) =+ X/(ti)Ati aF O(Ati)

X(tiy1) =

It follows
% (tiv1 —t:)] = [X'(:)||At; + o(At;)]
So if C' is differentiable,
N—-1
IC,P) =Y |x'(t:)]|At; + o(At;))|

=0




O(At )

Method (continued). Recall that o(A)¢; represents a dunction for which — 0 as At — 0.

So for any € > 0, if At = maxAt; is sufficiently small, have
K2

lo(At;)

i
fori=0,...,N—1. So

N—

=

N-1 N—-1
1(C,P) = Y IX/(t:)|At] =] > o(At; |<b -
=0 i=0

1=

=c
0
So the LHS — 0 as At — 0. Get

I(C)= lim I(C,P)

At—0)

= i )| At;
Atlino) Z |X |

- / /(1)

Note. See Analysis I, definition of Reimann integral.
So in summary have equation below:

Equation. if C: ¢t — z(t), t € [a,b)

:/ab|x'(ti)|dt
:/Cds

ds = |x/(¢;)| dt

/ ds—/f )| dt

s is the “arc-length element”
Similarly define




Equation. If C is made up of M smooth curves Cy,Cs,...,Chys

Wrtie C = Cq + C5 + - - - + Cjs and define

Lﬂ@@=§éﬁ®@

Note.

as =]t = /(24 (W4 Eypar

ie. ds? =dz? + dy? + dz?

Example. Let C be circle of radius r > 0 in R?

rcost
x(t) = |rsint| t € [0,2n]
0

So
—rsint
x'(t)= | rcost | t€]0,2n]
0

27
/ds:/ \/r2sin2t+r200s2tdt
c 0

27
:/ rdt
0

= 27r

/x yds :/ (rcost)?(rsint)rdt
0

Also

(as rdt = |x/(¢)|dt)




Remark. Does [(C) depend on parametrisation? e.g.

rcost
x(t) = |rsint| t € [0,2n]
0

~ r cos(2t)
x(t) = |rsin(2t) | t € [0,7]
0

Both give different parametrisation of circle of radius r
Suppose C' has two different parametrisations

x=x1(t), a<t<b

x=X(7), a <t < f

Must have x5 (7) = x; (t(7)) for some function ¢(7). Assume 4% # 0 so map between ¢ and 7 invertible
and differentiable. (see inverse function theorem in Analysis + Topology). Note

XQ(T) = %Xg(t)
d
= Zxi(t()

dat
= ()

/f ®_/f t)| dt

Make substitution ¢ = ¢(7), and assume 5 > 0, latter integral becomes

From definitions,

B
/ () 4 (1)) G
@ _,_/

[x5 () dr

Which is precisely the same as fc x)ds using xo(7) parametrisation. Similar holds when S—i <0
(exercise). So definition of [, f(x)ds does not depend on choice of parametrisation of C.

Definition. The arc-length function for a curve [a,b] > ¢t — x(t) by

:fw@m

So s(a) = 0 and s(b) = I(c).

Also:
ds

dt




Definition. For regular curves have g—: > 0, so can invert relationship between s and ¢ to find

t =t(s)

So we can parametrise regular curves wrt arc-length, If we write r(s) = x(¢(s)) where 0 < s < I(C),
then by chain rule:

¢ _1_ 1
ds 4= |x/(t(s))|
So
;o d
() = < x(1(s))
det
= X (t(s)
_ X))
x'(t(s))|

1.2 Curvature and Torsion

Note. Throughout this section talk about generic regular curve C' parametrised by arc-length, write
s+ r(s)

Definition. Tangent vector
t(s) =1'(s)

Already know [t(s)| = 1. Since [t(s)| doesn’t change, the second dervative r’’(s) = t/(s) only measures
change in direction

So intuitively, if |r”(s)] is large then curve rapidly changes direction, whereas if |r”'(s)| is small, expect
curve to be approximately flat.

10



Definition. The curvature

Example.
K large

~ small

Since t = 1r’(s) is a unit vector, differentiating t -t =1 gives t -t = 0.

Definition. The principle normal is defined by the formula
t' = kn

n is the principle normal

Note. n is everywhere normal to C since

Definition. Can extend {t,n} to orthonormal basis by defining the binormal

b=txn

Since |b| =1 have b’ -b =0. Also since t-=0 and n-b =0

O0=(t-b)=t b+t+t-b
=kn-b+t-b’
=0

So b’ is orthogonal to both t and b i.e. it is parallel to n.

Definition. The torsion of a curve is defined by the formula
b’ = —7n

7 is the torsion

Have two equations
t'=kn, b'=—mn

11




Prop. The curvature x(s) and torsion 7(s) define a curve up to translation/ orientation.

Proof. Since n = b x t, have
t' = k(b x t)

b’ = —7(b x t)

This gives six equations for six unknowns.
Given k(s), 7(s), t(0), b(0), can construct t(s), b(s) and hence n = b x t. Hence result [

12




1.3 Radius of Curvature

Taylor expand a generic curve s — r(s) about s = 0. Write t = t(0), n = n(0) etc.
1
r(s) =r(0) + sr'(0) + iszr”(()) + o(s?)
1
=r+st+ 582%511 + o(s?)

Suppose, WLOG, that t is horizontal.
What circle goes through curve tangentially at point r = r(0) is best fit?

O

Equation of circle
x(0) =r+ R(1 — cosf)n + Rsin Ot

Expand for |f| small
x(0) =r + ROt + éRé)zn + 0(6%)
Arc length on circle is s = Rf. So
x(0) =r+ st + 1132n + o(s%)
2R
To match equation for curve up to scond order, would require

1
R=-
K

Definition. We say R(s) = L) is the radius of curvature of curve s — r(s)

k(s

1.4 Gaussian Curvature

Note. Non-examinable

13



Definition. The Gaussian curvature: kg = Kminkmax Where k varies over fixed point on surface
curve in intersection of planes through normal rotating from [0, 27)

Theorem (Remarkable Theorem). Gaussian curvature of surface S is invariant if you bend the
surface without stretching it.

2 Coordinates, Differentials + Gradients

2.1 Differentials + First Order Changes

Definition. The differential of f, written df, by
_of

df = o, du;
Call {du;} differential forms. These are L.I. if {u1, ..., u,} are independent.
Le. if aydu; =0 = a; =0 for i = 1,...,n. Similarly, if x = x(u1, ..., u, we define
ox
dx = —uy
x 3uiu

Example. If f(u,v,w) = u? + wsin(v). Then

df = 2udu + wcos(v) dv + sin(v) dw

u? —v?
If x(u,v,w) = w ,
61}
2u —2v 0
dx=|0|du+| O | dv+ |1| dw
0 ev 0

14



Note. Differenials encode info about how a function/ vector field changes when we “wobble” our
coords. Indeed, by calculus:

of

f(ul —|—5U1,...,Un +5un) —f(ula"'vun) = 8u5uz +O(6u)
(ou = (duq,...,0uy)
Ol(;lrl) — 0 as [0u| = 0
So if 6 f denotes change in f(uq,...,u,) under perturbation of coords
(U1, -y up) = (ug + 0u, ..., upy + duy,)

We have, to first order,

of
5f - aui

(5’U,i

Similarly for vector fields

0X ~ 8_W5Ui

(this gives us the chain rule for free, see Ashton’s notes)

2.2 Coordinates and Line Elements

Already seen at least two different sets of coords for R?: Cartesian coordinates (,y) and polar
coordinates (r,6). Have invertible relationship:

xr =1rcosf

y =rcosf

A general set of coords (u,v) on R? can be specified by its relationship to (z,y), i.e. specify smooth
functions

x = z(u,v)

Y= y(“? ’U)

which can be inverted to give smooth functions
u=u(z,y)

v="1(z,y)

Similarly for R3, have (u,v,w) coords by specifying

x = z(u,v,w)

15



Definition. Standard Cartesian coords
x
x(z,y) = {y] = ze, + yey

{ez,e,} are orthonormal vectors. e, points in the direction of changing x with y fixed.

Said differently,

_wxlzy) _ agX(e
e, = s ey =
Feature of Cartesian coords:
ox ox
dx=—d —d
X 9 T + 9 Y
=dzre, +dye,

i.e. changing coord x — = + dz, then the vector changes (to first order) by x — x + dz e,. We call
dx the line element

Definition. The line element is:

ox ox
dx = a—mdU:[ == a_UQdU2

It tells us how small changes in coord produce changes in position vectors.

For polars (r,0)

where we have used basis vectors {es, ey}

_ [cos 0

sin 0

] , €9 = {—sinf cos b}

Warning. {e,,eg} are orthonormal at each (r,6), but NOT the same for each (r,6)

e —. — R e Y A A S S el H D i S A

Note. As before,

o x(r,0) 59x(r,0)
= 9 ee =
|5 x(r, 0)] | 55%(r, 0)]

T

Since {e,,ep} are orthogonal, makes sense to call (r,0) orthogonal curvilinear coordinates.




For polars, have line element

ox ox
dx-adr—i-%d@

=e,dr+rdfey
See that a change 0 — 6 + 06 produces a (first order) change

X — X+ rdfey

2.2.1 Orthogonal Curvilinear Coordinates

Definition. We say that (u,v,w) are a set of orthogonal curvilinear coords if the vectors

ox ox

_ _Ou _ ov
eu_ |&|7 e'U_ ax Ix
ou |% ew:ﬂlkl

€

form a right-handed handed basis for each (u,v,w)

Note. Right handed means e, X e, = e,

Notation. It is standard to write

ox

ox _|ox
T |ow

ou

ox

hu = ov

7hU: 7h'w

Definition. Call {h,, h,, h, } scale factors

Note. Line element is

ox ox ox
dX—adu-l-%d’U-i-a—wdw

= hye, du + h,e, dv + hy,e,, dw

Tells us how sall changes in coords “scale-up” to changes in position x




2.2.2 Cylindrical Polar Coords

~

Definition. Cyclindrical polars (p, ¢, z) defined by:

p COS @
x(p, 6,2) = | psine
z

with:
0<p<oo

0< <2

—o0 <2< o0

Find
Cos ¢ —sin¢
e, = |sin¢g|, ey, | cosg
0 0

e, =

= O O

hy=1, hg =p, hy, =1
dx =dpe, +pdoes +dze,

Note.

pCOs @ cos ¢ 0
X = |psing| =p [singp| +2z |0
z 0 1

=pe,tze;

Warning. STILL DEPENDENT ON ¢ AS e, DEPENDS ON ¢

2.2.3 Spherical Polar Coordinates

Definition. Spherical polars (r,0, ¢) defined by:

7 cos ¢ sin 6
x(r,0,¢) = |rsin¢sind
7 cosf

with:
0<r<o
0<O6<r

0< o< 2m

18



cos ¢sin 6 [cos ¢ cos O
e, = [singsinf |, eg — |sin¢cosb
cosf | —sind
—sing]
ey = | cos¢
0 -

hr=1, hg =7, hy =rsind

i.e.
dx =dre, +rdfeg+rsinfdpey
Note.
r cos ¢ sin 6
X=7r |rsingsinf| =re,
r cos 6

Warning. STILL DEPENDENT ON ¢, 0 AS e, DEPENDS ON ¢, §

2.3 Gradient Operator

Definition. For f: R? — R, define gradient of f, written V f, by

f(x+h) = f(x)+ Vf(x) -h+o(h) )

Definition. Directional derivative of f in direction v, denoted by Dy f or g—f/, is defined by

fx+tv) - f(x)

va(X) = tlgr(l) n
Le.
fx+tv) = f(x) + Dy f(x) + o(t) (**)

Equation. Setting h = tv in (*)
fx+tv) = f(x) +tVf(x)-v+o(t)
Comparing to previous equation (**), we have:

Dy =v-Vf

Note. By Cauchy-Schwarz know that a-b is maximised when a points in same direction as b.

