Vectors & Matrices

Hasan Baig

Michaelmas 2020

Contents

1	Complex Numbers	2
2	Vectors in 3D	3
3	Vectors in general: $\mathbb{R}^n, \mathbb{C}^n$	4
4	Matrices and Linear Maps	7
5	Determinants and Inverses	10
6	Eigenvalues and Eigenvectors	13
7	Changing Bases, Canonical Forms and Symmetries	17

1 Complex Numbers

Prop. $|z_1 z_2| = |z_1| |z_2|$ (composition property) $|z_1 + z_2| \le |z_1| + |z_2|$ (triangle property)

Proof (of composition property). Compute square of each side and compare.

Proof (of triangle inequality). LHS² = $(z_1 + z_2)(\overline{z_1} + \overline{z_2}) = |z_1|^2 + z_1\overline{z_2} + \overline{z_1}z_2 + |z_2|^2$ RHS² = $|z_1|^2 + |z_2|^2 + 2|z_1||z_2|$ Note:

$$z_1\overline{z_2} + \overline{z_1}z_2 \le 2|z_1||z_2|$$
$$\iff \frac{1}{2}(z_1z_2 + \overline{(z_1\overline{z_2})}) \le |z_1||\overline{z_2}|$$
$$\iff \operatorname{Re}(z_1\overline{z_2}) \le |z_1\overline{z_2}|$$

which is true. \Box

Alternative form of the Δ inequality: $|z_2 - z_1| \ge |z_2| - |z_1|$ by replacing z_2 with $z_2 - z_1$ in original form and rearranging or $|z_2 - z_1| \ge |z_1| - |z_2|$ so $|z_2 - z_1| \ge ||z_2| - ||z_1||$

Theorem (De Moivre's Theorem). $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

Proof. Induction.

Definition.
$$\exp(z) = e^z = \sum_{n=0}^{\infty} \frac{z^n}{n}$$

 $\cos(z) = \frac{1}{2}(e^{iz} + e^{-iz})$
 $\sin(z) = \frac{1}{2i}(e^{iz} - e^{-iz})$

Prop. $e^z e^w = e^{z+w}$

Proof. Multiply series on LHS and find terms of degree n $\sum_{r=0}^{n} \frac{1}{r!} z^r \frac{1}{(n-r)!} w^{n-r} = \frac{1}{n!} (z+w)^n$ by Binomial Theorem.

Equation of a line through z_0 , parallel to w: $\overline{w}z - w\overline{z} = \overline{w}z_0 - w\overline{z_0}$ Equation of a circle center c, radius ρ : $|z|^2 - \overline{c}z - c\overline{z} = \rho^2 - |c|^2$

2 Vectors in 3D

Definition. span $\{\mathbf{a}\} = \{\lambda \mathbf{a} : \lambda \in \mathbb{R}\}$

Definition. a, **b** parallel (**a**||**b**) iff $\mathbf{a} = \lambda \mathbf{b}$ or $\mathbf{b} = \lambda \mathbf{a}$ for some $\lambda \in \mathbb{R}$ (λ can be 0)

Definition. span $\{\mathbf{a}, \mathbf{b}\} = \{\alpha \mathbf{a} + \beta \mathbf{b} : \alpha, \beta \in \mathbb{R}\}$

 $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = -\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b}) = -\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) = -\mathbf{c} \cdot (\mathbf{b} \times \mathbf{a})$

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{b} \cdot \mathbf{c})\mathbf{a}$

 $\begin{aligned} \mathbf{r} &= \mathbf{a} + \lambda \mathbf{u}, \, \lambda \in \mathbb{R} \\ \text{Has alternative form } \mathbf{u} \times (\mathbf{r} - \mathbf{a}) = 0 \end{aligned}$

3 Vectors in general: \mathbb{R}^n , \mathbb{C}^n

Definition. Inner product on \mathbb{R}^n defined by: $\mathbf{x} \cdot \mathbf{y} = \sum_i x_i y_i = x_1 y_1 + \dots + x_n y_n$ Properties: (i) Symmetric $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (ii) Bilinear $(\lambda \mathbf{x} + \lambda' \mathbf{x}') \cdot \mathbf{y} = \lambda(\mathbf{x} \cdot \mathbf{y}) + \lambda'(\mathbf{x}' + \mathbf{y})$ $\mathbf{x} \cdot (\mu \mathbf{y} + \mu' \mathbf{y}') = \mu(\mathbf{x} \cdot \mathbf{y}) + \mu'(\mathbf{x} \cdot \mathbf{y}')$ (iii) Positive definite $\mathbf{x} \cdot \mathbf{x} = \sum_i x_i^2 \ge 0$ and $\mathbf{x} \cdot \mathbf{x} = 0$ iff $\mathbf{x} = 0$.

