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1 Differential Geometry of curves

1.1 Parametrised Curves and Arc Length

Definition. We say curve C is regular if |x′(t)| 6= 0

Definition. If C is differentiable and regular, say C is smooth

Remark. Why “regular” condition?
Consider x(t) = (t2, t3). Clearly differentiable but x(t) has cusp at t = 0.

Note. |x′(0)| = 0

Equation. if C : t 7→ x(t), t ∈ [a, b]

l(C) =

∫ b

a

|x′(t)|dt

=

∫
C

ds

ds = |x′(t)|dt

s is the “arc-length element”
Similarly define ∫

C

f(x) ds =

∫ b

a

f(x(t))|x′(t)|dt
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Remark. Suppose C has two different parametrisations:

x = x1(t), a ≤ t ≤ b

x = x2(τ), α ≤ t ≤ β

Must have x2(τ) = x1(t(τ)) for some function t(τ). Assume dt
dτ 6= 0 so map between t and τ invertible

and differentiable. Note

x′2(τ) =
dt

dτ
x′1(t(τ))

From definitions, ∫
C

f(x) ds =

∫ b

a

f(x(t))|x′(t)|dt

Make substitution t = t(τ), and assume dt
dτ > 0, latter integral becomes∫ β

α

f(x2(τ)) |x′1(t(τ)| dt
dτ

dτ︸ ︷︷ ︸
|x′2(τ)| dτ

Which is precisely the same as
∫
C
f(x)ds using x2(τ) parametrisation. Similar holds when dt

dτ < 0
(exercise). So definition of

∫
C
f(x) ds does not depend on choice of parametrisation of C.

Definition. The arc-length function for a curve [a, b] 3 t 7→ x(t) by

s(t) =

∫ t

a

|x′(τ)|dτ

So s(a) = 0 and s(b) = l(c).
Also:

ds

dt
= |x′(t)| ≥ 0

Note. For regular curves have ds
dt > 0, so can invert relationship between s and t to find

t = t(s)
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So we can parametrise regular curves wrt arc-length, If we write r(s) = x(t(s)) where 0 ≤ s ≤ l(C),
then by chain rule:

dt

ds
=

1

|x′(t(s))|
So

Equation.

r′(s) =
x′(t(s))

|x′(t(s))|

i.e. |r′(s)| = 1. This (consistently) gives

l(C) =

∫ l(C)

0

|r′(s)|ds =

∫ l(C)

0

dsX

r(0)

r(s)

r′(0)
r′(s)

O

1.2 Curvature and Torsion

Note. Throughout this section talk about generic regular curve C parametrised by arc-length, write
s 7→ r(s)

Definition. Tangent vector
t(s) = r′(s)

Already know |t(s)| = 1. Since |t(s)| doesn’t change, the second dervative r′′(s) = t′(s) only measures
change in direction

So intuitively, if |r′′(s)| is large then curve rapidly changes direction, whereas if |r′′(s)| is small, expect
curve to be approximately flat.

Definition. The curvature
κ(s) = |r′′(s)| = |t′(s)|

Equation.
t · t′ = 0
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Definition. The principle normal is defined by the formula

t′(s) = κn

n is the principle normal

Note. n is everywhere normal to C since

t · n = 0

Definition. Can extend {t,n} to orthonormal basis by defining the binormal

b = t× n

Since |b| = 1 have b′ · b = 0. Also since t ·=0 and n · b = 0

0 = (t · b)′ = t′ · b + t · b′

= κn · b︸ ︷︷ ︸
=0

+t · b′

So b′ is orthogonal to both t and b i.e. it is parallel to n.

Definition. The torsion of a curve is defined by the formula

b′ = −τn

τ is the torsion

Remark. Have two equations
t′ = κn, b′ = −τn

Prop. The curvature κ(s) and torsion τ(s) define a curve up to translation/ orientation.

Proof. Since n = b× t, have two coupled equations:

t′ = κ(b× t)

b′ = −τ(b× t)

This gives six equations for six unknowns.
Given κ(s), τ(s), t(0), b(0), can construct t(s), b(s) and hence n = b× t. Hence result
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1.3 Radius of Curvature

Taylor expand a generic curve s 7→ r(s) about s = 0. Write t = t(0), n = n(0) etc.

r(s) = r(0) + sr′(0) +
1

2
s2r′′(0) + o(s2)

= r + st +
1

2
s2κn + o(s2)

Suppose, WLOG, that t is horizontal.
What circle goes through curve tangentially at point r = r(0) is best fit?

O

C

r

n

t

Equation of circle
x(θ) = r +R(1− cos θ)n +R sin θt

Expand for |θ| small

x(θ) = r +Rθt +
1

2
Rθ2n + o(θ2)

Arc length on circle is s = Rθ. So

x(θ) = r + st +
1

2

1

R
s2n + o(s2)

To match equation for curve up to second order, would require

R =
1

κ

Definition. We say R(s) = 1
κ(s) is the radius of curvature of curve s 7→ r(s)

7



2 Coordinates, Differentials + Gradients

2.1 Differentials + First Order Changes

Definition. The differential of f , written df , by

df =
∂f

∂ui
dui

Call {dui} differential forms. These are L.I. if {u1, . . . , un} are independent.
Similarly, if x = x(u1, . . . , un) we define

dx =
∂x

∂ui
dui

2.2 Coordinates and Line Elements

Definition. The line element is:

dx =
∂x

∂u1
du1 +

∂x

∂u2
du2

It tells us how small changes in coord produce changes in position vectors.

For polars (r, θ)

x(r, θ) =

[
r cos θ
r sin θ

]
≡ rer

where we have used basis vectors {e2, eθ}

er =

[
cos θ
sin θ

]
, eθ =

[
− sin θ
cos θ

]

Warning. {er, eθ} are orthonormal at each (r, θ), but NOT the same for each (r, θ)

Note. As before,

er =
∂
∂rx(r, θ)

| ∂∂rx(r, θ)|
, eθ =

∂
∂θx(r, θ)

| ∂∂θx(r, θ)|

Since {er, eθ} are orthogonal, makes sense to call (r, θ) orthogonal curvilinear coordinates.
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For polars, have line element

dx =
∂x

∂r
dr +

∂x

∂θ
dθ

= er dr + r dθ eθ

See that a change θ 7→ θ + δθ produces a (first order) change

x 7→ x + rδθ eθ

Warning. NOT x 7→ x + δθ eθ

2.2.1 Orthogonal Curvilinear Coordinates

Definition. We say that (u, v, w) are a set of orthogonal curvilinear coords if the vectors

eu =
∂x
∂u

|∂x∂u |
, ev =

∂x
∂v

|∂x∂v |
, ew =

∂x
∂w

| ∂x∂w |

form a right-handed handed basis for each (u, v, w)

Note. Right handed means eu × ev = ew

Warning. Just as with polar coordinates, {eu, ev, ew} form orthonormal basis for R3 at each (u, v, w),
but NOT necessarily the same basis at each point.