So V f points in direction of greatest increase of f
Similarly,
—V f points in direction of greatest decrease of f

19



Example. Suppose f(x) = 1|x[2. Then

—

f(x+h)==(x+h) - (x+h)

[\

1, 1 1.
== ~(2x-h) + =|h
51XI" + 5 (2x-h) + S |h|

= f(x) +xh+o(h)

= Vf(x)=x

Method. Suppose we have a curve ¢ — x(t). How does f change as we move along this curve. Write

ox = x(t + dt) — x(t)

F(t+ dt)

f(x(t+dt))
f(x(t) + %)
f(x(2)) + VF(x(t)) - 6% + o(6%)

Since dx = x/(t)dt + o(dt),
F(t+6t) = F(t) +x'(t) - Vf(x(t))dt + i(dt)

Le.
dr d dx

S = @) = - V(D)

20




Note. Suppose surface S is defined implicitly
S={xecR?: f(x) =0}
If t = x(t) is ANY curve in S, then f(x(¢)) = 0 identically. So

d dx

0= S Gxlt) = VIGx() -

So V f is orthogonal to tangent vector of ANY curve in S.
Le. Vf(x) is normal to surface at x

A

21




2.4 Computing the gradient

Equation. If working with orthogonal curbilinear coordinates (O.C.C), (u,v,w), not clear how to
compute V f, not clear how to change (u, v, w) so that x = x(u,v,w) changes to x + h.
In cartesian coordinates, life is easy: to get change

x—x+h
just
— T+ h1
Y= y+ha
Z > 2+ hs
f(x+h)=f(x+h +y+hs+z+hs3)
_ of of of
= f(X) aF 8$h1 T ay h2 4 92 h3 S O(h)
of
g
— F)+ | 2] h+o(n)
ar
0z
i.e.
of
)
vf=|%
of
0z
Or, using suffix notation
__of _of
Vf= eZa—xi, or [Vf]; = oz,
See that V is a kind of vector differential operator.In Cartesian coordinates
0 ad 0
V = ez% —l—eya—y —i—ez&
0, 0
- Z&vi
Example.
1
f=5@+y*+2%) = 5x
Then
o [1
V fli 93 [5%%}

[So Vf = e;x; = x as expected|

22



Equation. Recall, in Cartesian Coordinates,

dx = dwe, + dye, + dze,

= dxiei
Also f = f(z,y, z) has differential
of
df = 8xidxi
Then
0
Vf-dx= <eia—{> - (e;dz;)
of
= 8.’1:1 (ei -ej) dacz
Vf-dx=df

Note. Coordinate independent statement!

Remark. Have been abusing notation.
Jumped from writing

fx) = f(z,y,2)
Really, we should write
F(z,y,2) = f(x(z,y, 2))

Seems over the top in Cartesians, but would be more proper to write
F(u,v,w) — f(x(u,v,w))

We should do so as otherwise could have:
p(x) = p(z,y, z) pressure
p(x) = 13(7“, 9,¢) pressure

p(x) = p(z,y, z) pressure

Too many different coordinate systems to choose from. Yuck!

23




Prop. If (u,v,w) are O.C.C and f = f(u,v,w),

1 0f 1 of 1 af
Ea“rev-i-——ewﬁ-m%ew

V= h, Ov

Proof. If f = f(u,v,w) and x = x(u, v, w)

df = g£d+ +§—fdw dx = h,due, + -+ hidwey,

Using df = Vf - dz, and writing
Vi=(Vfluew+ -+ (VS uwew

We find f f f

Since {du, dv.dw} are hnearly 1ndependent,
1 of
1 of

Equation. In cyclindrical polars (p, ¢, 2), h, =1, hy =p, h. =1

3f 10f of
Vf= 8/) o T —% €s + —ez

In spherical polars (r,60,¢), h, =1, hg =r, hy =7sinb,

8f 10f 1 of
vi= ar® +_% —i_v"sinO%e‘z>

24




Example. Let f(x) = [x[?>. Then

3(a% +y* + 2?) Cartesians
f=<10*+2% Cylindrical
%r2 Spherical
zre, +ye, + ze, Cartesians
= Vf={(pe,+ze, Cylindrical
re, Spherical
=x

Note. Answer is same in each coord system.

25




3 Integration over lines, surfaces and volumes

3.1 Line Integrals

Definition. For a vector field F = F(x) and piecewise smooth parametrised curve

C :[a,b] 5t — x(t)

/XF.dx:/abF(x(t))-i—’t‘dt

We define line integral

x(b)

x(a)

Remark. If we want to integrate in opposit direction, write fc F - dx. Can interpret as work fone
by particle moving along C' in presence of force F.

F.dx ~ F(x;) - Ax;
/. SR

AXi = Xij4+1 — X

26



Example. Consider
2

7Y
F=|4°
2zx
1
Consider two courves connecting origin to |1
1
t t
C.0,1] ot [t|, Co:[0,1] 2t |t
t t2
So )
1 [ 88 1 5
2
e o |22 |1 5

1] 1
1
/F-dx:/ Bl-]1 dt:—3
2 0 263 |2t 10

See that, in general, line integral between two points depends on path taken

Example. A particle at x experiences force in cylindrical polars

F(x) = zpey
Calculate work done by travelling along
acost
C:[0,2r] 5t~ |asint| (a>0)
t

Recall line element in cylindrical polars
dx =dpe, +pdopey +dze,

So
F.dx = 2%p%d¢

Also, on path

(p, 9, 2) = (a,t,1)
= (dp, d¢, dz) = (0, dt, dt)
— F.dx =d’tdt

27
/F~dx:a2/ tdt = 272a>
c 0

Finally then

27




Definition. We say a curve
[a,0] >t — x(¢)

]{F-dx
c

Sometimes call integrals of this form the circulation of F about C'

is closed if x(a) = x(b).
In this case, write

Example. Take one before previous example with C' = C; — Cy
C1

Cy C

fF-dx:/ F'dm—/ F~dx:—i
c Ch Cs 20

3.2 Conservative Forces and Exact Differentials

7

We've seen how to interpret things like F - dx when they’re inside an integral.
differential form i.e. in coords (u,v,w)

F.dx=()du+()dv+()dw

This is another

Definition. We say that F - dx is exact if
F.dx=df

for some scalar f. Recall that
df =Vf -dx

So F - dx is exact iff F = V f for some scalar f. Call such vector fields conservative.

Claim. So we have
F -dx is exact <= F is conservative.

Remark. Using properties d(af + fg) = adf + fdg (a, 8) constant, d(fg) = gdf + fdg etc. usually

easy to see if form F - dx is exact

28




Proof. By previous, if 0 exact, then § = V f - dx for some scalar f. If C is [a,b] 5 t — x(¢)

ie:%w-dx=/abv<x<t»-fl—’;
b

d
- | glrecconar

= f(x(a)) = d(x(b))
=0 if x(a) = x(b)

29



Prop. Equivalently, if F is conservative then circulation of F around any closed loop curve C vanishes

}{F-dx:o
c

If F conservative (F - dx exact), then line integral between points A = x(a) and B = x(b) is indepen-
dent of path

Proof.
(& B
A
Cs
IfC=C,— 0y,
%F-dX:O
c
(:}/ F~dX:/ F.dx
Cl Cz

Claim. Let (uq,uz,u3) = (u,v,w) be set of OCC. Let

A B
Foax=g= 2020 g  Bwow, Clvw,,
01 0 03
= 91 dul
A necessary condition for 0 to be exact is
06;  06; .
= h
Ouj;  Ou; S ) (t)
Proof. Indeed, if 6 exact, then 8 = df, so
_of _of
0 = o, du; < 0, = B,
and so
00; O f  9°f 08,
8uj o 8uj8ui o 8u18uj B 8ui

Definition. Call differential forms 6 = 6; that obey () closed. So

0 exact — 6 closed
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Note. The reverse implication is true if the domain 2 C R3 on which 6 is defined is simply-connected.

Definition (Non-examinable). Q simply connected means all closed loops in £ can be
continously shrunk to any point insider €2 without leaving it

Look at de Rham Cohomology.

Example. (i)

0=ydr—xdy

Is it exact?
Check:is it closed

141
So 5 5

o7 o

(ii) Compute line integral
j{i’wzy dz + 23 dy

cos[Im[(j(% I Zt)]]:|

C: o1, a100] Dt {sin[lm[g‘@ + it)]]

where o and g are the 15 and 100™ zero of ((5 + it) i.e.

¢ <% +ia1> = (% -l-iOéloo) =0

]{ 322y dz + 23ydy =0
C

As
3’y dz + 2° dy = d(2%y)

Example.

Work done = / F.dx
c

a

If F=—-VV,ie. F conservative,

/F-dx=—/ VV - dx = V(x(a)) — V(x(8))
C C

(s +veeon)| = (Gt +vis)

t=a t=b
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3.3 Integration in R?