Prop (Cauchy-Schwarz). $|\mathbf{x} \cdot \mathbf{y}| \leq |\mathbf{x}| |\mathbf{y}|$ with equality iff \mathbf{x} and \mathbf{y} are parallel

Proof. If $\mathbf{y} = \mathbf{0}$, result is immediate. If $\mathbf{y} \neq \mathbf{0}$ then consider $|\mathbf{x} - \lambda \mathbf{y}|^2 = (\mathbf{x} - \lambda \mathbf{y}) \cdot (\mathbf{x} - \lambda \mathbf{y})$ By bilinearity it's $|\mathbf{x}|^2 - \lambda \mathbf{x} \cdot \mathbf{y} + \lambda^2 |\mathbf{y}|^2$ So, $|\mathbf{x} - \lambda \mathbf{y}|^2 = |\mathbf{x}|^2 - \lambda \mathbf{x} \cdot \mathbf{y} + \lambda^2 |\mathbf{y}|^2 \ge 0$ This is a real quadratic in λ with at most 1 real root so discriminant ≤ 0 which gives desired inequality.

Note. Setting $\mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos \theta$ allows us to define the angle θ between \mathbf{x} and \mathbf{y} in \mathbb{R}^n

Prop. Cauchy-Schwarz \implies triangle inequality

Proof.

$$\begin{aligned} |\mathbf{x} + \mathbf{y}|^2 &= |\mathbf{x}|^2 + 2\mathbf{x} \cdot \mathbf{y} + |\mathbf{y}|^2 \\ &\leq |\mathbf{x}|^2 + 2|\mathbf{x}||\mathbf{y}|||\mathbf{y}|^2 \\ &= (|\mathbf{x}| + |\mathbf{y}|)^2 \end{aligned}$$

Definition. $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\} \in V$ (a real vector space) form a **linearly independent set** iff:

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_r \mathbf{v}_r = 0 \tag{1}$$
$$\implies \lambda_i = 0 \,\forall i$$

i.e. only zero trivially.

If (1) holds with at least one $\lambda_i \neq 0$ then they form a linearly dependent set.

In \mathbb{R}^3 , $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is linearly independent iff $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \neq 0$

Definition. For a vector space V, a **basis** is a set $B = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ such that: (i) B spans $V : \mathbf{v} \in V \implies \mathbf{v} = \sum_{i=1}^n \mathbf{v}_i \mathbf{e}_i$ (ii) B is linearly independent Given (ii), the coefficients \mathbf{v}_i are unique since: $\sum_i \mathbf{v}_i \mathbf{e}_i = \sum_i v'_i \mathbf{e}_i \implies \sum_i (\mathbf{v}_i - v'_i) \mathbf{e}_i = \mathbf{0} \implies \mathbf{v}_i = v'_i$ from (i).

Theorem. If $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ and $\{\mathbf{f}_1, \ldots, \mathbf{f}_m\}$ are bases for a vector space V then n = m

Proof. $\mathbf{f}_a = \sum_i A_{ai} \mathbf{e}_i$ as \mathbf{e} is a basis and $\mathbf{e}_i = \sum_a B_{ia} \mathbf{f}_a$ for constants $A_{ai}, B_{ia} \in \mathbb{R}$ $i, j = 1, \dots, n$ $a, b = 1, \dots, m$

$$\mathbf{f}_{a} = \sum_{i} A_{ai} \left(\sum_{b} B_{ib} \mathbf{f}_{b} \right)$$
$$= \sum_{b} \left(\sum_{i} A_{ai} B_{ib} \right) \mathbf{f}_{b}$$

But $\mathbf{f}_a, \mathbf{f}_b$ are linearly independent and coefficients wrt a basis are unique, hence: $\sum_i A_{ai}B_{ib} = \delta_{ab}$ otherwise relation is nontrivial. Similarly:

$$\mathbf{e}_i = \sum_j \left(\sum_a B_{ia} A_{aj} \right) \mathbf{e}_j$$

Hence, $\sum_{a} B_{ia} A_{aj} = \delta_{ij}$ Now:

$$\sum_{i,a} A_{ai} B_{ia} = \sum_{a} \delta_{aa} = m$$
$$= \sum_{i} \delta_{ii} = n$$

So $m = n \square$

Note. Steps in proof of basis theorem within scope of course, but proof without prompts non-examinable.

Definition. The number of vectors is any basis is the **dimension** of the space. (Well-defined due to above).