Notation. It is standard to write

hu =

∣∣∣∣∂x∂u
∣∣∣∣ , hv =

∣∣∣∣∂x∂v
∣∣∣∣ , hw =

∣∣∣∣ ∂x∂w
∣∣∣∣

Definition. Call {hu, hv, hw} scale factors

Note. Line element is

dx =
∂x

∂u
du+

∂x

∂v
dv +

∂x

∂w
dw

= hueu du+ hvev dv + hwew dw

Tells us how small changes in coordinates “scale-up” to changes in position x
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2.2.2 Cylindrical Polar Coords

Definition. Cyclindrical polars (ρ, φ, z) defined by:

x(ρ, φ, z) =

ρ cosφ
ρ sinφ
z


with:

0 ≤ ρ <∞

0 ≤ φ < 2π

−∞ < z <∞

Find

eρ =

cosφ
sinφ

0

 , eφ
− sinφ

cosφ
0


ez =

0
0
1


hρ = 1, hφ = ρ, hz = 1

dx = dρ eρ + ρdφ eφ + dz ez

Note.

x = ρ eρ + z ez

Warning. STILL DEPENDENT ON φ AS eρ DEPENDS ON φ

2.2.3 Spherical Polar Coordinates

Definition. Spherical polars (r, θ, φ) defined by:

x(r, θ, φ) =

r cosφ sin θ
r sinφ sin θ
r cos θ


with:

0 ≤ r <∞

0 ≤ θ ≤ π

0 ≤ φ < 2π
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er =

cosφ sin θ
sinφ sin θ

cos θ

 , eθ =

cosφ cos θ
sinφ cos θ
− sin θ


eφ =

− sinφ
cosφ

0


hr = 1, hθ = r, hφ = r sin θ

i.e.
dx = dr er + r dθ eθ + r sin θ dφ eφ

Note.

x = r

cosφ sin θ
sinφ sin θ

cos θ

 = r er

Warning. STILL DEPENDENT ON φ, θ AS er DEPENDS ON φ, θ

2.3 Gradient Operator

Definition. For f : R3 → R, define gradient of f , written ∇f , by

f(x + h) = f(x) +∇f(x) · h + o(h) (*)

Definition. Directional derivative of f in direction v, denoted by Dvf or ∂f
∂v , is defined by

∂f

∂v
= lim
t→0

f(x + tv)− f(x)

t

I.e.
f(x + tv) = f(x) + tDvf(x) + o(t) (**)

Equation. Setting h = tv in (*)

f(x + tv) = f(x) + t∇f(x) · v + o(t)

Comparing to previous equation (**), we have:

∂f

∂v
= v · ∇f

Note. By Cauchy-Schwarz know that a ·b is maximised when a points in same direction as b.

So ∇f points in direction of greatest increase of f
Similarly,
−∇f points in direction of greatest decrease of f
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Equation. Suppose we have a curve t 7→ x(t). How does f change as we move along this curve.
Write

F (t) = f(x(t))

dF

dt
=

d

dt
f(x(t)) =

dx

dt
· ∇f(x(t))

2.4 Computing the gradient

Equation.

∇f =

∂f∂x∂f∂y
∂f
∂z



Equation.
∇f · dx = df

Note. Coordinate independent statement!

Prop. If (u, v, w) are O.C.C and f = f(u, v, w),

∇f =
1

hu

∂f

∂u
eu +

1

hv

∂f

∂v
ev +

1

hw

∂f

∂u
ew

Proof. Use above equation and linear independence of {du,dv,dw}

Equation. In cyclindrical polars (ρ, φ, z), hρ = 1, hφ = ρ, hz = 1

∇f =
∂f

∂ρ
eρ +

1

ρ

∂f

∂φ
eφ +

∂f

∂z
ez

Equation. In spherical polars (r, θ, φ), hr = 1, hθ = r, hφ = r sin θ,

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ
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3 Integration over lines, surfaces and volumes

3.1 Line Integrals

Definition. For a vector field F = F(x) and piecewise smooth parametrised curve

C : [a, b] 3 t 7→ x(t)

We define line integral ∫
C

F · dx =

∫ b

a

F(x(t)) · dx

dt
dt

x(a)

x(b)

Definition. We say a curve
[a, b] 3 t 7→ x(t)

is closed if x(a) = x(b).
In this case, write ∮

C

F · dx

Sometimes call integrals of this form the circulation of F about C

3.2 Conservative Forces and Exact Differentials

We’ve seen how to interpret things like F · dx when they’re inside an integral. This is another
differential form i.e. in coords (u, v, w)

F · dx = ( )du+ ( )dv + ( )dw

Definition. We say that F · dx is exact if

F · dx = df

for some scalar f . Recall that
df = ∇f · dx

So F · dx is exact iff F = ∇f for some scalar f . Call such vector fields conservative.

Claim. So we have
F · dx is exact ⇐⇒ F is conservative.

Remark. Using properties d(αf + βg) = αdf +βdg (α, β) constant, d(fg) = gdf +fdg etc. usually
easy to see if form F · dx is exact
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Prop. If θ is exact differential form then ∮
C

θ = 0

for any closed curve C

Proof. By previous, if θ exact, then θ = ∇f ·dx for some scalar f . Then substitute in integral,
spot derivative and use FTC

Note. Equivalently, if F is conservative then circulation of F around any closed loop curve C
vanishes ∮

C

F · dx = 0

Prop. If F conservative (F · dx exact), then line integral between points A = x(a) and B = x(b) is
independent of path

Proof. If C = C1 − C2, ∮
C

F · dx = 0

⇐⇒
∫
C1

F · dx =

∫
C2

F · dx

Claim. Let (u1, u2, u3) ≡ (u, v, w) be set of OCC. Let

F · dx = θ = A(u, v, w) du+B(u, v, w) dv + C(u, v, w) dw

= θi dui

A necessary condition for θ to be exact is

∂θi
∂uj

=
∂θj
∂ui

each i, j (†)

Proof. Indeed, if θ exact, then θ = df which we can use to show the result

Definition. Call differential forms θ = θi that obey (†) closed. So

θ exact =⇒ θ closed

Note. The reverse implication is true if the domain Ω ⊆ R3 on which θ is defined is simply-connected.
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3.3 Integration in R2

Method. If f(x, y) = g(x)h(y) and D is a rectangle

D = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}

Then ∫
A

f(x, y) dA =

(∫ b

a

g(x) dx

)(∫ d

c

h(y) dy

)

Method. Often useful to introduce change of variables to compute∫ b

a

f(x) dx

If we introduce x = x(u) with x(α) = a and x(β) = b then:

∫ b

a

f(x) dx =


+
∫ β
α
f(x(u)) dx

du du (β > α, dx
du > 0)

−
∫ α
β
f(x(u)) dx

du du (α > β, dx
du < 0)

If I = [a, b] and I ′ = x(I) ∫
I

f(x) dx =

∫
I′
f(x(u))

∣∣∣∣dxdu

∣∣∣∣ du

Note. Similar formula in 2D

Prop. Let x = x(u, v) and y = y(u, v) be a smooth, invertible transformation with smooth inverse
that maps the region D′ in the (u, v) plane to the region D in the (x, y)-plane. Write x = x(u, v),
then ∫∫

D

f(x, y) dx dy =

∫∫
D′
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv

Where
∂(x, y)

∂(u, v)
= det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
= det

[
∂x

∂u

∣∣∣∣ ∂x∂v
]

is the Jacobian, often denoted by J . Short version is dxdy = |J |dudv

Equation.
dx dy = |J |dudv

Example.
dxdy = ρ dρdφ
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3.4 Integration in R3

Method. to integrate over regions V in R3, use similar ideas to those in section 3.3. Let∫
V

f(x) dV = lim
ε→0

∑
i,j,k

f(xi, yi, zi) δVijk

In this case the volume element satisfies

dV = dx dy dz

Note. Can do integrals in any order.