Want to integrate over bounded region D C R2.
To do this: cover D with small disjoint sets A;;, each with area ¢;;, each contained in a disc of radius
€ > 0. Let (z;,y;) be points contained in each A;;

Now define

| #60a4 = tim ICHLE

Say the integral exists if it is independent of choice A;; and choice (z;,y;)
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Obvious choice of partition would be to use rectangles with 0A4;; = dzdy

Y

A
~

X

y
Sum over horizontal strips of width dy, then take limit as dz — 0

(5y/X f(z,y)dz (where X, = {z : (z,y) € D})

Summing over each such strip, taking dy — 0 we get

/Df<c7y>dAzfy</ny<x,y>dx> dy

where Y is as (*).
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If we instead sum over vertical strips, get

Aﬁ@@MLQ&mwm@m

A
~

More concisely, we have
dA =dxdy = dydz

Note. See Fubini’s theorem in Part II Probability and Measure:
If

/Wﬂ%mMA<w
D

/(/f(xay)dx> dy:/(/f(:C,y)dy) dx:/[)/f(x7y)dA

Then
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Example. Let D be a triangle with vertices (0,0), (1,0), (0,1)

T

If f(x,y) = zy? then if we integrate over horizontal strips

Y

AN x

1 1—y
/fdA:/ (/ a:ygdx> dy
D 0 0
1 1 1-y
2 2
=[ vy |5z dy
o,

With vertical:

Y

x
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Method. If f(z,y) = g(x)h(y) and D is a rectangle

D={(z,y):a<xz<b c<y<d}

JRCYLIE ( / " @) dz) ( / *hw) dy)

Then

Method. Often useful to introduce change of variables to compute

/abf(:c)dx

If we introduce z = z(u) with z(«) = a and z(8) = b then:

/abf(w) dz =

If I =[a,b] and I' = z(I)

+ 2 Fle) e du (B > o, % > 0)

— [ fa(w) %2 du (a > 8,22 < 0)

dx

T du

/ f@)dr= [ Flew)
I I’

Note. Similar formula in 2D
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Prop. Let © = z(u,v) and y = y(u,v) be a smooth, invertible transformation with smooth inverse
that maps the region D’ in the (u,v) plane to the region D in the (x,y)-plane. Write z = z(u,v),

- [ [emasay= [ [ setuo.smon g

oz,y) ge  Gz] ox | 0x
O(u,v) = det [%—z % = det ou| Ov

is the Jacobian, often denoted by J. Short version is dzdy = |J|dudv

dudv

Where

Proof. form a partiton of D using the image of a rectangular partition of D’
v
1 1 1
1 1 1
1 1 1
o ol
1
__________ o _————— -
__________ E oo
v !
1
___________ SN W
1
T
1 1 1 u
1 1 1
Ui Uitl
—
ou
Y
0
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Prop (continued).

Proof (continued).

ov

ou

Note §A;; ~ Area(B)
B =

x(ui, Vjt1)

x(ui, vj)

X (Ui, Vjy1)

X(uia U])
x(uit1,;)
0x
xX(Uig1,v5) — X(u4,v5) %M
ox
x(ui7vj+1) - x(uz, 'Ug) =~ %(51)

Area(B) ~ Area(C)

% (uia Uj)éu

Area(C) = |det < B_X(su

ox

0| 35m)
= |J(ui,v;)|0u dv
—_—

Aij

X(Uit1, ’Uj)
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Prop (continued).

Proof (continued).
J £aa=gin > fmm)ps

= gl_%z f(@(us, v5), y(ui, v;))|J (i, v)|0u dv
2,]

:/,/f(x(u,'u),y(u,v))|J(u,v)|dudv
:/D/f(x,y)dxdy

dedy = |J|dudv

Giving us

Equation.
dedy = |J|dudv
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Example. Use polar coords (p, ¢)
z(p, ¢) = pcos ¢

y(p, ) = psing

Hence

. cos¢p —psing

/1= 'det [sind) pCOS @ H

= ol

=p
If

D' ={(z,y):z>0, y>0, 22 +y> < R%}
y ¢

NIE]

R

D' ={(p.¢):0<p<R 0<4 3}

/D/f(:l?,y)d:rdy:/Dl/f(pcos¢,psin¢)pdpd¢

i.e.

dxdy — pdpdo
Take R — oo »

[ [ tewar=[ [ focoss.psingpdpas
z=0 Jy=0 ¢=0 Jp=0

Consider -

I:/ e~ dz

0

Have




3.4 Integration in R?

Method. to integrate over regions V in R3, use similar ideas to those in section 3.3. Let
dV = li s Yiy 2i) OVij
/Vf(x) el_rf(l)z.f(mzuy“zz) ijk
.9,k
In this case the volume element satisfies

dV =daxdydz

Note. Can do integrals in any order.

Example.

z=1—z—y

y=1—=x
V bounded by plane z + y + z = 1 and the three planes z =0,y =0 and z =0

1 11—z l-z—y
/ dV = / / / dz dy dx
\%4 z=0 Jy=0 z=0
1 l=an
:/ da:/ (1-—z—y)dy
x=0 y=0
1

6
Could compute CoM of V, assuming density p = 1

1 1
X=— v ==
M/VPXV 4

— = =
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Prop. Let 2 = z(u,v,w), y = y(u,v,w), z = z(u,v,w) be a continuously differentiable bijection
with continuously differentiable inverse that maps the volume V' to the volume V.

///f(x,y,z)dmdydz:///f(x(u,v,w),y(u,vvw)’z(u’vvwm{”dudvdw
v v

Where

o(z,y, z ox| Ox| 0x
/= 8((u,v,w)) = det [% D) %]
and
x(u, v, w)
X= .
z(u, v, w)

Short version:
dzdydz = |J| dudvdw

Proof. Jacobian comes from fact that volume of a parallelepiped generated by
d
Fo 0w
___________ 7
s/
s
7
_________ ay
/ /
/ /
/
;7 %(5”
Sxou LS N
s ox| ox| 0
x| Ox| dx
det | —| =—| = | dudviow
{81; Ov 8w]
The rest is (almost) same as 2D case.

Example. Find in cylindrical polars (u,v,w) = (p, ¢, 2)
dV = pdpdodz |J| = p
In spherical polars (u,v,w) = (r,6, @)
dV = r?sinfdrdfde |J| = r’sinf
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Example. Calculate volume of ball of radius R

V={(z,y,2) : 2 + 9y + 2* < R?}

- - VR=2
" VRT=2

:/ yvR2 — 22 —y2 + (R? — 2%) tan! e yg 2” dz
2=—R R — 22—y = VT
R

= 7(R? — 2%)dz
-R

_ 4T R3

3

Alternatively, use spherical polars

V' ={(r0,¢):0<r<R, 0<60<m 0<¢<2r}

27 T R
Volume = / l / l / 2 sin@dr] dH] do
=0 | Jo=0 |Jr=0

™ 3
- / 2r R 08
0=0 3

_ 4T R3
3

So

MUCH NICER COMPUTATION
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Example. Consider ball of radius a with cylinder of radius b < a removed

e

——

Symmetry suggests use of cylindrical polars
V={(z,y,2) : aty’ + 2* <a?, 2% +4* > %}
Or in cylindrical polars

{(ps0,2) :b<p<a, 0<2*+p?<d® 0<¢<2r}

a 2n [ py/a2—p?
de - /,;:b [/¢>=0 [/F—\/m dz] d¢] =|pJ|dp

a
= 27r/ 2p\/a? — p2dp
b

3.5 Integration over surfaces

S ={xcR®: f(x) =0}

Normal to S at x is parallel to V f(x).
Call surface regular if Vf(x) # 0 for x € S

Remark. A two dimensional in R? can be defined implicitly using a function f : R?> — R
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Example.
S={(z,y,2): 22 +y>+22-1=0}

So

which is normal to S at x
Some surfaces have a boundary, e.g.

S={(z,y,2): 22 +y* + 22 =1, 2 >0}

Label the boundary by 0.5
88 = {(z,y,2) :a® +y* =1, z=0}

In this course, a surface S will either have no boundary (9S = &), or it will have boundary made of
piecewise smooth curves. If S has no boundary, say S is a closed surface.

Moral. Tt is often useful to parametrise a surface using some coordinates (u,v)
S = {x =x(u,v), (u,v) € D}

D some region in (u,v)-plane

Example. For hemisphere, use spherical polars

sin 6 cos ¢
S ={x=x(0,¢) = |sinfsing|, 0 << 2r}
cosf

Definition. Call parametrisation of S regular if

ox 0Ox
— X —#0on S
Ju Ov
In this case, we can define normal
Ox o 0x
__ _Ou ov
n _——_—
Ox . Ox
ou v

Note. This normal will vary smoothly wrt (u,v).
Choosing a normal consistently over S gives us a way of orientating the boundary 0S: make the
convention that normal vectors in your immediate vicinity should be on your left as you traverse 0.5

45




Method. How should we compute area of
S = {x=x(u,v), )u,v) € D}

Might think that it would be
/ dudv (WRONG)
D
Patch of area dudv in D will not in general correspond to patch of area dudv on S

Note small changes u — u + du produces

x(u + du,v) — x(u,v) ~ %(M

ou

Similarly, v — v + dv produces change
ox
ov) — ~—
x(u, v + 6v) — x(u,v) 5y 0

So the patch of area dudv in D corresponds (to first order) to a parallelogram of area

%8){

£ X 50 dudv

area(parallelogram) =

Definition. This leads us to define the scalar area element and vector area element

3_X(9x

ds = 7 X 5 dudv
ox 0Ox
ds = 0 X %dudv =ndS

Equation. Gives area of S:

ox Ox
area(S)_/SdS—// 3 % 30 dudv
D
and 3 a
x X
/Sde://f(x(u,v)) 2 B0 dudv
D

46




Example. Consider hemisphere of radius R

Rsin 6 cos ¢ -
S ={x(6,¢9) = | Rsinfsin¢ | = Re,, 03935, 0<¢<2n}
Rcosf
So p
R cosfcos ¢
%: Rcosfsing | = Rey
—Rsinf
ox —Rsin 0 sin ¢
- = | Rsinfcos¢ | = Rsinfey
(J0) 0

= dS = R*sinfley x ey|dd de
= R%sinfdfdo

2 2
area(S) = / ( / R? sin0d¢> df = 27 R?
6=0 »=0

Example. Suppose velocity of fluid is written u = u(x). Given S, how to calculate how much fluid
passes through it per unit time? On small patch 95 on S, fluid passing through would be (u - 6S)dt
in time dt. So amount of fluid that passes over S in 0Ot is

6t/u~dS
s

This is the rate at which fluid passes through surface S times dt.
Called “flux” integrals.

Are these surface integrals dependant on choice of parametrisation of S?7
Let x = x(u,v) and x = %(@, ¥) be two different parametrisations of S with (u,v) € D and (@,9) € D.
Must have relationship

x(u,v) = x((a(u, v), v(u,v))

du  Ov oudu 00 du oudv 00 v
oudv Ouov) ox 0Ox
- <6uav_8v8u) 9a " 9%
d(u,v) 0x 0%

- d(u,v) 04 * 85
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Note.

_ o\ |ox
[ sas= [[rx@o |5
D
Change of variables 4 = 4(u,v) and © = 0(u,v)
ox 0Ox
/SdeZ//f(X(%U)) FIR
D
ox 0Ox
— [[ st |52 < 5
D

So [, ddS indep of parametrisation of S

d(u, v)
d(u,v)

dudv

dudv
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4 Divergence, Curl and Laplacians

4.1 Definitions

Seen gradient operator V, acts on functions f : R — R. In Cartesians,

0
V—ei%

Definition. For a vector field F : R? — R3, define divergence of F by

div(F) =V -F

Equation. So in Cartesians,

_OF;

Note. Divergence of a vector field is a scalar field.