Prop. Let V be a vector space with finite subsets: $Y = {\mathbf{w}_1, \ldots, \mathbf{w}_m}$ that spans V $X = {\mathbf{u}_1, \dots, \mathbf{u}_k}$ that is linearly independent. Then $k \leq n \leq m$ where n = dimension of V. And: (i) A basis can be found as a subset of Y by discarding vectors in Y if necessary (ii) X can be extended to a basis by adding additional vectors from Y as necessary Proof. (i) If Y is lin. indep., then Y is a basis and $m = n = \dim V$. If Y is not lin. indep., then there is $\sum_{i=1}^{m} \lambda_i \mathbf{w}_i = \mathbf{0}, \ \lambda_i \neq 0$ for some i. WLOG take $\lambda_m \neq 0$, then: $\mathbf{w}_m = -\frac{1}{\lambda_m} \sum_{i=1}^{m-1} \lambda_i \mathbf{w}_i$ so span Y = span Y' with $Y' = \{\mathbf{w}_1, \dots, \mathbf{w}_{m-1}\}.$ Repeat until a basis is obtained. (ii) If X spans V then it is already a basis and $k = n = \dim V$. If not, then $\exists \mathbf{u}_{k+1} \in V$ (not in span X) Bu then since $\mathbf{u}_{k+1} \notin \text{span } X$, if: $\sum_{i=1}^{k+1} \mu_i \mathbf{u}_i = \mathbf{0}$ then $\mu_{k+1} = 0$ (otherwise \mathbf{u}_{k+1} in span X)Then $\mu_i = 0$ for $i = 1, \ldots, k$ (X lin. indep.) Hence $X' = {\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}}$ is lin. indep. Furthermore, we can choose \mathbf{u}_{k+1} from Y $(\text{if } Y \subseteq \text{span } X \text{ then span } Y \subseteq \text{span } X \implies \text{span } X = V)$ Repeat $X \to X'$ until a basis is obtained. Process stops as Y is finite. \Box

Note. Steps in proof of theorem within scope of course, but proof without prompts non-examinable.

Definition. Inner product or scalar product on \mathbb{C}^n is defined by:

$$(\mathbf{z},\mathbf{w}) = \sum_{j} \overline{z}_{j} w_{j} = \overline{z}_{1} w_{1} + \dots + \overline{z}_{n} w_{n}$$

Properties:

(i) Hermitian: (**w**, **z**) = (**z**, **w**)
(ii) Linear/ anti-linear
(**z**, λ**w** + λ'**w**') = λ(**z**, **w**) + λ'(**z**, **w**')
(λ**z** + λ'**z**', **w**) = λ(**z**, **w**) + λ'(**z**', **w**')
(iii) Positive definite

$$(\mathbf{z}, \mathbf{z}) = \sum_{j} |z_j|^2$$
, real and ≥ 0
= 0 iff $\mathbf{z} = 0$

4 Matrices and Linear Maps

Definition (Linear Map). A linear map or linear transformation is a function $T: V \to W$ between vector spaces V (dim n) and W (dim m) such that:

 $T(\lambda \mathbf{x} + \mu \mathbf{y}) = T(\lambda \mathbf{x}) + T(\mu \mathbf{y})$ $= \lambda T(\mathbf{x}) + \mu T(\mathbf{y})$

for $\mathbf{x}, \mathbf{y} \in V, \lambda, \mu \in \mathbb{R}$ or \mathbb{C}

Note. A linear map is completely determined by its action on a basis (exercise)

 $\mathbf{x}' = T(\mathbf{x}) \in W \text{ is the image of } \mathbf{x} \in V \text{ under linear map } T.$ $\mathrm{Im}(T) = \{\mathbf{x}' \in W : \mathbf{x}' = T(\mathbf{x}) \text{ for } \mathbf{x} \in V\}$ $\mathrm{ker}(T) = \{\mathbf{x} \in V : T(\mathbf{x}) = 0\}$

Lemma. ker(T) is a subspace of V and Im(T) is a subspace of W

Proof. Exercise.

Definition. dim Im(T) or rank(T) is the **rank** of $T (\leq m)$ dim ker(T) or null(T) is the **nullity** of $T (\leq n)$

Theorem. For $T: V \to W$ a linear map as above, rank(T)+ null $(T) = n = \dim V$

Proof. non-examinable.

Rotation angle θ about axis **n**:

 $\mathbf{x} \mapsto (\cos \theta) \mathbf{x} + (1 - \cos \theta) (\mathbf{n} \cdot \mathbf{x}) \mathbf{n} + (\sin \theta) \mathbf{n} \times \mathbf{x}$

Derive by writing ${\bf x}$ in parallel and perp. to ${\bf n}$ components

Projection to plane with unit normal \mathbf{n} :

$$\mathbf{x} \mapsto \mathbf{x} - (\mathbf{x} \cdot \mathbf{n})\mathbf{n}$$

Reflection in plane with unit normal \mathbf{n} :

$$\mathbf{x} \mapsto \mathbf{x} - 2(\mathbf{x} \cdot \mathbf{n})\mathbf{n}$$

Dilations along axes defined as one would expect.

Note. Can have different scale factors for different axes.

Let \mathbf{a}, \mathbf{b} be orthogonal unit vectors in \mathbb{R}^3 , λ a real parameter. Define a shear parallel to \mathbf{a} scale factor λ :

$$\mathbf{x} \mapsto \mathbf{x} + \lambda \mathbf{a} (\mathbf{x} \cdot \mathbf{b}).$$

Claim. Matrix acting on vector acts as expected $(T(\mathbf{x}))$:

Proof. Write $\mathbf{x} = \sum x_i \mathbf{e}_i$ and apply linearity. (Have $\mathbf{e}_i \mapsto \mathbf{C}_i$)

Claim. Image of matrix M is span of columns.

Proof. Write any \mathbf{x} in components, apply linearity.