Prop. Let x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) be a continuously differentiable bijection
with continuously differentiable inverse that maps the volume V ′ to the volume V .∫∫∫

V

f(x, y, z) dxdy dz =

∫∫∫
V

f(x(u, v, w), y(u, v, w), z(u, v, w))|J |dudv dw

Where
J =

∂(x, y, z)

∂(u, v, w)
= det

[
∂x

∂u

∣∣∣∣ ∂x∂v
∣∣∣∣ ∂x∂w

]
and

x =

x(u, v, w)
...

z(u, v, w)


Short version:

dx dy dz = |J |dudv dw

Example. Find in cylindrical polars (u, v, w) = (ρ, φ, z)

dV = ρdρdφdz

|J | = ρ

In spherical polars (u, v, w) = (r, θ, φ)

dV = r2 sin θ dr dθ dφ

|J | = r2 sin θ

3.5 Integration over surfaces

Remark. A two dimensional in R3 can be defined implicitly using a function f : R3 → R

S = {x ∈ R3 : f(x) = 0}

Normal to S at x is parallel to ∇f(x).
Call surface regular if ∇f(x) 6= 0 for x ∈ S
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Example. Some surfaces have a boundary, e.g.

S = {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0}

Label the boundary by ∂S
∂S = {(x, y, z) : x2 + y2 = 1, z = 0}

In this course, a surface S will either have no boundary (∂S = ∅), or it will have boundary made of
piecewise smooth curves. If S has no boundary, say S is a closed surface.

Moral. It is often useful to parametrise a surface using some coordinates (u, v)

S = {x = x(u, v), (u, v) ∈ D}

D some region in (u, v)-plane

Definition. Call parametrisation of S regular if

∂x

∂u
× ∂x

∂v
6= 0 on S

In this case, we can define normal

n =
∂x
∂u ×

∂x
∂v∣∣∂x

∂u ×
∂x
∂v

∣∣
Note. This normal will vary smoothly wrt (u, v).
Choosing a normal consistently over S gives us a way of orientating the boundary ∂S: make the
convention that normal vectors in your immediate vicinity should be on your left as you traverse ∂S

Definition. This leads us to define the scalar area element and vector area element

dS =

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ dudv

dS =
∂x

∂u
× ∂x

∂v
dudv = n dS

Equation. Gives area of S:

area(S) =

∫
S

dS =

∫∫
D

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ dudv

and ∫
S

f dS =

∫∫
D

f(x(u, v))

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣dudv
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Example. Suppose velocity of fluid is written u = u(x). Given S, how to calculate how much fluid
passes through it per unit time? On small patch δS on S, fluid passing through would be (u · δS)δt
in time δt. So amount of fluid that passes over S in ∂t is

δt

∫
S

u · dS

This is the rate at which fluid passes through surface S times δt.
Called “flux” integrals.

Are these surface integrals dependant on choice of parametrisation of S?
Let x = x(u, v) and x = x̃(ũ, ṽ) be two different parametrisations of S with (u, v) ∈ D and (ũ, ṽ) ∈ D̃.
Must have relationship

x(u, v) = x̃((ũ(u, v), ṽ(u, v))

∂x

∂u
× ∂x

∂v
=

(
∂x̃

∂ũ

∂ũ

∂u
+
∂x̃

∂ṽ

∂ṽ

∂u

)
×
(
∂x̃

∂ũ

∂ũ

∂v
+
∂x̃

∂ṽ

∂ṽ

∂v

)
=

(
∂ũ

∂u

∂ṽ

∂v
− ∂ũ

∂v

∂ṽ

∂u

)
∂x̃

∂ũ
× ∂x̃

∂ṽ

=
∂(ũ, ṽ)

∂(u, v)

∂x̃

∂ũ
× ∂x̃

∂ṽ
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4 Divergence, Curl and Laplacians

4.1 Definitions

Seen gradient operator ∇, acts on functions f : R3 → R. In Cartesians,

∇ = ei
∂

∂xi

Definition. For a vector field F : R3 → R3, define divergence of F by

div(F) = ∇ · F

Equation. So in Cartesians,

∇ · F =
∂Fi
∂xi

(can show)

Note. Divergence of a vector field is a scalar field.

Definition. For a vector field F : R3 → R3, define curl of F by

curl(F) = ∇× F

Equation. So in Cartesians

∇× F =

(
εijk

∂Fk
∂xj

)
ei

So in Cartesians,

[∇× F]i = εijk
∂

∂xj
Fk

Note. Curl of vector field is another vector field. In terms of a “formal” determinant

∇× F = det

 e1 e2 e3
∂
∂x1

∂
∂x2

∂
∂x3

F1 F2 F3


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Definition. For scalar field f : R3 → R, define Laplacian of f

∇2f = ∇ · ∇f (= div(grad f))

In Cartesians, [∇f ] = ∂f
∂xi

, so

∇2f =
∂2f

∂xi∂xi

Prop. For f, g scalar fields, F,G vector fields

∇(fg) = (∇f)g + (∇g)f

∇ · (fF) = (∇f) · F + f(∇ · F)

∇× (fF) = (∇f)× F + f(∇× F)

∇(F ·G) = F× (∇×G) + G× (∇× F) + (F · ∇)G + (G · ∇)F

∇× (F×G) = F(∇ ·G)−G(∇ · F) + (G · ∇)F− (F · ∇)G

∇ · (F×G) = (∇× F) ·G− F · (∇×G)

Proof.

Note.

[(F · ∇)G]i =

(
Fj

∂

∂xj

)
Gi

= Fj
∂Gi
∂xj

Proofs are just algebra

Remark. These identities hold in ANY OCC, but are most easily established using Cartesians

Equation. For general OCC, divergence defined by same formula ∇ · F, i.e.(
eu

1

hu

∂

∂u
+ ev

1

hv

∂

∂v
+ ew

1

hw

∂

∂w

)
· (Fueu + · · ·+ Fwew)
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Remark. Gets quite messy as {eu, ev, ew} will depend on (u, v, w). Just state results:

∇ · F =
1

huhvhw

[
∂

∂u
(hvhwFu) +

∂

∂v
(huhwFv) +

∂

∂w
(huhvFw)

]

∇× F =
1

huhvhw
det

hueu hvev hwew
∂
∂u

∂
∂v

∂
∂w

huFu hvFv hwFw


AND

∇2f =
1

huhvhw

[
∂

∂u

(
hvhw
hu

∂f

∂u

)
+

∂

∂v

(
huhw
hv

∂f

∂v

)
+

∂

∂w

(
huhv
hw

∂f

∂w

)]
Since

[∇f ]u =
1

hu

∂f

∂u
etc.

Example. In cylindrical polars (ρ, φ, z),

(hρ, hφ, hz) = (1, ρ, 1)

So

∇2f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2

∂2f

∂φ2
+
∂2f

∂z2

Definition.
∇2F = ∇(∇ · F)−∇× (∇× F)

4.2 Relations between div, grad and curl

Prop. For a scalar field f and a vector field F

∇×∇f = 0

∇ · (∇× F) = 0

i.e. curl · grad = 0, div · curl = 0

Proof. Algebra

Note. Recall F was conservative if F = ∇f .

Definition. Say F is irrotational if
∇× F = 0
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Remark. So from proposition

F conservative =⇒ F irrotational

Reverse implication is true if domain of F is simply connected (or “1-connected”)
e.g. R3 is 1-connected byt R3\{z-axis} is not 1-connected

Remark. Similarly, if there exists a vector potential for F i.e.

F = ∇×A

then
∇ · F = 0

Here A is called the vector potential for F

Definition. When ∇ · F = 0, say that F is solenoidal

Remark. So existence of vector potential for F =⇒ F solenoidal
Reverse implication is true if domain of F is 2-connected.