Definition. For a vector field F : R? — R3, define curl of F by

curl(F) =V x F

Equation. So in Cartesians
VXxF=|e— | x (Frek)
79 :

=e; X [a% (erk)]

=(e; xe )@
_uaxj

Eijk€i
OFy,
= (eiir — | e;
ij axj )

0
[V X F]z = 8ijk87ij

So in Cartesians,
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Note. Curl of vector field is another vector field. In terms of a “formal”’ determinant
e €9 €3
VxF=det |52 2 =~
P F, F

Definition. For scalar field f : R?> — R, define Laplacian of f
V2f =V .-Vf (= div(grad f))

In Cartesians, [V f] = %7 S0

0% f

2p _
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Example. Consider F(x) = x. Then using Cartesians

0

0
[V X F]i = 817%7]}/.;

= €ijkOk;
= €ijj
=0

»

L/
\
N

N
/

V- -F(x) >0
V-F(x)<0
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Example.
[V X F]g <0

AN/ Ay

[VXF];J, =0

[VXF]g > 0
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Prop. For f,g scalar fields, F, G vector fields

)
V- (fF)=(Vf)-F+ f(V-F)
VX (fF)=(Vf) xF+ f(VxF)
VF-G)=Fx(VxG)+Gx (VxF)+(F-V)G+ (G -V)F
Vx(FxG)=F\V-G)-G(V-F)+(G-V)F— (F-V)G
V- (FxG)=(VxF)-G-F - (VxGQ)
Proof.
Note.
(V)G = (Fip ) G
., 0G;
B j@(Ej

All similar so we only prove the 5™, leave rest as exercise.
By definitions, LHS is

[V (FxG)i=cijrz— (FxG)
5 (9.’I,'j
= Eijk (erimFiGm)
J 8 y
G, oF;
= ij m I ma_
ﬂ/ ! a.%'j 6 aCL‘j

8i10m —0imbj1

0G; 0G; 0G; OF;
=F—_F j—— — ==L
8$j J ailij + Gj (9113' G 6a:j

=[F(V-G); - [(F-V)G|; +[(G-V)G]; - [(V-F)G];,0

Remark. These identities hold in ANY OCC, but are most easily established using Cartesians
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Equation. For general OCC, divergence defined by same formula V - F, i.e.

(16 1 0 1 0

R ) RELRR

Would get terms like

1 oF, Oe,
= roe e+ g
_F, oe,

h (e“' du >

Remark. Gets quite messy as {e,, €,, e, } will depend on (u,v,w). Just state results:

1 0 0 0
1 0 0
VxF= e [% (hywFrw) — 0 (thv)} e, + cyc. perms
1 huew hyey hyey
_ dot| 2 & 2
ou ov Ow
huholw =\ 2760 BB Ry By
AND 1 0 ([ hyhy Of 0 ([ hyhy Of 0 [ hyhy, Of
2 _ . vt w ZJ — u'tw ~J _ M_
V= Ry Py [au ( hay 8u> * ov < hy 81}) * ow ( o 8w)]
Since | of
[Vf]u = E% etc.

Example. In cylindrical polars (p, ¢, z),

(hpa hqﬁv h’Z) = (17p7 1)

So
2p 1[0 (0F\ 0 (10f\ 0 ( of
Vf‘Aw(w)%¢Qw w@%ﬂ
10 ( of 1 02f  9%f
7%(’)%)*??*?
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Remark. For Laplacian of vector field, might guess
?V-(VF)?
But haven’t defined VF. In Cartesians, it would make sense
VQF = Vz(Flei)
= (VQFi)ei
Using suffix notation, can show
V2F =V(V-F) -V x (VxF)
i.e.
[V(V F)—Vx(VxF)]—ﬁ
¢ ijc‘)xj

Since RHS of (}) is well-defined in any OCC, use it as a definition

= V2F;

Definition.
V2F =V(V-F) -V x(VxF)

Remark. If f harmonic, i.e.

*f  *f 2
W + 3—y2 = 0( in R )
(elliptic) f analytic
ie.
But if

I

0x2 oy

(hyperbolic) can’t say as much about nature
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4.2 Relations between div, grad and curl

Prop. For a scalar field f and a vector field F

VxVf=0
V- (VXF)=0
i.e. curl - grad =0, div - curl =0
Proof.
0 of
[V x Vi = Eijk 5~ <3$1€)]
J
P
B ”kazz:j(?xk
=0
€ijkis anti-symmetric in j, k but 6Z2aka is symmetric in j, k resulting in product being zero
0 0
. F)= —¢,s—F
\ (VX ) 8$i5]k6$]’ k
_.  OF
- ”kc?xiaxj
=0
similarly.
Note. Recall F was conservative if F = V f.
Definition. Say F is irrotational if
VxF=0

Remark. So from proposition
F conservative = F irrotational

Reverse implication is true if domain of F is simply connected (or “l1-connected”)
e.g. R3 is 1-connected byt R3\{z-axis} is not 1-connected

Remark. Similarly, if there exists a vector potential for F i.e.
F=VxA

then
V-F=0

Here A is called the vector potential for F
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Definition. When V - F = 0, say that F is solenoidal

Remark. So existence of vector potential for F —> F solenoidal
Reverse implication is true if domain of F is 2-connected.

Definition. Say 2 C R? is 2-connected if it is 1-connected and every sphere in lcan be continuously
shrunk to any point in §2

Example. R? is 2-connected. R?\{0} is 1-connected, but not 2-connected

A

v

get stuck trying to get passed origin
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5 Integral Theorems

5.1 Greens Theorem: Statement and Examples

Proof. Proved later through other integral theorems
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Note. It is easy to establish this result for

A={@y):a<z<be<y<d

/j(/abggdx) dy—/j(cdaaj;d)dm

In this case, RHS is

= Pdz+ Qdy
A
dy =0
y=d
dz =0 dx =0
r=a A xr =
dy =0
Y=E

Example. Let P = —%y, Q= %x Then:

1 1
:// 3 F 3 dx dy
A el

_oq __or
1
=5 f;A rdy —ydzx
If A is ellipse
2 g2
2 =t
Then 0A
acost
[t 2] 26 = {bsint}

1 2m
area(A) = 5 / (abcos® t + absin® t) dt
0

= mab
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5.2 Stoke’s Theorem: Statement and Examples

Theorem. If F = F(x) is a continuously differentiable vector field and S is an orientable, piece-wise
regular surface with piecewise smooth boundary 05 then

/S(VXF)- dszngF- dz

Note. Generalisation of FTC

Remark. The “orientable” bitmeans there’s a consistent choice of normal vector at each point of S.
I.e. S has “two sides”.
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Example. Let S be a cap of a a sphere

<

sin 6 cos ¢
S ={x(0,¢) = [sinfsing| =e,, 0<O <, 0<¢ <27}
cosf

On S:

ox 0Ox
= eg(sinfe,) dd do

=e,sinfdfdo
Note that since (z%e, - e,) = (sinf cos ¢)? cosd on S:

27 «
/VXF- dD = / cos? psin® G cosf df | do
S 0 N———

¢=0 =0 =
de

NS

74

sin” «

08 is described by

sin v cos t
[0,27] 5 t+— |sinasint
CoS &
dx —sint
— dx=—dt=sina | cost | dt
dt 0

And so

27
7{ F.dx= sin4a/ (—cos® tsint)(—sint)dt
s 0

m .
— —SIH4OZ
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Example. If S is an orientable, closed surface and F is continuously differentiable then

/VxF-dSzO
S

Prop. If F is continuously differentiable and for every loop X

}{F~dx=0
c

then V x F = 0. SoF irrotational <= F has zero circulation any closed loop.

Proof. Assume result is false i.e. 3 unit vector is such that

k-V x F(Xo) >0
—_———

e

for some x.
By continuity, for 6 > 0, sufficiently small so that, by continuity

1
konF(x)>§sfor |x —xo| < 9

Take loop in this ball {x : |x — x¢| < ¢} that lies entirely in a plane with normal k

A
k

Then:

O:f F - dx
as

:/VXF~de
s

>%E/d5

> X
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Example. Let S. denote a region contained inside a disc of radius € > 0 centered at x, with normal k

A
k

/VxF'dS:/(VxF(x)—VxF(xo))-dS+/ V x F(xg) - kdS
Ss Se Se

area(S:) k-VxF(xq)

zarea(Se)k-VXF(xo)—i—/S VxF-dS—i—/S (V x F(x) = V x F(x0)) - dS)

o(area(Se)
= area(S:) k- V x F(xq) + o(area(S;))

. 1
— kvxF(Xo)—;%mésstX

So component of V x F(xg) in direction k is equal to infinitesimal circulation per unit area about k

5.3 Divergence Theorem: Statement and Examples (Gauss’ Theorem)

Theorem. If F = F(x) is continuously differentiable vector field and V is a volume with piecewise

regular boundar 9V then
/V~FdV:/ F.dS
1% v

where normal to dV points OUT of V'

Prop. If F = F(x) is continuously differentiable and D C R? is a planar region with pievewise sooth

boundary 0D then
/:V-FdA:f F -nds
D oD

(s arc-length)
again n points OUT of D.
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Example. Let V be a cylinder. In cylindrical polars (p, ¢, 2):

V:{(P,¢,2)Z 0<p<R, —h<z<h, O§¢§27T}

«— Sr

\f\s

Consider F = x. So

V-F=3
/V~FdV:3/dV:67rR2h
1% v

Alternatively use Divergence Theorem. 0V is made from
Sr={(p,¢,2): 0<p<R, ~h<z<h, 0<¢<2n}

Sy ={(p,¢,2): 0<p<R, z=+h, 0<¢<2n}

On SR,

dS =e,Rdpdz
and

x-e+p=R

So

h 27

/ F-dS:/ < R2d¢> dz = erR%h
Sr z=—h »=0

On Si, find

dS = t+e.pdpdo
and

x-e,=nh

27 R
/ F.dS= (/ hpdp) d¢ = mR*h
S $=0 p=0
/F~dS: /+/ +/ F-ds
oV Sk Sy _

= A7 R%h + mR%h + TR?h
= 67 R%*h v

SO

In summary
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Prop. If F = F(x) is continuously differentiable and for every closed surface S

/F-dSzO
s

then V-F =0

Proof. Suppose result is false. So V- F = ¢ > 0. By continuity, for § > 0 sufficiently small

1
V'F(X)>§€ |X—X0|<(5

Choose a volume V inside ball |x — x¢| < §. Then by assumption

0:/ F-dS:/V-FdV>ls/ dV > 0 X
oV Vv 2 Vv

Conclude that if vector field E has zero net flux through any closed surface then it is solenoidal
(V-F=0)0O
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Example. Let V. be a volume in R3 contained inside a ball of radius € > 0, centered at xg

Ve

/ V-FdV = vol(VE)V~F(xo)+/ [V -F(x) - V- (F(x0)]dV

€ €

0(col(V2))

(can bound integral considering a max)
Dividing both sides by vol(V;), take € — 0, by Divergence Theorem

. 1
V'F(XO):“h—r}%W/aveF.dS

So V - F measures “infinitesimal flux per unit volume.”