Note. $\mathbf{x}'_a = M_{ai}\mathbf{x}_i = (\mathbf{R}_a)_i\mathbf{x}_i = \mathbf{R} \cdot \mathbf{x}$ ker $(T) = \text{ker}(M) = \{\mathbf{x} : \mathbf{R}_a \cdot \mathbf{x} = 0 \forall a\}$ Kernel of M is the subspace \perp to all rows. (Can use cross product to quickly work out kernel span)

Claim. $(\alpha M + \beta N)\mathbf{x} = \alpha M(\mathbf{x}) + \beta N(\mathbf{x})$

Proof. Consider ith component of \mathbf{x} .

Claim. $(AB)^T = B^T A^T$

Proof. consider components.

Definition. M symmetric iff $M^T = M$ M anti-symmetric iff $M^T = -M$

Any M can be written M = S + A $S = \frac{1}{2}(M + M^T)$ $A = \frac{1}{2}(M - M^T)$ Note. If A is 3×3 , antisymmetric, then $A_{ij} = \varepsilon_{ijk}a_k$ $A = \begin{bmatrix} 0 & a_3 & -a_2 \\ -a_3 & 0 & a_1 \\ a_2 & -a_1 & 0 \end{bmatrix}$ $(A\mathbf{x})_i = \varepsilon_{ijk}a_kx_j = (\mathbf{x} \times \mathbf{a})_i$

Definition. The **Hermitian conjugate** of a matrix M is: $M^{\dagger} = (\overline{M^T})$

Definition. M is **Hermitian** if $M = M^{\dagger}$ M is **anti-Hermitian** if $M = -M^{\dagger}$

Definition. $tr(M) = M_{ii}$

$$\begin{split} &\operatorname{tr}(\alpha M + \beta N) = \alpha \operatorname{tr}(M) + \beta \operatorname{tr}(N) \\ &\operatorname{tr}(MN) = \operatorname{tr}(NM) \\ &\operatorname{tr}(M^T) = \operatorname{tr}(M) \\ &\operatorname{tr}(I) = \delta_{ii} = n \text{ if } I \text{ is } n \times n \end{split}$$

We can split a matrix S into traceless and pure trace parts: $T=S-\frac{1}{n}{\rm tr}(S)I$

Definition. A real $n \times n$ matrix U is **orthogonal** iff:

 $U^{T}U = UU^{T} = I$ i.e. $(U^{T} = U^{-1})$

These conditions can be written $U_{ki}U_{kj} = I_{ik}U_{jk} = \delta_i j$. Equivalently: columns of U are orthonormal, or rows of U are orthonormal.

Also equivalently: U is orthogonal iff it preserves the inner product on \mathbb{R}^n i.e. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y} \, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

Definition. A complex $n \times n$ matrix U is **unitary** iff

$$U^{\dagger}U = UU^{\dagger} = I$$
 i.e. $(U^{\dagger} = U^{-1})$

Equivalently: U is unitary iff it preserves complex inner product on \mathbb{C}^n : $(U\mathbf{z}, U\mathbf{w}) = (\mathbf{z}, \mathbf{w})$

Note. Orthogonal matrices from a group. Unitary matrices form a group.

5 Determinants and Inverses

T invertible $\iff \ker T = \{0\}$ $\iff \operatorname{Im} T = \mathbb{R}^n$ (equivalent by rank-nullity) If the conditions hold, then $T(\mathbf{e}_1), T(\mathbf{e}_2), \ldots, T(\mathbf{e}_n)$ must be a basis and we can define T^{-1} as a linear map by $T^{-1}(T(\mathbf{e}_i)) = \mathbf{e}_i$

Definition. For any $M, (n \times n)$, we define a related matrix $\widetilde{M}(n \times n)$ and a scalar det M such that $\widetilde{M}M = (\det M)I(*)$ If $\det M \neq 0$ then M is invertible with $M^{-1} = \frac{1}{\det M}\widetilde{M}$.

Definition. The **alternating symbol** or ε symbol in \mathbb{R}^n or \mathbb{C}^n is an *n*-index object (tensor) defined by:

$$\varepsilon_{ij\dots l} = \begin{cases} +1 & \text{if } i, j, \dots, l \text{ is an even perm of } 1, 2, \dots, n \\ -1 & \text{if } i, j, \dots, l \text{ is an odd perm of } 1, 2, \dots, n \\ 0 & \text{else} \end{cases}$$

Thus if σ is any permulation,

 $\varepsilon_{\sigma(1)\sigma(2)...\sigma(n)} = \varepsilon(\sigma)$ (i.e. the sign of the permutation)

Definition. Given $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{R}^n$, the **alternating form** combines them to give a scalar:

$$\begin{aligned} [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n] &= \varepsilon_{ij\dots l} (\mathbf{v}_1)_i (\mathbf{v}_2)_j \dots (\mathbf{v}_n)_l \\ &= \sum_{\sigma} \varepsilon(\sigma) (\mathbf{v}_1)_{\sigma(1)} (\mathbf{v}_2)_{\sigma(2)} \dots (\mathbf{v}_n)_{\sigma(n)} \end{aligned}$$