Definition. Say Ω ⊆ R3 is 2-connected if it is 1-connected and every sphere in Ω can be continuously
shrunk to any point in Ω

Example. R3 is 2-connected. R3\{0} is 1-connected, but not 2-connected

get stuck trying to get passed origin
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5 Integral Theorems

5.1 Greens Theorem: Statement and Examples

Theorem. If P = P (x, y), Q = Q(x, y) are continuously differentiable functions on A ∪ ∂A and ∂A
is piecewise smooth, then ∮

∂A

P dx+Qdy =

∫∫
A

(
∂Q

∂x
− ∂P

∂y

)
dx dy

Orientation of ∂A is such that A lies to your left as you traverse it.

A ⊆ R2

Proof. Proved later through other integral theorems
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Note. It is easy to establish this result for

A = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}

In this case, RHS is ∫ d

c

(∫ b

a

∂Q

∂x
dx

)
dy −

∫ b

a

(∫ d

c

∂P

∂y
dy

)
dx

=

∫ d

c

[Q(b, y)−Q(a, y)] dy +

∫ b

a

[P (x, c)− P (x, d)] dx

≡
∮
∂A

P dx+Qdy

A

dx = 0
x = a

dx = 0
x = b

dy = 0
y = c

dy = 0
y = d

5.2 Stoke’s Theorem: Statement and Examples

Theorem. If F = F(x) is a continuously differentiable vector field and S is an orientable, piece-wise
regular surface with piecewise smooth boundary ∂S then∫

S

(∇× F) · dS =

∮
∂D

F · dx

Note. Generalisation of FTC

Remark. The “orientable” bit means there’s a consistent choice of normal vector at each point of S.
I.e. S has “two sides”.

Example. If S is an orientable, closed surface and F is continuously differentiable then∫
S

∇× F · dS = 0
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Prop. If F is continuously differentiable and for every loop C∮
C

F · dx = 0

then ∇× F = 0. So F irrotational ⇐= F has zero circulation any closed loop.

Proof. Assume result is false i.e. ∃ unit vector is such that

k ·∇ × F(x0)︸ ︷︷ ︸
ε

> 0

for some x = x0.
By continuity, for δ > 0, sufficiently small so that, by continuity

k · ∇ × F(x) >
1

2
ε for |x− x0| < δ

δ

Take loop in this ball {x : |x− x0| < δ} that lies entirely in a plane with normal k

k

S ∂S

Then:

0 =

∮
∂S

F · dx

=

∫
S

∇× F · k dS

>
1

2
ε

∫
dS

> 0
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5.3 Divergence Theorem: Statement and Examples (Gauss’ Theorem)

Theorem. If F = F(x) is continuously differentiable vector field and V is a volume with piecewise
regular boundary ∂V then ∫

V

∇ · F dV =

∫
∂V

F · dS

where normal to ∂V points OUT of V

Prop. If F = F(x) is continuously differentiable and D ⊆ R2 is a planar region with piecewise sooth
boundary ∂D then ∫

D

∇ · FdA =

∮
∂D

F · n dx

(s arc-length)
again n points OUT of D.

Prop. If F = F(x) is continuously differentiable and for every closed surface S∫
S

F · dS = 0

then ∇ · F = 0

Proof. Suppose result is false. So ∇ · F = ε > 0. By continuity, for δ > 0 sufficiently small

∇ · F(x) >
1

2
ε

|x− x0| < δ

V

Choose a volume V inside ball |x− x0| < δ. Then by assumption

0 =

∫
∂V

F · dS =

∫
V

∇ · F dV >
1

2
ε

∫
V

dV > 0

Conclude that if vector field E has zero net flux through any closed surface then it is solenoidal
(∇ · F = 0)

26



Example. Many equations in mathematical physics can be written in the form

∂ρ

∂t
+∇ · J = 0 (†)

Call these CONSERVATION LAWS.
Suppose both ρ and |J| decrease rapidly as |x| → ∞. (ρ = (ρ(x, t), J = J(x, t). Define charge:

Q =

∫
R3

ρ(x, t) dV

We have conservation of charge:

dQ

dt
= −

∫
R3

∂ρ

∂t
dV

= −
∫
R3

∇ · JdV

= − lim
R→∞

∫
|x|≤R

∇ · J dV

= − lim
R→∞

∫
|x|=R

J · dS

= 0

as |J| → 0 rapidly as |x| → ∞
So (†) gives “conservation of charge”
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5.4 Sketch Proofs

Prop. The divergence theorem is true

Proof. Suppose first that
F = Fz(x, y, z)ez

Then divergence thm says ∫
V

∂Fz
∂z

dV =

∫
∂V

Fzez · dS (†)

∂V

n

A

S+

S−n

x

y

z

∂V = S+ ∪ S−

We write:

S± = {x(x, y) =

 x
y

g±(x, y)

 , (x, y) ∈ A}

Then ∫
V

∂Fz
∂z

dV =

∫∫
A

[∫ g+(x,y)

g−(x,y)

∂Fz
∂z

dz

]
dxdy

=

∫∫
A

[Fz(x, y, g+)x, y)− Fz(x, y, g−(x, y))] dx dy

To calculate RHS of (†) over S±

dS =
∂x

∂x
× ∂x

∂y
dx dy =

−∂g±∂x−∂g±∂y
1

 dx dy

Since we want n to point OUT of V , on S±, we have

dS|S± = ±

−∂g±∂x−∂g±∂y
1

 dxdy

=⇒
∫
∂V

F · dS =

[∫
S+

+

∫
S−

]
Fzez · dS

=

∫∫
A

Fz(x, y, g+(x, y)) dx dy −
∫∫

A

Fz(x, y, g−(x, y)) dxdy

=

∫
V

∂Fz
∂z

dV
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Prop (cont.).

Proof (cont.). So (†) holds. In exactly the same way∫
V

∂Fx
∂x

dV =

∫
∂V

Fxex · dS

∫
V

∂Fy
∂y

dV =

∫
∂V

Fyey · dS

Adding these three together∫
V

∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

dV =

∫
∂V

Fxex + Fyey + Fzez · dS

which is the divergence thm
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Prop. Div thm =⇒ Green’s thm

Proof. Use 2D div thm with F =

[
Q
−P

]
. Then

∫∫
A

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
A

∇ · FdA =

∮
∂A

F · x ds

A

n

If ∂A is parametrised wrt arc length, so unit tangent vector is

t =

[
x′(s)
y′(s)

]
Then the normal vector must be

n =

[
y′(s)
−x′(s)

]
Check: if t points vertically upwards then A would be to our left:

A t =

[
0
1

]

And so

F · n ds =

[
Q
−P

]
·
[
y′(s)
−x′(s)

]
ds

= P
dx

ds
ds+Q

dy

ds
ds

= P dx+Qdy

i.e. ∫∫
A

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∮
∂A

F · x ds
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Prop. Green’s thm =⇒ Stoke’s thm

Proof. Consider regular surface

S = {x = x(u, v) : (u, v) ∈ A}

Then the boundary is
∂S = {x = x(u, v) : (u, v) ∈ ∂A}

Green’s thm gives ∮
∂A

P du+Qdv =

∫∫
A

(
∂Q

∂u
− ∂P

∂v

)
dudv

Make choices
P (x, y) = F(x(u, v)) · dx

du

Q(x, y) = F(x(u, v)) · dx

dv

Then

P du+Qdv = F(x(u, v)) ·
(
∂x

∂u
du+

∂x

∂v
dv

)
= F(x(u, v)) · dx(u, v)

And so ∮
∂A

P du+Qdv =

∮
∂S

F · dx
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Prop (cont.).