:/ + E V- F(xo) > 0
@

l V- F(xo) <0
éﬁ

l V- F(xo) =0
*._
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Example. Many equations in mathematical physics can be written in the form

Jdp .
E—FV-J—O (1)

Call these CONSERVATION LAWS.
Suppose both p and |J| decrease rapidly as |x| — co. (p = (p(x,t), J = J(x,t). Define charge:

Q:/Rsp(xat)dv

We have conservation of charge:

d@ ap
&_ [ Pay
dt r3 Ot
= - V.-Jdv
R3
- o V- |3]av
R—o00 |X|SR
=— lim J.-dS
R— 00 |x|=R

=0

as |J| — 0 rapidly as |x| — oo
So (1) gives “conservation of charge”
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5.4 Sketch Proofs

Prop. The divergence theorem is true

Proof. Suppose first that
F = FZ(.’L',:% Z)ez

Then divergence thm says

OF,

—Z24dv = F.e, -dS
v 0z oV
z
8V = S+ US,
_—Sy
? n ~g_
/ : : — 7
X
We write: _
T
Sy = {x(z,y) = Yy , (z,y) € A}
g+(z,9)
Then

OF, .
v 0z dV_//
A

://[Fz(x7yvg+)xay)_Fz(xayag—(xvy))] d.Tdy
A

9+@) g |
/ = dz| dedy
@y 97

To calculate RHS of () over Sy

0 0 _8‘9&
_ @S e _ | _dax
ds = p X 3y drdy = —lay dx dy
Since we want n to point OUT of V, on Sy, we have
_ 99+
_ J
dS|g, =+ — % | dedy
1
:>/FodS:/+/ F.e, - dS
av Sy _

:/A/Fz(x,y,%(x,y))dxdy—//Fz(x,y,g_(w,y))dl’dy

A
F,
= /V 5o dv
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Prop (cont.).

Proof (cont.). So (T) holds. In exactly the same way

OFy dV = F,e, - dS
v Oz v

OF, /
—=dV = F,e, - dS
v Oy 1) v

Adding these three together

/ OF,  OF, + OF,
v Oz Jy 0z

dV = / Fye, + Fye, + F.e, - dS
av

which is the divergence thm [J
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Prop. Div thm = Green’s thm

Proof. Use 2D div thm with F = [

/

0Q OP
or Oy

Then the normal vector must be

And so

F-n

/

0Q 0P

or

Q
-P

>dxdy=/V-FdA=?{ F-xds
A A

] . Then

If OA is parametrised wrt arc length, so unit tangent vector is

' (s)
y'(s)

o)

_|@ y'(s)
= | ][50 o
_ pdz dy

=Pdz+Qdy

) dxdyz?( F-xds
0A

dy
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Prop. Green’s thm = Stoke’s thm

Proof. Consider regular surface
S ={x=x(u,v) : (u,v) € A}

Then the boundary is
08 = {x =x(u,v) : (u,v) € A}

fé Pdu+de—//(aQ af)d dv

Green’s thm gives

Make choices

P(z,y) = F(x(w,v) - &
Q) = Flx(u,v) - o
Then
Pdu+ Qdv=F(x(u,v)) - <g—z du + g—: dv)
=F(x(u,v)) - dx(u,v)
And so

Pdu—i—de:% F- dx

0A oS
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Prop (cont.).

Proof (cont.). For the other side of Stokes’

@ - %8}?1 81), + ‘82.131‘
ou  Ou Oz Ov * Ovdu
87]3 - %8}71 8.%‘1' + ‘82331'
ov v dx; Ou ' Oudv
So:
0Q 0P _ (9w 0; 0ui0s;) OF
ou v\ Ov Ou ou Ov ) Ox;
B OF; 0xy, O0x4
- (51196311 - 6“16]13)87%%%
_ oo OFi 0y 0g
- Sk qu@wj ou Ou
ox 0Ox
= [—V X F]k <6u X 8'U>k
ox 0Ox
—(VxF)-(({?ux&))
So

//(gﬁgf) d“d”//(VXF)'@zxg);) du dv
A A
:/SVXF-dS

This is Stokes’ theorem. [

6 Maxwell’s Equations

6.1 Brief Introduction to Electromagnetism

Notation. Denote by
B = B(x,1)

the magnetic field and
E =E(x,t)

electric field. These fields will depend on charge density
p=p(x,t)

(electric charge per unit volume) and on current density
J=J(x,t)

(electric current per unit area)
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Equation.

v.E="2
€0
V:-B=0
0B
E — =
V x +8t 0
OE
B— — =
V x Hogo o tod

The constants €y and o are the permittivity and permeability of free space, which obey
1

Ho€o

where ¢ = 299,792,458 ms~! is the speed of light.

Method. Of we take div of (4), using V-V x B =0,

5]
OZ,U()EOE(V~E)+M0V-J

Use (1), V-E = £ we get

Eo?
dp
E—FV-J—O

conservation law.
This gives rise to conservation of charge.
(Corresponds to “gauge symmetry”)

6.2 Integral Formulations

Method. Integrating (1) over volume V and using divergence theorem,

/E-dszi/pdVEQ
v €0 Jv €0

where @ is the “total charge in V”
This is called Gauss’ Law.
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Method. For magnetic fields, (2) gives

/ B.-dS=0
v

There is no net magnetic flux over any closed surface 9V

= o 1 \i

YINT TN

i.e. there are no magnetic monopoles

B

Method. Integrating (3) over surface S and use Stoke’s theorem

fE~dx:—/a—B~dS:—i B.dS
a8 Sat dt S

A\ 4 \4 \ 4
The CHANGE in magnetic flux through S induces circulation in E about 0.5

Method. Integrate (4) over S and use Stokes

f B-d.XZ;LQ/J-dS-f—,u()E()i E- dS
a8 3 dt Js
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6.3 Electromagnetic Waves

Equation. In Empty space, p = 0,J =0, so (1) - (4) become

V-E=0
V-B=0
0B
E+—=
V x +8t 0
OE
B - — = uod
V X M0€06t Mo

Equation. Recall Laplacian of vector field F
V2F =V(V-F) -V x(VxF)

Using (1),(3),(4)

) OB
VE =V (0) — V x <—§>
0
T ot
0 JE
= ot (Mo%a)
Using
1
Ho€o = 2
we get )
9 1 0°E
VZE — 202 0

(this is the wave equation in 3-D) So in vacuum, electric field travel at speed c.

Equation. Similarly, using (2), (3), (4)

2 2E
VB = V(O) —V x (MOSOW)
0

= _HOSOE
°B
= +M080ﬁ

i.e. 2B

1
—Z2_0
c? Ot?

So electromagnetic waves always travel at speed ¢ in a vacuum

V?’B = —
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6.4 Electrostatics + Magnetostatics

Equation. Suppose all fields and source terms are independent of ¢. Then Maxwell’s equations

decouple
V-E= 2
(A) o
VXxE=0
B= 2
By B
VXBZ,U,()J

If we are working on all of R3 (which is 2-connected), then V x E = 0 and V - B = 0 implies
E=-V¢, B=VxA

Call ¢ the electric potential and A the magnetic potential.
Maxwell’s equations (A) and (B) become

v2p=L
€0

VX(VXA)ZM()J

The first is called Poisson’s equation, see section 7
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6.5 Gauge Invariance (non-examinable)

Equation. The second of Maxwell’s equations is
V-B=0
Assuming we are working on all of R?, can always write
B=VxA

A is not defined uniquely, can always change A — A 4+ Vx and B is unchanged since V x Vx = 0.
Called gauge invariance, it gives rise to conservation of charge via Noether.

Using B =V x A in (3)
0A
E+ 22 =
Vx( +8t) 0

so we can write this term in brackers in terms of a scalar potential. So

0A
E=-V¢—
Ve ot
So Maxwell’s equations reduce to
9 _p
1 20— — =L
( ) — v ot €0
oo} 0? B
(4) = V x(VxA)+peeV ¢ ) T Hof0 5 = Hod
Recall
Vx(VxA)=V(V-a)- VA
and

Ho€o = —

So 27 equation becomes

10 10
—(VQA——28—>+V<V A+ Qaf):qu

Now exploit gauge freedom: change
A~ A+ Vy

in such a way that
1 0¢
V-A+—=——
+ c2 Ot 0

So Maxwell’s equations become

W)= -4 222 _ 2
02 ot? o
1 82A

2
A
4) —» -V + 2 92

Solve these to get
B=VxA
0A

B=-Vo-r
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7 Poisson’s and Laplace Equations

7.1 The Boundary Value Problem

Remark. Many problems in mathematical physics can be reduced to the form
Vip=F

Called Poisson’s Equation, or if F' = 0, call it Laplace’s equation. We solve this equation on Q = R™
or Q CR" n=23.

Physical problems involve boundary conditions,

i.e. ¢ will have prescribed behaviour on 92 (or as |z| — oo if @ = R™).

Example. The Dirichlet Problem is

Vip=FinQ
w = f on 0N
Example. The Neumann problem is
0%p=F in Q
%E = g on 0N}
where we have the normal derivative
on 14

Must interpret boundary conditions in an appropriate manner: we assume that ¢ (or %—f approaches
the boundary data f (or g) continuously as x — 0Q. That is to say, we assume ¢ and V¢ are
continuous on 2 U 0f.
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Example. As usual, let r = |x|. Consider boundary value problem

Vip=rinr<a
p=1lonr=a

Guess solution of form ¢ = ¢(r). Using

and subbing into ()

General solution to (1)(a)

MUST have B = 0 or else ¢ not well-defined throughout 2 = {r < a}. Using (1)(b)

3

a
1—<p(a)—A+E

a3

A=1-L
= 12

So our solution is

Plr) = 1+ 75(r° = )

Remark. Want solutions to be unique (or very almost unique)

Method. Consider generic linear problem

Lp=F in Q)
o (i)
By = f on 02
where L, B linear differential operators.
If 1 and @9 both solve (1), consider ¥ = ¢; — ¢2. By linearity
Ly =0in
v (i)
B =0 on 02

If we can show that the ONLY solution to (111) is ¢ = 0, must conclude that ¢; = @2, i.e. solution
to (1) is unique.

Moral. The solution to a linear problem is unique iff the only solution to the homogenous problem
is the zero solution
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Prop. The solution of the Dirichlet problem is unique.
The solution to the Neumann problem is unique up ot the addition of a constant.

Proof. Let ) = ¢1 — o be the difference of two solutions to Dirichlet or Neumann problem.
SO

V2 =01in Q
B =0 on 092

where Bty = 1 (Dirichlet) or Bzﬂg—ﬁ (Neumann)
Consider the non-negative functional:

I[w]=/ﬂlvwl2dvzo

Clearly I[¢)] = 0 if and only if Vi =0 in Q.