(i) Multilinear:

$$[\mathbf{v}_1, \dots, \mathbf{v}_{p-1}, \alpha \mathbf{u} + \beta \mathbf{w}, \mathbf{v}_{p+1}, \dots, \mathbf{v}_n]$$

= $\alpha[\mathbf{v}_1, \dots, \mathbf{v}_{p-1}, \mathbf{u}, \mathbf{v}_{p+1}, \dots, \mathbf{v}_n] + \beta[\mathbf{v}_1, \dots, \mathbf{v}_{p-1}, \mathbf{w}, \mathbf{v}_{p+1}, \dots, \mathbf{v}_n]$

(ii) Totally antisymmetric:

$$[\mathbf{v}_{\sigma(1)}, \mathbf{v}_{\sigma(2)}, \dots, \mathbf{v}_{\sigma(n)}] = \varepsilon(\sigma)[\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$$

(justify by checking for a transposition $\tau=(p,q),\,\sigma'=\sigma\tau)$ (iii)

 $[\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n] = +1$

These three properties fix alternating form completely and also imply (iv) if $\mathbf{v}_p = \mathbf{v}_q$ then $[\mathbf{v}_1, \dots, \mathbf{v}_p, \dots, \mathbf{v}_q, \dots, \mathbf{v}_n] = 0$ (from (ii) by exchanging $\mathbf{v}_p, \mathbf{v}_q$) (v) If $\mathbf{v}_p = \sum_{i \neq p} \lambda_i \mathbf{v}_i$ then $[\mathbf{v}_1, \dots, \mathbf{v}_p, \dots, \mathbf{v}_n] = 0$ (since subbing \mathbf{v}_p in and using multilinearity - use (iv)) Prop.

 $[\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n] \neq 0 \iff \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent

Proof. To show \implies use property (v) To show \iff use spanning and show multiple of $[\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n]$.

Definition. For an $n \times n$ matrix M with columns $\mathbf{c}_a = M\mathbf{e}_a$, the **determinant** det M or $|M| \in \mathbb{R}$ or \mathbb{C} , is defined by:

$$\det M = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n]$$

= $[M\mathbf{e}_1, M\mathbf{e}_2, \dots, M\mathbf{e}_n]$
= $\varepsilon_{ij\dots l}M_{i1}M_{j2}\dots M_{ln}$
= $\sum_{\mathbf{c}} \varepsilon(\sigma)M_{\sigma(1)1}M_{\sigma(2)2}\dots M_{\sigma(n)}$

n

Each of these expressions can be taken as the definition.

Prop. If \mathbf{R}_a are rows of M, then:

det
$$M = [\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_n]$$

= $\varepsilon_{ij\dots l} M_{1i} M_{2j} \dots M_{nl}$
= $\sum_{\sigma} \varepsilon(\sigma) M_{1\sigma(1)} M_{2\sigma(2)} \dots M_{n\sigma(n)}$

i.e. $\det M = \det M^T$

Proof. Show directly that the \sum_{σ} definitions agree by considering: $M_{\sigma(1)1}M_{\sigma(2)2}\dots M_{\sigma(n)n} = M_{1\rho(1)}M_{2\rho(2)}\dots M_{n\rho(n)}$ for $\rho = \sigma^{-1}$ But $\varepsilon(\sigma) = \varepsilon(\sigma^{-1}) = \varepsilon(\rho)$ so \sum_{σ} is \sum_{ρ} as required. \Box

Definition. Define **minor** M^{ia} to be the $(n-1) \times (n-1)$ determinant of matrix obtained by deleting row i and column a from M

Adding multiple of one row to another does not affect the determinant by multilinearity. Swapping rows changes sign of determinant by alternating property.

Lemma.

$$\varepsilon_{i_1i_2\dots i_n} M_{i_1a_1} M_{i_2a_2} \dots M_{i_na_n} = (\det M) \varepsilon_{a_1a_2\dots a_n}$$

Proof. LHS and RHS each totally antisymmetric in a_1, a_2, \ldots, a_n and so must be related by a constant factor. To fix this constant, consider $a_1 = 1, a_2 = 2, \ldots, a_n = n$ and check it works, then result follows.

Theorem. For $n \times n$ matrices M, N:

 $\det(MN) = \det M \det N$

Proof.

$$\det(MN) = \varepsilon_{i_1\dots i_n}(MN)_{i_11}\dots(MN)_{i_nn}$$

= $\varepsilon_{i_1\dots i_n}M_{i_1k_1}\dots M_{i_nk_n}N_{k_11}\dots N_{k_nn}$
= $(\det M)\varepsilon_{k_1\dots k_n}N_{k_11}\dots N_{k_nn}$ by lemma
= $(\det M)(\det N)\Box$

Prop.

$$\det M = \sum_{i} (-1)^{i+a} M_{ia} M^{ia} (a \text{ fixed})$$
$$= \sum_{a} (-1)^{i+a} M_{ia} M^{ia} (i \text{ fixed}))$$

Proof. consider a column of matrix $M(n \times n)$ and write it: $\mathbf{c}_a = \sum_i M_{ia} \mathbf{e}_i$

$$\Rightarrow \det M = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_a, \dots, \mathbf{c}_n]$$
$$= [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_{a-1}, \sum_i M_{ia} \mathbf{e}_i, \mathbf{c}_{a+1}, \dots, \mathbf{c}_n]$$
$$= \sum_i M_{ia} \Delta_{ia} \text{ where } \Delta_{ia} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_{a-1}, \mathbf{e}_i, \mathbf{c}_{a+1}, \dots, \mathbf{c}_n]$$

Now consider what Δ_{ia} matrix looks like and use row ops to reach desired result. Can work similarly considering rows.