Proof (cont.). For the other side of Stokes’

∂Q

∂u
=
∂xj
∂u

∂Fi
∂xj

∂xi
∂v

+ Fi
∂2xi
∂v∂u

∂P

∂v
=
∂xj
∂v

∂Fi
∂xj

∂xi
∂u

+ Fi
∂2xi
∂u∂v

So:

∂Q

∂u
− ∂P

∂v
=

(
∂xi
∂v

∂xj
∂u
− ∂xi
∂u

∂xj
∂v

)
∂Fi
∂xj

= (δipδjq − δiqδjp)
∂Fi
∂xj

∂xp
∂v

∂xq
∂u

= εijkεpqk
∂Fi
∂xj

∂xp
∂u

∂xq
∂u

= [−∇× F]k

(
−∂x
∂u
× ∂x

∂v

)
k

= (∇× F) ·
(
∂x

∂u
× ∂x

∂v

)
So ∫∫

A

(
∂Q

∂u
− ∂P

∂v

)
dudv =

∫∫
A

(∇× F) ·
(
∂x

∂u
× ∂x

∂v

)
dudv

=

∫
S

∇× F · dS

This is Stokes’ theorem.
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6 Maxwell’s Equations

6.1 Brief Introduction to Electromagnetism

Notation. Denote by
B = B(x, t)

the magnetic field and
E = E(x, t)

electric field. These fields will depend on charge density

ρ = ρ(x, t)

(electric charge per unit volume) and on current density

J = J(x, t)

(electric current per unit area)

Equation.

∇ ·E =
ρ

ε0
(1)

∇ ·B = 0 (2)

∇×E +
∂B

∂t
= 0 (3)

∇×B− µ0ε0
∂E

∂t
= µ0J (4)

The constants ε0 and µ0 are the permittivity and permeability of free space, which obey

1

µ0ε0
= c2

where c = 299, 792, 458ms−1 is the speed of light.

Method. If we take div of (4), using ∇ · ∇ ×B = 0 and then using (1):

∂ρ

∂t
+∇ · J = 0

conservation law.
This gives rise to conservation of charge
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6.2 Integral Formulations

Method. Integrating (1) over volume V and using divergence theorem,∫
∂V

E · dS =
1

ε0

∫
V

ρdV ≡ Q

ε0

where Q is the “total charge in V ”
This is called Gauss’ Law.

Method. For magnetic fields, (2) gives ∫
∂V

B · dS = 0

There is no net magnetic flux over any closed surface ∂V .

E
B

i.e. there are no magnetic monopoles

Method. Integrating (3) over surface S and use Stoke’s theorem∮
∂S

E · dx = −
∫
S

∂B

∂t
· dS = − d

dt

∫
S

B · dS

E

B

The CHANGE in magnetic flux through S induces circulation in E about ∂S
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Method. Integrate (4) over S and use Stokes∮
∂S

B · dx = µ0

∫
S

J · dS + µ0ε0
d

dt

∫
S

E · dS

J B

B

6.3 Electromagnetic Waves

Equation. In Empty space, ρ = 0,J = 0, so (1) to (4) become

∇ ·E = 0 (1)
∇ ·B = 0 (2)

∇×E +
∂B

∂t
= 0 (3)

∇×B− µ0ε0
∂E

∂t
= 0 (4)

Equation. Using (1), (3), (4) and

µ0ε0 =
1

c2

we get

∇2E− 1

c2
∂2E

∂t2
= 0

(this is the wave equation in 3-D) So in vacuum, electric field travel at speed c.

Equation. Similarly, using (2), (3), (4)

∇2B = − 1

c2
∂2B

∂t2
= 0

So electromagnetic waves always travel at speed c in a vacuum
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6.4 Electrostatics + Magnetostatics

Equation. Suppose all fields and source terms are independent of t. Then Maxwell’s equations
decouple

(A)

{
∇ ·E = ρ/ε0

∇×E = 0

(B)

{
∇ ·B = 0

∇×B = µ0J

If we are working on all of R3 (which is 2-connected), then ∇×E = 0 and ∇ ·B = 0 implies

E = −∇φ, B = ∇×A

Call φ the electric potential and A the magnetic potential.
Maxwell’s equations (A) and (B) become

−∇2φ =
ρ

ε0

∇× (∇×A) = µ0J

The first is called Poisson’s equation, see section 7
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7 Poisson’s and Laplace Equations

7.1 The Boundary Value Problem

Remark. Many problems in mathematical physics can be reduced to the form

∇2ϕ = F

Called Poisson’s Equation, or if F ≡ 0, call it Laplace’s equation. We solve this equation on Ω = Rn
or Ω ⊂ Rn, n = 2, 3.
Physical problems involve boundary conditions,
i.e. ϕ will have prescribed behaviour on ∂Ω (or as |x| → ∞ if Ω = Rn).

Example. The Dirichlet problem is {
∇2ϕ = F in Ω

ϕ = f on ∂Ω

Example. The Neumann problem is {
∇2ϕ = F in Ω
∂ϕ
∂n = g on ∂Ω

where we have the normal derivative
∂ϕ

∂n
= n · ∇ϕ

Must interpret boundary conditions in an appropriate manner: we assume that ϕ (or ∂ϕ
∂n ) approaches

the boundary data f (or g) continuously as x → ∂Ω. That is to say, we assume ϕ and ∇ϕ are
continuous on Ω ∪ ∂Ω.

Warning. If ∇2ϕ = 0 in Ω then ϕ needs to be well-defined on all of Ω. Don’t fall into trap of
assuming things like

∇2

(
1

|x|

)
= 0

for all x ∈ R3. It is only true for x 6= 0

Example. General spherically symmetric solution for Dirichlet problem:

ϕ(r) = A+
B

r

MUST have B ≡ 0 or else ϕ not well-defined throughout Ω = {r < a}

Remark. Want solutions to be unique (or very almost unique)
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Method. Consider generic linear problem{
Lϕ = F in Ω

Bϕ = f on ∂Ω
(††)

where L,B linear differential operators.
If ϕ1 and ϕ2 both solve (††), consider ψ = φ1 − φ2. By linearity{

Lψ = 0 in Ω

Bψ = 0 on ∂Ω
(†††)

If we can show that the ONLY solution to (†††) is ψ = 0, must conclude that ϕ1 = ϕ2, i.e. solution
to (††) is unique.

Moral. The solution to a linear problem is unique iff the only solution to the homogenous problem
is the zero solution

Prop. The solution of the Dirichlet problem is unique.
The solution to the Neumann problem is unique up ot the addition of a constant.

Proof. Let ψ = ϕ1 − ϕ2 be the difference of two solutions to Dirichlet or Neumann problem.
so

∇2ψ = 0 in Ω

Bψ = 0 on ∂Ω

where Bψ ≡ ψ (Dirichlet) or Bψ = ∂ψ
∂n (Neumann)

Consider the non-negative functional:

I[ψ] =

∫
Ω

|∇ψ|2 dV ≥ 0

Clearly I[ψ] = 0 if and only if ∇ψ = 0 in Ω.
Note:

I[ψ] =

∫
∂Ω

ψ
∂ψ

∂n
dS

= 0

using

dS = ndS, n · ∇ψ =
∂ψ

∂n

Since ψ = 0 on ∂Ω (Dirichlet) or ∂ψ∂n = 0 on ∂Ω (Neumann). Conclude that∇ψ = 0 throughout
Ω =⇒ ψ = const. throughout Ω.
(i) For Dirichlet, ψ = 0 on ∂Ω, so by continuity of ψ on Ω∪∂Ω, must have ψ = 0 everywhere.

So solution to Dirichlet problem is unique.
(ii) From Neumann, only know dψ

dn = 0 on boundary so can’t say any more, so since ψ =
const. deduce that

ϕ1 = ϕ2 + const.