Note:
I[y] = /QVft/)-Vd)dV
z/ V- (V) — V3 | dV as V2 =01in Q
Q :,_/
:/ (V) - dS (Div thm)
o0
_ [ %
B a0 ¢an a5
=0
using
dS =nd§S, n'sza—w
on

Since 1) = 0 on 99 (Dirichlet) or g—ﬁ = 0 on 02 (Neumann). Conclude that Vi) = 0 throughout
0 = 1) = const. throughout 2.
(i) For Dirichlet, v = 0 on 02, so by continuity of ¥ on QUIS, must have 1) = 0 everywhere.
So solution to Dirichlet problem is unique.
(ii) From Neumann, only know % = 0 on boundary so can’t say any more, so since ¢ =
const. deduce that
1 = P2 + const.

Any two solutions differ only by a constant. [
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Example. From electrostatics, consider charge density

p(x):{o r<a

F(r) r>a

Claim. No electric field in 7 < a.

Proof. Indeed know that electric potential ¢ satisfies

v2¢:—@:0r<a
€0

By spherical symmetry, ¢ = ¢(r). So
¢ = ¢(a) = counst. onr =a

Note that unique solution to

{V2¢=O r<a

¢ = const. r=a

is ¢ = const throughout r» < a by proposition
— E = —V¢ = 0 throughout r < a.
“Newton’s Shell thm”
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7.2 Gauss’ Flux Method

Method. Suppose source term F' is spherically symmetric, ie. F' = F(r), where r = |x|. Write our
problem as:
V.-V =F(r) (*)

and assume 2 = R®. Since RHS only depends on 7, same is true of LHS. So assume that ¢ = (1),
in which case

Vo =¢/(r)er
Integrating (*) over region |x| < R, and use divergence theorem
/ V- -VepdV = V- dS = F(r)dV
bx|<R Ix|<R Ix|<R

The RHS represents the amount of, e.g. mass, inside ball of radius R > 0. Set

/ FdV = Q(R)
|x|<R

where Q(R) is “the amount of stuff inside ball |x| < R”
So our equation is

[ Ve as—am)
|x|<R

Recall that on sphere of radius R
dS = e, R?sinfdf d¢

So on |x| = R:

Vo dS = ¢/'(r)e, - (e, R*sinfdfd¢) =/ (R)dS
—_——
ds |x|=R
So
an= [ Jmas=¢m [ s
Ix|<R Ix|<R
47 R?
In summary
Q(R)
/ _
©'(R) = R VR >0
_ QR
= V= 472 er
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Example (Electrostatics). Recall Maxwell’s first equation

vV.E= "
€0
If we use electric potential ¢ so
E=-V¢
get
—V2¢ = r
€0
Consider charge density
(r) = po, 0<r<a
A= 0, r>a
By previous result
1 Q(r)
/
#(r) = dreg 12

Note if » > a then

(the total charge)
So we find, using E = —V¢:

@ = total charge

« 1

«— @ —»
Take a — 0, keeping the total charge @ fixed (i.e. point charge)

Q er
E(X) - 471'80 T‘_2

Q x

- 471'60@

The corresponding charge density p(x) = Q0(x)

/ pdV =Q VR >0
|x|<R
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Method. What if our problem is symmetric about the z-axis i.e.
Vio=F(p) p° =2 +¢°
Have “cylindrical symmetry”. Integrate
V- Vo = F(p)

over cylinder of radius R, height a.
Assuming ¢ = ¢(p), have
Vo = ¢'(p)e, (cylindrical polars)

/VV~V<pdV:/F(p)dV

where V is cylinder

4—
dS = Rdgdze,

Vyp-dS = R¢/'(R)d¢dz —

n = —e,

—n-Vp = 0

LHS = V- dS
ov
27 zo+a
=/ / ¢ (R)Rd¢dz
$=0 Jz=2z
= 2maRy'(R)
o)
(B =% 5 | Flo)av
4 R 2ma fy g
—_——

In conclusion
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Example. How might we describe a line of charge density with constant charge density A per unit
length? Could proceed as before, consider cylinder of radius a, constant charge density. Take a — 0
keep charge per unit length fixed.

Alternatively, let F(p) be the desired charge density. So if we integrate over any cylinder of length 1

A -
— |
' |
1
— |
—
Should have total charge contained to be A
A= / F(p)dV
\%
zo+1 2 R
:/ / / F(ppdp | do | dz
2=z »=0 p=0
R
=2r /0 pF(p)dp
So we see that choosing
Y]
F(p) = (p)
mp
corresponding electric potential would satisfy
, 11 / L)) Al
=——= —i(s)ds = — -
¢'(p) 7)o om (s)ds 320
1 e
— E(x)=—=>2
(%) 2meg p
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7.3 Superposition Principle

Remark. Linear problems are relatively easy because of the following:
Ly, =F,n=1,23,...
then
LT o) =5
n n
We can superimpose solutions. Can often break up forcing term F' =) F),, solve each problem
Li/)n =F,

To get solution to Ly = F, write ¢ = >y,

Example. Consider electric potential due to pair of point charges Q, at x = a, @y at x = b. Charge
density would be

p(x) = Qad(x — a) + Qpd(x — b)

For one point charge, electric potential obeys
~V%p = %5(x —a)
€0

Solution would be

Qa 1

~ 4reg |x — a

P(x)
So by superposition principle, electric potential due to point charges at x = a and x = b is

Qa 1 Qa 1

~ 4reg |x —a|  4meg |x — b|

$(x)
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Example. Consider electric potential outside ball of radius x| < R of uniform charge density po,
that has several balls removed from its interior

|x—ai|<Rl~i:1,...,N

la;| + R; < R, |a; —a;| > R; + R; for each i,

Use superposition principle: represent each hole to be a ball of uniform charge density —pq.
Effective potential in |x| > R from each hole is

1 Q;

dmeg |x —ay

$(x) =

using

by superposition principle

7.4 Integral Solutions

We know electric potential due to point charge at x = a is proportional to

or collection of point charges

This leads us to consider superpositions of form

[ avey)

s [x -yl
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Prop. Assume F — 0 rapidly as |x — co. The unique solution to the Dirichlet problem

Vo =FxeR3
lo] = 0 |x| = oo

is given by
1 F(y)
A Jps [x =yl

p(x) =

dV(y)

Proof. Note that for r # 0

(1) _ 9 (1
\ <r>_3wi3zi T

a aii (_%)

5“‘ 3xi$i
’/‘3 7"5
3 3

r3 r3

Certainly have
11
Vv? ( ) =0(x)x#0

_EE

If we assume divergence thm works with delta function, on any ball |x| < R

/|x|<Rv2 <)1<|> dV=/x: v (;) . dS
;

6
47

€

R
o/:; (_*) - e, R*sinfdodd

T

RQ

So for any R > 0

/ V2 <11) dv =1 :/ §(x)dV
Ix|<R m |x| Ix|<R

()

We conclude

so proposition follows.
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Remark. This result is another way of saying
11
Vi[-——=]=9¢
(~ape) =0
Since by differentiating under integral sign

v (ow L ) = oV () o

~ [ F®sx - avey)
= F(x)

7.5 Harmonic Functions

Definition. When the forcing term in Poisson’s equation is identically zero, we call it Laplace’s
equation:
Vo =0 ()

Solutions to Laplace’s equation are called harmonic functions
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Prop. If ¢ harmonic on Q C R3, then

1

O A OLE

for a € Q2 and r sufficiently small.

:

Proof. Let F(r) denote RHS of (*). Then

1
)= /x|_ﬁ”(a+") as

2m s
- 2 / { / pla+ re.r?sind de] do
=0 LJo=0

2 ™
= 1 [/ o(a+ re,sinf d@] do
4m Jy—o LJo=0

F(r

Computing F’(r), using
d
—op(atre.) =€, -Vo(a+re,)
dr

as

d :
SIX(0) =%(2) - V(<)

1 2 e
F'(r) = e, - Vo(a+re,)r’sinfdfde
r? $=0 J6=0

47 _
_ ! / e--Vp(a+re,)dS
= T2 e r ® r
1
= —— v * dS
- /|x|_r v(a+ x)
1
= — - dS
4’/T7’2 /|x_a|—T V(P
= / Vip. dV
= —_— (‘p .
42 |x—a|<r
=0

So F(r) is constant and we note from (}) that

lim F(r) = ¢(a)

r—0

So

and result follows. [
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Moral. Can use central idea in this proof to examine what the Laplacian helps us measure

Prop. For any smooth ¢ : R? — R

V2 a=limE ! x)dS — p(a
o(a) [ [ ee9as e

r—0 r2 | 472

In particular, if ¢ satisfies the MVP then it is harmonic.

Proof. Consider function G(r) defined by

)= 1 /|x_a|_r o(x) dS — p(a)

So G measures extent to which ¢ differs from its average. we have from previous proof

G'(r)=F'(r)= : / V2pdV
|x—a|<r

472

Obviously, this vanishes if ¢ harmonic. Note

/lx—a|=7~ = Viela) /|x_a<r & /|x—a|<r(V2(p<X) — Vp(a)dV

47

= ?r2v2¢(a) +0(r®) (r = 0)
So
G'(r) = ! / V2p(a)dS
dmr |x—a|<r

Compare this with Taylor expansion
G'(r) = G'(0) + rG"(0) + o(r) (r — 0)

we deduce: .
G'(0) =0, G"(0) = sV*(a)

So

2
G(r) = @+Tw+?G//(O) + o(r?)

=0 =0

= —V2p(a)r? + o(r?) (r = 0)

= V?p(a) = lim [G(T)] = result O
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Prop. If ¢ is harmonic on  C R3 then cannot have a maximum at any interior point of  unless ¢
is constant.

Proof. Suppose a € () is such that
p(a) > p(x)

for all x € . So certainly
pla) > px)onl0<|x—al<e

for some £ > 0. But by mean value thm

o@ =gz [ [etas

1
0-7 [ [e@ - as
4me? |x—a|=¢ T/

Consider that ¢(x) = ¢(a). Apply same argument to

i.e.

x—a|=¢<e¢

Deduce p(x) = p(a) on [x —a] < e

Introduce bunch of overlapping balls such that the centre of the (n + 1)th ball is contained
inside the nth.

Everywhere inside 1% ball, have ¢(x) = ¢(a).

In particular, on center of second ball have p(x) = ¢(a).