Definition. Δ is the **matrix of cofactors**(entries Δ_{ia}).

Definition. The **adjugate** of M: $\widetilde{M} = \operatorname{adj} M = \Delta^T$

=

Claim. $M\widetilde{M} = (\det M)I$

Proof. Consider $\mathbf{c}_b = \sum_i M_{ib} \mathbf{e}_i$ Then

$$[\mathbf{c}_1, \dots, \mathbf{c}_{a-1}, \mathbf{c}_b, \mathbf{c}_{a+1}, \dots, \mathbf{c}_n] = \sum_i M_{ib} \Delta_{ia} = \begin{cases} \det M & \text{if } a = b \\ 0 & \text{if } a \neq b \end{cases} = (\det M) \delta_{ab}$$

Similarly, expanding a row:

$$\sum_{a} M_{ja} \Delta_{ia} = (\det M) \delta_{ij}$$

Remaining steps trivial.

Hence, if det $M \neq 0$ then $M^{-1} = \frac{1}{\det M} \widetilde{M}$

For linear equations, just methods. Image is span of columns. Kernel is perpendicular to all rows (cross product).

Eigenvalues and Eigenvectors 6

Definition. For a linear map $T: V \to V$, a vector **v** with $\mathbf{v} \neq \mathbf{0}$ is an **eigenvector** of T with eigenvalue λ if $T(\mathbf{v}) = \lambda \mathbf{v}$. If $V = \mathbb{R}^n$ or \mathbb{C}^n and T is given by an $n \times n$ matrix A then:

$$A\mathbf{v} = \lambda \mathbf{v} \iff (A - \lambda I)\mathbf{v} = \mathbf{0}$$

So given λ , this holds for some $\mathbf{v} \neq \mathbf{0}$ iff det $(A - \lambda I) = 0$

Definition. For an eigenvalue λ of a matrix A, define the **eigenspace**:

$$E_{\lambda} = \{ \mathbf{v} : A\mathbf{v} = \lambda \mathbf{v} \} = \ker(A - \lambda I)$$

The set of all non-zero $\mathbf{v} \in E_{\lambda}$ are the eignevectors.

Definition. The geometric multiplicity is $m_{\lambda} = \dim E_{\lambda} = \text{no. of linearly indep. evecs with eval$ λ. $m_{\lambda} = \text{null} (A - \lambda I)$

Definition. The algebraic multiplicity is M_{λ} , multiplicity of λ as a root of $\chi_A(t)$ i.e. $\chi_A(t) =$ $(t-\lambda)^{M_{\lambda}}f(t)$ with $f(\lambda) \neq 0$

Prop. $M_{\lambda} \ge m_{\lambda}$ (and $m_{\lambda} \ge 1$ as λ a root of $\chi_A(t)$)

 $\mathbf{Proof.}\ \mathrm{Later}$

Prop. Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be eigenvectors of a matrix $A(n \times n)$ with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_r$. If eigenvalues are distinct, then \mathbf{v}_i are linearly independent.

Proof. Note that
$$\mathbf{w} = \sum_{j=1}^{r} \alpha_j \mathbf{v}_j \implies \frac{r}{2}$$

$$(A - \lambda I)\mathbf{w} = \sum_{j=1}^{N} \alpha_j (\lambda_j - \lambda) \mathbf{v}_j$$

Way 1. Suppose evecs linearly dependent. So \exists a linear combination $\mathbf{w} = 0$ with no. of non-zero coefficients $p \ge 2$.

Pick such a **w** for which p is least. WLOG $\alpha_1 \neq 0$.

Then $(A - \lambda I)\mathbf{w} = \sum_{i=1}^{j>1} \alpha_j (\lambda_j - \lambda_1)\mathbf{v}_j = 0$, a linear relation with p-1 nonzero coefficients.

Way 2. Given a linear relation $\mathbf{w} = 0 \implies \prod_{j \neq k} (A - \lambda_j I) \mathbf{w} = \alpha_k (\prod_{j \neq k} (\lambda_k - \lambda_j)) \mathbf{v}_k = 0$ for k fixed. Eigenvalues distinct so $\alpha_k = 0$.

I.e. eigenvectors are linearly independent. \Box

Corollary. With conditions as in prop, let B_{λ_i} be a basis for the eigenspace $\lambda_i i = 1, 2, \ldots, r$ Then $B_{\lambda_1} \cup B_{\lambda_2} \cup \cdots \cup B_{\lambda_r}$ is linearly independent.