Any two solutions differ only by a constant.
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7.2 Gauss’ Flux Method

Method. Suppose source term F is spherically symmetric, ie. F = F (r), where r = |x|. Write our
problem as:

∇ · ∇ϕ = F (r) (*)

and assume Ω = R3. Since RHS only depends on r, same is true of LHS. So assume that ϕ = ϕ(r),
in which case

∇ϕ = ϕ′(r)er

Integrating (*) over region |x| < R, and use divergence theorem∫
|x|<R

∇ · ∇ϕdV =

∫
|x|=R

∇ϕ · dS =

∫
|x|<R

F (r) dV

The RHS represents the amount of, e.g. mass, inside ball of radius R > 0. Set∫
|x|<R

F dV = Q(R)

where Q(R) is “the amount of stuff inside ball |x| < R”
So our equation is ∫

|x|=R
∇ϕ · dS = Q(R)

Recall that on sphere of radius R
dS = erR

2 sin θ dθ dφ

So on |x| = R:

∇ϕ · dS = ϕ′(r)er · (er R2 sin θ dθdφ︸ ︷︷ ︸
dS

)

∣∣∣∣∣∣
|x|=R

= ϕ′(R) dS

So
Q(R) =

∫
|x|<R

ϕ′(R) dS = ϕ′(R)

∫
|x|<R

dS︸ ︷︷ ︸
4πR2

In summary

ϕ′(R) =
Q(R)

4πR2
∀R > 0

=⇒ ∇ϕ =
Q(R)

4πr2
er
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Method. What if our problem is symmetric about the z-axis i.e.

∇2ϕ = F (ρ) ρ2 = x2 + y2

Have “cylindrical symmetry”. Integrate

∇ · ∇ϕ = F (ρ)

over cylinder of radius R, height a.
Assuming ϕ = ϕ(ρ), have

∇ϕ = ϕ′(ρ) eρ (cylindrical polars)∫
V

∇ · ∇ϕdV =

∫
V

F (ρ) dV

where V is cylinder

LHS = 2πaRϕ′(R)

using Div Thm. So

ϕ′(R) =
1

R
· 1

2πa

∫
V

F (ρ) dV

By evaluating the integral and rearranging, we get

Equation.

ϕ′(ρ) =
1

ρ

∫ ρ

0

sF (s) ds

7.3 Superposition Principle

Remark. Linear problems are relatively easy because of the following: if we have

Lψn = Fn n = 1, 2, 3, . . .

then

L

(∑
n

ψn

)
=
∑
n

F (n)

We can superimpose solutions. Can often break up forcing term F =
∑
n Fn, solve each problem

Lψn = Fn

To get solution to Lψ = F , write ψ =
∑
n ψn
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Example. Consider electric potential due to pair of point charges Qa at x = a, Qb at x = b. Charge
density would be

ρ(x) = Qaδ(x− a) +Qbδ(x− b)

For one point charge, electric potential obeys

−∇2φ =
Qa

ε0
δ(x− a)

Solution would be
φ(x) =

Qa

4πε0

1

|x− a|
So by superposition principle, electric potential due to point charges at x = a and x = b is

φ(x) =
Qa

4πε0

1

|x− a|
+

Qa

4πε0

1

|x− b|

Example. Consider electric potential outside ball of radius |x| < R of uniform charge density ρ0,
that has several balls removed from its interior

|x− ai| < Ri i = 1, . . . , N

|ai|+Ri < R, |ai − aj | > Ri +Rj for each i, j

ρ0 ρ0

ρ0

= −

Use superposition principle: represent each hole to be a ball of uniform charge density −ρ0.
Effective potential in |x| > R from each hole is

φ(x) = − 1

4πε0

Qi
|x− ai|

using

Q =

(
4πR3

i

3

)
ρ0

by superposition principle

φ(x) =
1

4πε0

[
Q

|x|
−

N∑
i=1

Qi
|x− ai|

]
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7.4 Integral Solutions

Prop. Assume F → 0 rapidly as |x| → ∞. The unique solution to the Dirichlet problem{
∇2ϕ = F (x) for x ∈ R3

|ϕ| → 0 as |x| → ∞

is given by

ϕ(x) = − 1

4π

∫
R3

F (y)

|x− y|
dV (y)

Proof. Certainly have

∇2

(
− 1

4π

1

|x|

)
= δ(x) x 6= 0

as 1/|x| a solution to Laplace’s equation. If we assume divergence thm works with delta
function, on any ball |x| < R∫

|x|<R
∇2

(
1

|x|

)
dV =

∫
|x|=R

∇
(

1

|x|

)
· dS

= −4π

By evaluating integral. So for any R > 0∫
|x|<R

∇2

(
− 1

4π

1

|x|

)
dV = 1 =

∫
|x|<R

δ(x) dV

We conclude
∇2

(
− 1

4π

1

|x|

)
= δ(x)

so proposition follows.

Remark. This result is another way of saying

∇2

(
− 1

4π

1

|x|

)
= δ(x)

Since by differentiating under integral sign

∇2

(
− 1

4π

∫
R3

F (y)

|x− y|
dV (y)

)
= − 1

4π

∫
R3

F (y)∇2

(
1

|x− y|

)
dV (y)

=

∫
R3

F (y)δ(x− y) dV (y)

= F (x)
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7.5 Harmonic Functions

Definition. When the forcing term in Poisson’s equation is identically zero, we call it Laplace’s
equation:

∇2ϕ = 0 (†)

Solutions to Laplace’s equation are called harmonic functions

Prop. If ϕ harmonic on Ω ⊆ R3, then

ϕ(a) =
1

4πr2

∫
|x−a|=r

ϕ(x) dS (*)

for a ∈ Ω and r sufficiently small.

a
rΩ

Proof. Let F (r) denote RHS of (*). Then

F (r) =
1

4πr2

∫
|x|=r

ϕ(a + x) dS

=
1

4πr2

∫ 2π

φ=0

[∫ π

θ=0

ϕ(a + rer)r
2 sin θ dθ

]
dφ

=
1

4π

∫ 2π

φ=0

[∫ π

θ=0

ϕ(a + rer) sin θ dθ

]
dφ

Computing F ′(r), using
d

dr
ϕ(a + rer) = er · ∇ϕ(a + rer)

F ′(r) =
1

4πr2

∫ 2π

φ=0

∫ π

θ=0

er · ∇ϕ(a + rer)r
2 sin θ dθ dφ

=
1

4πr2

∫
|x|=r

∇ϕ(a + x) · dS

=
1

4πr2

∫
|x−a|=r

∇ϕ · dS

=
1

4πr2

∫
|x−a|<r

∇2ϕdV

= 0

So F (r) is constant and result follows by taking r → 0.
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Moral. Can use central idea in this proof to examine what the Laplacian helps us measure

Prop. For any smooth ϕ : R3 → R

∇2ϕ(a) = lim
r→0

6

r2

[
1

4πr2

∫
|x−a|=r

ϕ(x) dS − ϕ(a)

]

In particular, if ϕ satisfies the MVP then it is harmonic.