Using previous argument get ¢(x) = ¢(a) throughout second ball. Carry on until you get to
y. Find p(y) = ¢(a) i.e. ¢ constant. O]
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8 Cartesian Tensors

[ Remark. Throughout this section we deal solely with Cartesian coordinate systems

8.1 A Closer Look at Vectors

Method. Let {e;} be a right-handed, orthonormal basis with respect to a fixed set of Cartesian
axes

€3
A €

€9 €3

€1

Write vector as
X =2;€;

We shouldn’t identify x with the components {z;} since these will change if we use a different basis.
If we instead used {e} (also right-handed and orthonormal), then same vector is

We have

Since {e;} and {e’} orthonormal
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Method (cont.). From (¥*)

Set R;; = €} - e;, then

!/
z; = Rijz;
Alternatively
! . ! . X L . ! ! _ /
Tp = 0Ty = (e; - ej)z; =e; (ejxj) = (ej
i.e.
/ /
T; = Rjil‘j = Rkixk
/
rj = Ryjy,
/ !
r; = Rijuj = RijRijoy
So we find

(8 — RijRjk)s), =0
Since this true for ALL choices {z} } get
RijRij = ik
If R is matrix with entries {R;;}, this reads
RR" =1

So {R;;} are components of an orthogonal matrix.
Since:
zje; = z;€; = Rijz;e;
holds for ALL {z;}, also have
ej = Rije;

and since both {e;} and {e} right-handed

- €;)T;

1= e - (62 X 83) = Rilengge; 0 (e; X e%)
= RileQng,é‘ijk = det(R)

Remark. So matrix R s=is orthogonal and det R = 1. So {R;;} are components of a rotation matrix

Moral. If we transform fom {e;} to {e}} then the components of a vector v transform as

v; = Rjv;

where R;; = €} - e; are components of a rotation matrix. Call objects whose components transform

in this way rank 1 tensors, or vectors.
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8.2 A Closer Look at Scalars

Method. Consider

Using {e;} with a = a;e; etc.

g = aibj(ei . ej)
= aibjéij
= aibjéij
= aibi
Instead use {e}} would find
o' = ab)
Using a = Ripay,, b = Rigbg

I . . — — —
0 = RipRiqapby = dpgapby = apb, =0

We call objects that transform in this way scalars.

Moral. objects that transform as
g =0

when we change from {e;} to {e}} are called scalars, or rank 0 tensors.
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8.3 A Closer Look at Linear Maps

Method. Let n € R? be a fixed unit vector and define linear map
T:x—»y=Tx)=x—(x-an
Using {e;} with x = x;e;, y = y;e; etc.
yie; = T(z;e;)
= ;T (e;)
= :cj(ej — nmjei

= (513 - ninj)xjei

Set Tij = (Sij — nyn;. Then

Yidiy — ning)z; = Tijz;
Call {T;;} components of linear map 7 : R® — R3 wrt {e;}
If we had instead used {e;} would have found

. s/
Y = gt
! P PR p— / !/ 3 !/ _ .. . 3
where T}, = 4;; — n;n;. Using n; = R;;n; give
Tij =0ij — RipRjqnpng
= RipRjp(dpq — npng)
= RipR;jqTpq

Components of T transform according to
Tz'lj = RipRjqTpq

Objects that transform in this way are called rank 2 tensors.

8.4 Cartesian Tensors of Rank n

~

Definition. An object whose components T;; . transform (when we go from {e;} to {e}}) ac-

n indices
cording to
n Rs

—_——
;Jk = Ripqu A er qu.."r
is called a (Cartesian) tensor of rank n.

Here
/
R;j=¢€;- €

are components of rotation matrix, so
RipRjp = 5ij
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Example. If u;,vg,...,w; are components of n vectors, then
Tij.. .k = U5 .. . Wk

define components of a tensor of rank n.
Can check:
/ o /
ik = W5 - W
= Ripupquvq °00 erwr
=RipRjq. . RixTpq..r

Example. Kronecker delta is defined without reference to any vasis via
1 ifi=j
dij = ey
0 ifisy

RipRjq0pg = RipRjp = 0ij

So §;; = di; by definition. But note

So we have
62;‘ = Ripqu(Spq

i.e. 0;; is a rank 2 tensor.

Example. The Levi Civita symbol is defined without reference to any basis

1 if (¢ j k) is an even perm of (1 2 3)
€ijk =4 —1 if (¢ j k) is an odd perm of (1 2 3)

0 otherwise
By definition, s;jk = g;;5. But
RipquerSqu = det(R)sijk
= E€ijk

So we have
/ — . .
Eiji = RipRjgRrepgr

So € is a tensor of rank 3.

98




Example. Experimental evidence suggests a linear relationship between current J produced in con-
ductive medium exposed to electric field E, so

J=0E
or using suffix notation
Ji = O'ijEj

045 is called the electrical conductivity tensor, it really is a rank 2 tensor. Under change of basis

OQJE;’ = Ji = RipJp = RypopgEq
Using

E} = Rj;Eq <= E,= R;,E;
we get

UijE;' = RipququE;‘
This holds for ANY {E}}, so
U;j = RipRjq0pq

i.e. 0y; is a rank 2 tensor.
See Quotient Theorem later in course.

Example. Not all things are tensors. For given Cartesian right handed basis {e;} we define array

™ 7 0
(Ay)=|vV2 e -3
vl 12

and set A}; = 0 in all other bases {e;}. Then A;; are NOT the components of a rank 2 tensor.

Definition. If A;; j; and B;; _j are n-th rank tensors, define
(A+ B)ij..k = Aij..k + Bij..k
This is also n-th rank tensor, If « is a scalar then
(aA)ij. x = ads; &

is an n-th rank tensor.
We define the tensor product of an m-th rank tensor U;;. , and a an n-th rank tensor V.., by

U®V)ij kpg.w = Uij..ksVog..r

where
ij...k pq...r
S—— Y—

m indices n indices
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Claim. This is a tensor of rank n + m.

Proof.

U{JVZ(I = Ria ce ijU)a v bRpc PN qu‘/c...d
= Ria oo ijRpc ce qu Ua‘..bvvc..‘d
—_———

n+m terms (UBV),. . be...a

Method. Given n-th rank tensor Tj;i..q4 m > 2, we can define tensor of rank n — 2 by contracting
on pair of indices. For instance, contracting on ¢ and j is defined by

0iLijk...a = Tiik...d

Note.

1’Ijk...d = Ri;DRiq Ry, ... Rlsqur...s
——

Opg

= qu 000 RlsTppr...s

So Ti;1...q transforms as tensor of rank n — 2

Definition. Say T;;  is symmetric in (¢, j) if
Tin.. = Tji..k
This really is well-defined property of the tensor
i'j_'_k =RipRjq. .. RirTpq. r

= Ripqu cee erqu...r
= Riqup 500 erqu...r

o
=1ji K

Similarly, we say A;;.  is anti-symmetric in (7, 7) if
Asi = =Ag i

Say a tensor is totally (anti-)symmetric if it is (anti-)symmetric in every pair of indices.
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Example. Tensors d;; and a;a;ay are both totally symmetric.
€ijk 1s a totally anti-symmetric tensor.
In fact, the only totally anti-symmetric tensor on R? of rank n = 3 is proportional to €ijk, and there
are no non-zero high rank ones. Indeed, if Tj; .1 totally anti-symmetric of rank n, then Tj; j = 0 if
any two indices are the same

Too..k = —To2. xp = To2. =0

So by pigeonhole principle, there will always be two or more matching indices if n > 3. If n = 3,
there are only 3! = 6 non-zero components. If

Ti93 = T31 = T310 = A

To13 =T301 = Thzp = —A
Thus Tijk = )\5ijk

8.5 Tensor Calculus

7

Remark. “vector field” gives vector v(x) for x € R?
“scalar field” gives vector ¢(x) for x € R3
A tensor field of rank n, T;;. r(x), gives an n-th rank tensor at each x € R3.

Equation. Recall
J?; = Rijﬂ?j — T; = RZ]J};

Differentiating RHS wrt x,

0 oz}
9% — Rij <2 = R+ 0j6y = Ru;
R

So by chain rule
0 Ox; 0

0
92l Bal Bz, i 5a,

“% transforms like a rank 1 tensor”
K2

Prop. If T;. ;(x) is tensor field of rank n then

<i) ( 9 ) T;. j(x) = tensor field of rank n + m

Oz, oz,

m terms

Proof. Label LHS by A, 4i...;

0 0
A o) = <8m§,> (8&0;) T;](X)

0 0
= — ... — ic .- RiqT,
(Rpa 6%) (qu al’b> ch R]d c...d
R

pa - - - quRic A RjdAa...bc...d

So have tensor field of rank n +m. O
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Example. If ¢ = ¢(x) scalar field then

_dy
B dIL‘i

Vel

So Vg is rank 0 + 1 = 1 tensor field, i.e. a vector field.

Example. For vector field v have divergence

. a’U,‘

V-v oz,

Note:

v o
oz} O,

i.e. V - v is scalar field.

Example. If v vector field, consider curl V x v. Then

8vk

[V X V]i = Eijka—xj

Then:

/
/ avk

5ijk_am/4
J

0
= Riaijchgabchp aTRkpUq
p
Ovp

= RiuCabe ijij chRk:q a_
—~——— 0T

51Jb 56!1
Ov,
61‘1,

= Riagab:c

So V x v is vector field.
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Proof. Apply divergence theorem to
v = azbj ...l k.
where a;, b, ..., c; are components of constant vector fields. So by div theorem

v, d
—dV =a;b; ... —Tij. k... dv

= / vgng dS (div thm on LHS)
oV
:G:ibj---cl/ Tij..k..ang dS
oV

Result now follows because the constant vector fields a, b, ¢ were arbitrary.
E.g. if we wanted to check () when a;; free indices i, 7, ..., were = 1

a; = 031, bj =651, ..., ¢ =0

LHSZ/ iT11...lc...1dV
Vv 3.’1:k

RHS =
v

Similar idea for other choice of free indices. [
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8.6 Rank 2 Tensors

Remark. Observe for rank 2 tensor 7T;;

1 1
Ty = 5Ty + Tji) + 5 (Tij = Tia)
= Sij + Aij
which is symmetric + anti-symmetric
* %k 0 * =
* ok 0 =x
* 0

6 indep components 3 indep components

This is food since 3 4+ 6 = 9. Intuitively, seems like info contained in A;; caould be written in terms
of some vector (3 indep components).
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Prop. Every ran 2 tensor can be written uniquely as
Ti; = Sij + €ijkwr

where .
w; = §Eijijk

S;; is symmetric

Proof. We can identify (from earlier)
1

Remains to show that |
eijrwn = 5 (Lo — Tji)

1
EijkWr = §5ijk5klmTlm

1

= 5(5il5jm — 0im ;1) Tim
1

= §(Tz = T35

For uniqueness, suppose ~ ~ B
(Tij =)Sij + Aij + Sij + Aij(= Tij)
Take symmetric parts of both side i.e.

1 = -
5T + Tia) = 5(Tij + Tji)

—_

Then S;; = S;; and so A;; = A;j. i.e. decomposition is unique

EijkWE = Eijka)k <— wp =wg O

Note. See Truesdell + Noll, Nonlinear Continuum Mechanics
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Example. Each point x in an elastic body undergoes small displacement u(x)

Two nearby points x + dx and x that were initially separated by dx become separated by

(x+ox+u(x+0x)) — (x +u(x)) = ox + [u(x + dx) — u(x)]

change in displacement

Change in displacement:
u(x + 0x) — u(x)]

This tells us how much deformation happens to the body. Using Taylor’s theorem:

6ui_ dx; + o(0x)

wi(x + 0x) — wi(x) = o
j

8ui

We decompose 3= as follows:

9u;
8.’17j

“ =9\ 0x; " omi

is called LINEAR STRAIN TENSOR and

= €ij + EijkWk

where

1 an 1
W; = isijka_l‘k = —§(V X 11)1‘
So:
u; (x4 0x) — u;(x) = €1;0 + [0x x w];

measure of deformation corresponds to rotation

So e;; gives info about how much body compresses or stretches.