Proof. Consider general linear combination of all these vecs: has form $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2 + \cdots + \mathbf{w}_r$, where $\mathbf{w}_i \in E_{\lambda_i}$. Apply same argument as in prop to deduce if $\mathbf{w} = 0$ then $\mathbf{w}_i = 0$ for each *i*. Each \mathbf{w}_i is trivial linear combination of elements of B_{λ_i} and the result follows. \Box

Prop. For an $n \times n$ matrix A, acting on $V = \mathbb{R}^n$ or \mathbb{C}^n , the following condition are equivalent: (i) There exists a basis of eigenvectors for V, $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ with $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$ (not summation)

(ii) There exists an $n \times n$ invertible matrix P with $P^{-1}AP = D =$

Proof. Note that for any matrix P, AP has columns $Ac_i(P)$ and PD has columns $\lambda_i c_i(P)$

 λ_n

Then (i) and (ii) are related by choosing $\mathbf{v}_i = c_i(P)$:

$$P^{-1}AP = B \iff AP = PD \iff A\mathbf{v}_i = \lambda_i \mathbf{v}_i \square$$

i.e. given an eigenvector basis as in (i), this relation defines P; conversel, given a matrix P as in (ii), its columns are a basis of eigenvectors.

Prop. Consider $n \times n$ matrix A.

- (i) A is diagonalisable if it has n distinct eigenvalues (sufficient)
- (ii) A is diagonalisable iff for every eigenvalue A, the multiplicity coincides: $M_{\lambda} = m_{\lambda}$ (necessary and sufficient)

Proof. Use prop and corr above.

- (i) If n distinct evals, then n lin indep evecs so they form a basis.
- (ii) If λ_i with i = 1, 2, ..., r are all the distinct evals then $B_{\lambda_1} \cup \cdots \cup B_{\lambda_r}$ is lin indep but no. of elements is $\sum_i m_{\lambda_i}$ (dim of each E_{λ_i}) = $\sum_i M_{\lambda I} = n$ (degree of char. poly) where B_{λ_i} is a basis for E_{λ_i} . So we have a basis. \Box

Definition. Matrices A and $B(n \times n)$ are **similar** if $B = P^{-1}AP$ for some invertible $P(n \times n)$, an equivalence relation.

Prop. If A and B are similar, then (i) tr B = tr A(ii) det B = det A(iii) $\chi_B(t) = \chi_A(t)$

Proof. (i) trivial using cyclic property (ii) trivial using multiplicative propert of det (iii) consider det $(B - tI) = det(P^{-1}AP - tP^{-1}P)$ and factor

Observation: if A is hermitian, then $(A\mathbf{v})^{\dagger}\mathbf{w} = \mathbf{v}^{\dagger}(A\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{C}^{n}$ since $(\mathbf{v}^{\dagger}A^{\dagger})\mathbf{w} = \mathbf{v}^{\dagger}A^{\dagger}\mathbf{w} = \mathbf{v}^{\dagger}A\mathbf{w} = \mathbf{v}^{\dagger}(A\mathbf{w})$

Theorem. For a matrix A that is hermitian $(n \times n)$

- (i) Every eigenvalue λ is real
- (ii) Eigenvectors \mathbf{v}, \mathbf{w} with distinct eigenvalues $\lambda \neq \mu$ are orthogonal. ($\mathbf{v}^{\dagger}\mathbf{w} = 0$)
- (iii) If A is real and symmetric, then for each λ in (i), we can choose a real eigenvector **v** and (ii) becomes

$$\mathbf{v}^T w = \mathbf{v} \cdot \mathbf{w} = 0$$

Proof. (i) $\mathbf{v}^{\dagger}(A\mathbf{v}) = (A\mathbf{v})^{\dagger}\mathbf{v}$ $\implies \mathbf{v}^{\dagger}(\lambda\mathbf{v}) = (\lambda\mathbf{v})^{\dagger}\mathbf{v}$ $\mathbf{v} \neq 0$ so $\mathbf{v}^{\dagger}\mathbf{v} \neq 0$, so $\mathbf{v} = \overline{\lambda}$ so real. (ii) $\mathbf{v}^{\dagger}(A\mathbf{w}) = (A\mathbf{v})^{\dagger}\mathbf{w}$ $\implies \mathbf{v}^{\dagger}(\mu\mathbf{w}) = (\lambda\mathbf{v})^{\dagger}\mathbf{w}$ $\implies \mathbf{v}^{\dagger}(\mu\mathbf{w}) = (\lambda\mathbf{v})^{\dagger}\mathbf{w}$ $\implies \mu\mathbf{v}^{\dagger}\mathbf{w} = \lambda\mathbf{v}^{\dagger}\mathbf{w}$ $\lambda \neq \mu$, so $\mathbf{v}^{\dagger}\mathbf{w} = 0$ (iii) Given $A\mathbf{v} = \lambda\mathbf{v}$ with $\mathbf{v} \in \mathbb{C}^n$ but A and λ real, Let $\mathbf{v} = \mathbf{u} + i\mathbf{u}'$ with $\mathbf{u}, \mathbf{u}' \in \mathbb{R}^n$ then $A\mathbf{u} = \lambda\mathbf{u}, A\mathbf{u}' = \lambda\mathbf{u}'$ (Re and Im parts) but $\mathbf{v} \neq 0 \implies$ one of $\mathbf{u}, \mathbf{u}' \neq 0$, so $\exists \ge 1$ real eigenvector. \Box **Note.** Shows sets of evecs with distinct evals lin indep, but for Hermitian matrices, we have they are orthogonal \implies linear independence.