Proof. Consider function G(r) defined by

G(r) =
1

4πr2

∫
|x−a|=r

ϕ(x) dS − ϕ(a)

So G measures extent to which ϕ differs from its average. we have from previous proof

G′(r) = F ′(r) =
1

4πr2

∫
|x−a|<r

∇2ϕdV

Obviously, this vanishes if ϕ harmonic. Note∫
|x−a|<r

∇2ϕ(x) dV = ∇2ϕ(a)

∫
|x−a|<r

dV +

∫
|x−a|<r

(∇2ϕ(x)−∇2ϕ(a) dV

=
4π

3
r3∇2ϕ(a) + o(r3) (r → 0)

So

G′(r) =
r

3
∇2ϕ(a) + o(r) (r → 0)

Compare this with Taylor expansion

G′(r) = G′(0) + rG′′(0) + o(r) (r → 0)

we deduce:
G′(0) = 0, G′′(0) =

1

3
∇2ϕ(a)

So

G(r) = G(0)︸︷︷︸
=0

+r G′(0)︸ ︷︷ ︸
=0

+
r2

2
G′′(0) + o(r2)

=
1

6
∇2ϕ(a)r2 + o(r2) (r → 0)

=⇒ ∇2ϕ(a) = lim
r→0

[
6

r2
G(r)

]
=⇒ result
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Prop. If ϕ is harmonic on Ω ⊆ R3 then it cannot have a maximum at any interior point of Ω unless
ϕ is constant.

Proof. Suppose a ∈ Ω is such that
ϕ(a) ≥ ϕ(x)

for all x ∈ Ω. So certainly
ϕ(a) ≥ ϕ(x) on 0 < |x− a| ≤ ε

for some ε > 0. But by mean value thm

ϕ(a) =
1

4πε2

∫
|x−a|=ε

ϕ(x) dS

i.e.
0 =

1

4πε2

∫
|x−a|=ε

ϕ(a)− ϕ(x)︸ ︷︷ ︸
≥0

dS

Consider that ϕ(x) = ϕ(a). Apply same argument to

|x− a| = ε′ < ε

Deduce ϕ(x) = ϕ(a) on |x− a| ≤ ε

a y

Introduce bunch of overlapping balls such that the centre of the (n + 1)th ball is contained
inside the nth.

Everywhere inside 1st ball, have ϕ(x) = ϕ(a).
In particular, on center of second ball have ϕ(x) = ϕ(a).
Using previous argument get ϕ(x) = ϕ(a) throughout second ball. Carry on until you get to
y. Find ϕ(y) = ϕ(a) i.e. ϕ constant.
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Corollary. If ϕ is harmonic on Ω then

ϕ(x) ≤ max
y∈∂Ω

ϕ(y) (x ∈ Ω)

(Maximum principle)

Note. Comes from considering maximum of ϕ on Ω ∪ ∂Ω
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8 Cartesian Tensors

Remark. Throughout this section we deal solely with Cartesian coordinate systems

8.1 A Closer Look at Vectors

Moral. If we transform fom {ei} to {e′i} then the components of a vector v transform as

v′i = Rijvj

where Rij = e′i · ej are components of a rotation matrix. Call objects whose components transform
in this way rank 1 tensors, or vectors.

8.2 A Closer Look at Scalars

Moral. objects that transform as
σ′ = σ

when we change from {ei} to {e′i} are called scalars, or rank 0 tensors.

8.3 Cartesian Tensors of Rank n

Definition. An object whose components Tij . . . k︸ ︷︷ ︸
n indices

transform (when we go from {ei} to {e′i}) ac-

cording to

T ′ij...k =

n Rs︷ ︸︸ ︷
RipRjq . . . Rkr Tpq...r

is called a (Cartesian) tensor of rank n.
Here

Rij = e′i · ej
are components of rotation matrix, so

RipRjp = δij

Example. If ui, vk, . . . , wk are components of n vectors, then

Tij...k = uivj . . . wk

define components of a tensor of rank n
(can check)
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Example. Kronecker delta is defined without reference to any basis via

δij =

{
1 if i = j

0 if i 6= j

So δ′ij = δij by definition. But note

RipRjqδpq = RipRjp = δij

So we have
δ′ij = RipRjqδpq

i.e. δij is a rank 2 tensor.

Example. The Levi Civita symbol is defined without reference to any basis

εijk =


1 if (i j k) is an even perm of (1 2 3)

−1 if (i j k) is an odd perm of (1 2 3)

0 otherwise

By definition, ε′ijk = εijk. But

RipRjqRkrεpqr = det(R)εijk

= εijk

So we have
ε′ijk = RipRjqRkrεpqr

So εijk is a tensor of rank 3.

Definition. If Aij...k and Bij...k are n-th rank tensors, define

(A+B)ij...k = Aij...k +Bij...k

This is also n-th rank tensor, If α is a scalar then

(αA)ij...k = αAij...k

is an n-th rank tensor.
We define the tensor product of an m-th rank tensor Uij...k and a an n-th rank tensor Vpq...r by

(U ⊗ V )ij...kpq...r = Uij...kVpq...r

where
ij . . . k︸ ︷︷ ︸
m indices

pq . . . r︸ ︷︷ ︸
n indices
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Claim. This is a tensor of rank n+m.

Proof.

U ′i...jV
′
p...q = Ria . . . RjbUa...bRpc . . . RqdVc...d

= Ria . . . RjbRpc . . . Rqd︸ ︷︷ ︸
n+m terms

Ua...bVc...d︸ ︷︷ ︸
(U⊗V )a...bc...d

Method. Given n-th rank tensor Tijk...d n ≥ 2, we can define tensor of rank n − 2 by contracting
on pair of indices. For instance, contracting on i and j is defined by

δijTijk...d = Tiik...d

Note.

T ′iik...d = RipRiq︸ ︷︷ ︸
δpq

Rkr . . . RlsTpqr...s

= Rkq . . . RlsTppr...s

So Tiik...d transforms as tensor of rank n− 2

Definition. Say Tij...k is symmetric in (i, j) if

Tij...k = Tji...k

(can check this is well-defined i.e. regardless of basis)
Similarly, we say Aij...k is anti-symmetric in (i, j) if

Aij...k = −Aji...k

Say a tensor is totally (anti-)symmetric if it is (anti-)symmetric in every pair of indices.

Example. Tensors δij and aiajak are both totally symmetric.
εijk is a totally anti-symmetric tensor.
In fact, the only totally anti-symmetric tensor on R3 of rank n = 3 is proportional to εijk, and there
are no non-zero high rank ones. Indeed, if Tij...k totally anti-symmetric of rank n, then Tij...k = 0 if
any two indices are the same

T22...k = −T22...k =⇒ T22...k = 0

So by pigeonhole principle, there will always be two or more matching indices if n > 3. If n = 3,
there are only 3! = 6 non-zero components. If

T123 = T231 = T312 = λ

T213 = T321 = T132 = −λ

Thus Tijk = λεijk
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8.4 Tensor Calculus

Remark. “vector field” gives vector v(x) for x ∈ R3

“scalar field” gives scalar ϕ(x) for x ∈ R3

A tensor field of rank n, Tij...k(x), gives an n-th rank tensor at each x ∈ R3.

Equation. Recall
x′i = Rijxj ⇐⇒ xj = Rijx

′
i

Differentiating RHS wrt x′k
∂xj
∂x′k

= Rij
∂x′i
∂x′k

= Rijδik = Rkj

So by chain rule
∂

∂x′i
=
∂xj
∂x′i

∂

∂xj
= Rij

∂

∂xj

“ ∂
∂xi

transforms like a rank 1 tensor”

Prop. If Ti...j(x) is tensor field of rank n then(
∂

∂xp

)
. . .

(
∂

∂xq

)
︸ ︷︷ ︸

m terms

Ti...j(x) = tensor field of rank n+m

Proof. Label LHS by Ap...qi...j and do the algebra

Example. If ϕ = ϕ(x) scalar field then

[∇ϕ]i =
∂ϕ

∂xi

So ∇ϕ is rank 0 + 1 = 1 tensor field, i.e. a vector field.