+o(dx)
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A well known symmetric rank 2 tensor is the inertia tensor. Suppose body with density p(x) occupies
volume V' C R3. Each point in the body rotating at constant angular velocity w

Aw

p)

®
So elocity of point x € V' is v = w x x. Total angular velocity about origin is:
L= / p(x)(x x v)dV
1%
_ / (%) X (w x x)]dV
1%

Using suffix notation

= /Vp(x)(mk:z:kwi — z;xpw;) dV
= Lijw;

(by writing w; = d;;w;)
where we have defined inertia tensor

Iij = / p(x)(:cksckéij — mzarj)dV
\Z

where integral is taken over
V= {J}i L ZT;e; € V}

Had we used different frame {e}} where x = 2}€] etc, would have found
= [ p0(ahaids - aial) v
vl
= RipRjq /v p(X)(2hTR0pg — 2pq) AV
= RipRjqlpq

where V' = {2} : x;€, € V'}. So I;; is a rank 2 tensor. It is symettric, I;; = I;;.
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Example. Consider ellipsoid described by

z3

T2
1

2 2 2
T, & 9
22 18y
a? + b2 + 2 =

with uniform mass density pp so mass is
4
M = Po ?abc

To compute components of inertia in this frame, use scaled spherical polars to compute integrals.
x1 =arcos¢sinf 0 < ¢ < 27w
To =brsingsinf 0 <0<
x3=crcosf 0<r<1
Note that if ¢ # j then
/ pox;x; = 0 by symmetry

v
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Example (cont.). Also

I = PO/ (3 +23)dV
v

27 b 1
= poabc/ / / r2b? sin? ¢ sin” 0 + 2 cos 0)r? sin 0 dr df d¢
$=0J0=0 Jr=0

= po% (7b? sin? 0 + 27c? cos §) sin 0 df

0
M1 [T
= 3—— b2 sin? 6 + (2¢% — b?) cos® Osin ) dO
4 5
0

3M 2
_ M (e 202 g2
2O<b+3(c b))

M
= E(b2 = 02)

By symmetry

M M
I22 = ?(CLQ aF 02), I33 = ?(CL2 G b2)

i.e.

b2+ 2 0 0

M
(Lij) =1 0 a?+c? 0
0 0 a? + b2
Ifa=b=c:
2
I;; gM(SZ-j

Prop. If T;; is symmetric then there exist choice of {e;} for which
a 0 0

(Tij)= |0 B 0
0

The corresponding coordinate aces are called the principal axes of the tensor.

Proof. Direct consequence of the fact that any real symmetric matrix can be diagonalised via
orthogonal transformation R for which det(R) = 1 WLOG.

[T" = RTTR] see IA V+M

Moral. So can always choose set of axes so that I;; is diagonal.
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8.7 Invariant and Isotropic Tensors

Definition. We say that a tensor is isotropic if it is invariant under changes in Cartesian coords,
i.e.

ij...k — Rsz]q s erqu‘..r = Lij...k

for any choice of rotation R.

Example.
(i) Every scalar (rank 0 tensor) is isotropic
(ii) The Kronecker delta is isotropic

523’ = RipRjq0pq

(iii) The Levi-Civita tensor

/
Eijk = RipquRka:‘qu = det(R)&‘ijk = Eijk

Remark. We can actually classify ALL isotropic tensors on R? [General result: Herman Weyls: The
Classical Groups|
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Prop. Isotropic tensors on R? are classified as:
(i) All rank 0 tensors isotropic
(ii) There are no non-zero rank 1 tensors
(ili) The most general isotropic tensor of rank 2 is ad;; (o scalar)
(iv) The most general isotropic tensor of rank 3 is fe;;, (0 scalar)

i
(v) The most general isotropic tensor of rank 4 is

—_ —

ad;50k1 + B0 + Y0 dk

(vi) The most general isotropic tensor of rank >4 is a linear combination of products of ¢ and € (e.g.
0ijEkim

Proof (Sketch).

(i) By definition
(ii) If v; are components of an isotropic tensor of rank 1 then

/
V; = Rijvj = ’Ui

holds for ANY rotation. Take

-1 0 0
(Rij) =10 —1 0| mabout z-axis
0 0 1
then:
v = le’l)j = —U1
Vg = RQj’Uj = —7V2g
i.e. v1 = vy = 0. Using
1 0 0
(Rij) = (0 =1 0 | mabout z-axis
0 0 -1
then
V3 = R3j’Uj = —Us3

i.e. v3 =0 so v; = 0 and this holds in all frames.
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Prop.

Proof.

Then

So
Also

i.e. T11 = T22

Now choosing

Then

So

1.e.

Finally

1.e.

(iii) If T;; isotropic then

for some scalar o
(iv) Same idea, more indices. [

Ti; = Ripququ

holds for ANY R. Take R to be rotation by 7/2 about each axis.

0 1
(Rij)=1|-1 0
0 0

= O O

T13 = Rlpququ = R12R33T23 = T23
T23 = RQpququ = R21R33T13 = 7T13

Ti3=T3=0

Ti1 = RipRigRpq = RiaR12Th = T

—
—
=
=

(Ry=10 0 1

o
\
—_
—_

T32 = R3pRogTpg = R3aRo3Th3 = —1Th3

T32:0

T2 = RipRa¢Tpg = R11Ro3Ti3 = —T13 =0

T12=0
T51 = R3pRi1¢Tpg = R3oR11To1 = =T
T21 == R2pR1quq = R23R11T31

T31 =15, =0

Ty = RopTyq = Ro323T33 = T3

Ty =T33 = T14

In conclusion T;; = 0 if ¢ # j and Th1 = The = T33. So

Tij = adij

112




Method. Consider integral of form

where 2, = r? and V(x) = dz; dos das.
Note f(r) and {x : |x| < R} are invariant under rotations.
We have:

Ty = / flr)zizl ... dV(x)
——r

’ ’ /
dz} dzj, dzg

= / f(r)RipzpRqxq - . . Riraxy AV (x)
|x|<R
Make substitution y; = R;;x;, dV = dy; dy2 dys
Zl]k = / F(r)yayi -y dV (y)
|x|<R
Sine {y} is dummy variable
k= / fr)zixy .. .xpdV(x) =Ty
x|<R

So Tjj.. .k is isotropic!
Take R — oo corresponds to integrating over all R3.

Example. Consider
Tij :/ e_rsxixj dv
R3

By previous, T;; = ad;;. Contracting on (¢, j)

adiy; = 3a = e r2dv
]RS
o0 5
= 47r/ rZe " r2dr
0
*1d
=47T/ - <67T5> dr
0 5 dT
_ 47
5
ile. a = % and
47
T = 1—5517‘
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Example. The inertia tensor of ball of radius R, constant density py [mass M = %”Rg pol

Iij = / po(.’L’ka(Sij — "El‘llfj) dv
|x|<R
This is sum of two isotropic tensors, hence
I;; = ad;; for some

Contracting on (4, j)

3 R? ° 5
. 6M R?
5
So a = % and
2M
IZ] S TRZ&I,]

8.8 Tensors as Multi-Linear Maps and the Quotient Rule

Method. For a tensor Tj; consider bilinear map ¢ : R? x R3 — R defined by
t(a, b) = T%jaibj

LHS well defined since RHS does not depend on which basis we use (it’s a scalar).
So rank two tensor gives rise to bilinear map.
Conversely, suppose ¢ : R3 x R? — R is bilinear, then for a given basis {e;} it defines an array T;; via
t(a, b) = t(aiei, bjej)
= aibjt(ei, ej)
= aibjTij

If we use different basis {e}} with e = R;,e, then by linearity

T;; = t(e], €})
= t(Ripep, Rjqeq)
= RipRjqt(ep, eq)
= RipRjqTpq

So T;; is rank 2 tensor L.e. bilinear map ¢ gives rise to rank 2 tensor.
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Moral. Have a one-to-one correspondence between bilinear maps and rank 2 tensors. In particular
if the map
(a,b) = Tija:b;

is genuinely bilinear, independent of basis, then 7;; are components of rank 2 tensor.

Remark. Same idea works for higher rank tensors: if the map
(a,b,...,c) = T;j rabj...ck

genuinely defines a n-multilinear map (indep of basis) then T;; . are components of rank n tensor.

Note. Recall from earlier that we showed o;; (conductivity tensor) was tensor from definition
Ji = 0. Z]E]

Could have used quotient theorem.

Prop. Let T;._ j,..q be an array of numbers defined in each Cartesian coord system such that

Vi..j = Tz]pq Up...q
~—~— ————
A A+B

is a tensor for each tensor uy,. 4. Then T; j,. 4 is a tensor.

Proof. Take special case u, 4 = ¢, ...d, for vectors {c,...,d}. Then
Vi...j = Ti“.jp_“qcp 500 dq
is a tensor and in particular
Vi...5Q5 . .. bj = ﬂ__.jp__.qai 000 bjcp 000 dq

is a scalar for each {a,...b,c,...,d}. So RHS is scalra (indep of basis) and gives rise to
well-defined multilinear map via

t(a, 000 ,b,C, 500 d) =1L p..q@i--- bij o0 0 dq

so by previous discussion, T;.. jp...q is & tensor. [J
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Example. Seen linear strain tensor

o — 1 8ul 4 an

@ 2 al‘j al‘i
where u(x) measures change in displacement at x
Experiment suggests that the internal forces experiences by a body that has undergone deformation

depend linearly on strain at each point.
Stresses are described by a stress tensor oy;

p 033
13 A
A Z3
P 032
023 29
031 T
— 022
Tl
/ » 012
021
011
(shows stress in each direction on 3 faces)
So 3 an array of 3* = 81 numbers cijkt such that
0ij = Cijkl€kl (1)

Warning. CAN’T APPLY QUOTIENT THEOREM at this point as ej; symmetric

If ¢;jki = cijir then can apply quotient theorem (ES4) - call this the stiffness tensor (it is a property
of the material under deformation). Suppose our material is isotropic, then we should write

Cijkl = X030kt + BOik0j1 + Vi1
Use this in (})
0ij = Adijerk + Beij + Vi = Adijexk + 2pei;

where 2u = 8 + v, This is higher dimension version of Hooke’s law (F = —kx).
Can invert - contract on (i, j)

oii = (3A + 2p)ei;
ie.

€kk 3\ +2u #0)

_ _ Okk (
3N+ 2u
So we get:

A
2ue;; = 045 — (m) Okk0ij
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