Example. For vector field v have divergence

∇ · v =
∂vi
∂xi

can check that ∇ · v is scalar field.

Example. If v vector field, consider curl ∇× v. Then

[∇× v]i = εijk
∂vk
∂xj

can check that ∇× v is vector field.
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Prop. For tensor field Tij...k...l(x):∫
V

∂

∂xk
Tij...k...l dV =

∫
∂V

Tij...k...lnk dS

V

n

Proof. Apply divergence theorem to

vk = aibj . . . clTij...k...l (†)

where ai, bj , . . . , cl are components of constant vector fields. So by div theorem∫
V

∂vk
∂xk

dV = aibj . . . cl

∫
∂V

Tij...k...lnk dS

Result now follows because the constant vector fields a, b, c were arbitrary.
E.g. if we wanted to check (†) when all free indices i, j, . . . , l were = 1

ai = δi1, bj = δj1, . . . , cl = δl1

Similar idea for other choice of free indices.

8.5 Rank 2 Tensors

Remark. Observe for rank 2 tensor Tij

Tij =
1

2
(Tij + Tji) +

1

2
(Tij − Tji)

= Sij +Aij

which is symmetric + anti-symmetric∗ ∗ ∗∗ ∗
∗


6 indep components

0 ∗ ∗
0 ∗

0


3 indep components

This is good since 3 + 6 = 9. Intuitively, seems like info contained in Aij caould be written in terms
of some vector (3 indep components).
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Prop. Every rank 2 tensor can be written uniquely as

Tij = Sij + εijkωk

where
ωi =

1

2
εijkTjk

and
Sij is symmetric

Proof. We can identify (from earlier)

Sij =
1

2
(Tij + Tji)

Remains to show that
εijkωk =

1

2
(Tij − Tji)

For uniqueness, suppose
(Tij =)Sij +Aij = S̃ij + Ãij(= T̃ij)

Then consider
1

2
(Tij + Tji)
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A well known symmetric rank 2 tensor is the inertia tensor. Suppose body with density ρ(x) occupies
volume V ⊆ R3. Each point in the body rotating at constant angular velocity ω

ω

O

So velocity of point x ∈ V is v = ω × x. Total angular velocity about origin is:

L =

∫
V

ρ(x)(x× v) dV

=

∫
V

ρ(x)[x× (ω × x)] dV

Using suffix notation

Li = Iijωj

(by writing ωi = δijωj)
where we have defined inertia tensor

Iij =

∫
V
ρ(x)(xkxkδij − xixj) dV

where integral is taken over
V = {(x1, x2, x3) : x = xiei ∈ V }

Can show Iij is a rank 2 tensor

Prop. If Tij is symmetric then there exist choice of {ei} for which

(Tij) =

α 0 0
0 β 0
0 0 γ


The corresponding coordinate axes are called the principal axes of the tensor.

Proof. T ′ = RTTR. See IA V+M

Moral. So can always choose set of axes so that Iij is diagonal.
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8.6 Invariant and Isotropic Tensors

Definition. We say that a tensor is isotropic if it is invariant under changes in Cartesian coords,
i.e.

T ′ij...k = RipRjq . . . RkrTpq...r

= Tij...k

for any choice of rotation R.

Prop. Isotropic tensors on R3 are classified as:
(i) All rank 0 tensors isotropic
(ii) There are no non-zero rank 1 tensors
(iii) The most general isotropic tensor of rank 2 is αδij (α scalar)
(iv) The most general isotropic tensor of rank 3 is βεijk (β scalar)
(v) The most general isotropic tensor of rank 4 is

αδijδkl + βδikδjl + γδilδjk

(vi) The most general isotropic tensor of rank >4 is a linear combination of products of δ and ε (e.g.
δijεklm

Proof. First is by definition. Consider different R to gather more information in the other
cases.

Method. Consider integral of form

Tij...k =

∫
|x|<R

f(r)xixj . . . xk dV (x)

We can show that Tij...k is isotropic so then can use above result
Take R→∞ corresponds to integrating over all R3.
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8.7 Tensors as Multi-Linear Maps and the Quotient Rule

Method. For a tensor Tij consider bilinear map t : R3 × R3 → R defined by

t(a,b) := Tijaibj

LHS well defined since RHS does not depend on which basis we use (it’s a scalar).
So rank two tensor gives rise to bilinear map.
Conversely, suppose t : R3×R3 → R is bilinear, then for a given basis {ei} it defines an array Tij via

t(a,b) = t(aiei, bjej)

= aibjt(ei, ej)

:= aibjTij

Can show if we use different basis {e′i} with e′i = Ripep then by linearity

T ′ij = RipRjqTpq

So Tij is rank 2 tensor i.e. bilinear map t gives rise to rank 2 tensor.

Moral. Have a one-to-one correspondence between bilinear maps and rank 2 tensors. In particular
if the map

(a,b) 7→ Tijaibj

is genuinely bilinear, independent of basis, then Tij are components of rank 2 tensor.

Remark. Same idea works for higher rank tensors: if the map

(a,b, . . . , c) 7→ Tij...kaibj . . . ck

genuinely defines a n-multilinear map (indep of basis) then Tij...k are components of rank n tensor.
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Prop. Let Ti...jp...q be an array of numbers defined in each Cartesian coord system such that

vi...j︸︷︷︸
A

:= Ti...jp...q︸ ︷︷ ︸
A+B

up...q︸ ︷︷ ︸
B

is a tensor for each tensor up...q. Then Ti...jp...q is a tensor.

Proof. Take special case up...q = cp . . . dq for vectors {c, . . . ,d}. Then

vi...j := Ti...jp...qcp . . . dq

is a tensor and in particular

vi...jai . . . bj = Ti...jp...qai . . . bjcp . . . dq

is a scalar for each {a, . . .b, c, . . . ,d}. So RHS is scalar (indep of basis) and gives rise to
well-defined multilinear map via

t(a, . . . ,b, c, . . . ,d) := Ti...jp...qai . . . bjcp . . . dq

so by previous discussion, Ti...jp...q is a tensor.

Warning. Need to check holds for all tensors up...q

56


	Differential Geometry of curves
	Parametrised Curves and Arc Length
	Curvature and Torsion
	Radius of Curvature

	Coordinates, Differentials + Gradients
	Differentials + First Order Changes
	Coordinates and Line Elements
	Orthogonal Curvilinear Coordinates
	Cylindrical Polar Coords
	Spherical Polar Coordinates

	Gradient Operator
	Computing the gradient

	Integration over lines, surfaces and volumes
	Line Integrals
	Conservative Forces and Exact Differentials
	Integration in R2
	Integration in R3
	Integration over surfaces

	Divergence, Curl and Laplacians
	Definitions
	Relations between div, grad and curl

	Integral Theorems
	Greens Theorem: Statement and Examples
	Stoke's Theorem: Statement and Examples
	Divergence Theorem: Statement and Examples (Gauss' Theorem)
	Sketch Proofs

	Maxwell's Equations
	Brief Introduction to Electromagnetism
	Integral Formulations
	Electromagnetic Waves
	Electrostatics + Magnetostatics

	Poisson's and Laplace Equations
	The Boundary Value Problem
	Gauss' Flux Method
	Superposition Principle
	Integral Solutions
	Harmonic Functions

	Cartesian Tensors
	A Closer Look at Vectors
	A Closer Look at Scalars
	Cartesian Tensors of Rank n
	Tensor Calculus
	Rank 2 Tensors
	Invariant and Isotropic Tensors
	Tensors as Multi-Linear Maps and the Quotient Rule