Furthermore, previously considered bases B_{λ} for each eigenspace E_{λ} , now natural to choose bases B_{λ} to be orthonormal

Theorem. Any $n \times n$ hermitian matrix is diagonalisable if: (i) \exists a basis of eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{C}^n$ with $A\mathbf{u}_i = \lambda \mathbf{u}_i$. Equivalently, (ii) $\exists n \times n$ invertible matrix P with $P^{-1}AP = D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$

Definition. A quadric form is a function $\mathbb{R}^2 \to \mathbb{R}$ given by $F(x) = \mathbf{x}^T A \mathbf{x} = x_i A_{ij} x_j$ where A is a real symmetric $n \times n$ matrix. (anti anti-symmetric part of A would not contribute).

A can be diagonalised. The principal axes of F are the evecs of A.

Definition. $\exp(A) = I + A + \frac{1}{2}A^2 + \dots + \frac{1}{r!}A^r + \dots$ (always converges)

Theorem (Cayley-Hamilton).

$$\chi_A(A) = c_0 I + c_1 A + \dots + c_n A^n = 0$$

'a matrix satisfies its own characteristic equation.' General case not examinable.

Proof. (i) General 2 × 2: trivial by substitution. (ii) Diagonalisable $n \times n$ matrix: write $\chi_A(A) = \chi_A(PDP^{-1}) = P\chi_A(D)P^{-1} = 0$.

Note.

$$-c_0I = A(c_1I + \dots + c_nA^{n-1})$$

If $c_0 = \det A \neq 0$ then A invertible and:

$$A^{-1} = -\frac{1}{c_0}(c_1A + \dots + c_nA^{n-1})$$

7 Changing Bases, Canonical Forms and Symmetries

Change of basis from $\{\mathbf{e}_i\}$ to $\{\mathbf{e}'_i\}$ and $\{\mathbf{f}_a\}$ to $\{\mathbf{f}'_a\}$ is given by:

$$\mathbf{e}_{i}' = \sum_{j} \mathbf{e}_{j} P_{ji}$$
$$\mathbf{f}_{a}' = \sum_{b} \mathbf{f}_{b} Q_{ba}$$

Entries in column *i* of *P* are components of a new basis vector \mathbf{e}'_i wrt old basis vectors \mathbf{e}_j , similar for *Q*.

Prop. With definitions above: $A' = Q^{-1}AP$, change of basis formula for a linear map

Proof.

$$T(\mathbf{e}'_i) = T\left(\sum_j \mathbf{e}_j P_{ji}\right)$$
$$= \sum_j T(\mathbf{e}_j) P_{ji}$$
$$= \sum_{j,a} \mathbf{f}_a A_{aj} P_{ji}$$

But also

$$T(\mathbf{e}'_i) = \sum_b \mathbf{f}'_b A'_{bi}$$
$$= \sum_{a,b} \mathbf{f}_a Q_{ab} A'_{bi}$$

Equating coefficients of \mathbf{f}_a gives:

$$\sum_{j,a} A_{aj} P_{ji} = \sum_{a,b} Q_{ab} A'_{bi}$$

Hence AP = QA' or $A' = Q^{-1}AP$ as required. \Box

Consider changes in vector components

$$\mathbf{x} = \sum_{i} x_i \mathbf{e}_i = \sum_{j} x'_j \mathbf{e}'_j = \sum_{i} \left(\sum_{j} P_{ij} x'_j \right) \mathbf{e}_i$$
$$\implies x_i = P_{ij} x_j$$

(using Σ convention).

Write X for $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, X' for $\begin{bmatrix} x'_1 \\ \vdots \\ x'_n \end{bmatrix}$ Then X = PX' or $X' = P^{-1}X$ Similarly, Y = QY' or $Y' = Q^{-1}Y$

Matrices representing the same linear map wrt to different basis are similar (and conversely holds). For hermitian matrices, change of basis matrix to diagonalise is unitary.

Prop. Any 2 × 2 complex matrix A is similar to one of: (i) $A' = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ (ii) $A' = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$ (iii) $A' = \begin{bmatrix} \lambda & 0 \\ 1 & \lambda \end{bmatrix}$

Proof. $\chi_A(t)$ has 2 roots over \mathbb{C}

- (i) For distinct roots/ evals, (λ_1, λ_2) we have $M_{\lambda_i} = m_{\lambda_i} = 1$ so matrix of evecs is change of basis matrix
- (ii) Repeated root: if $m_{\lambda} = 2$ then same root applies
- (iii) Repeated root: if $m_{\lambda} = 1$ then let v be evec and w any other lin indep vector (note w component in Aw is λw as repeated)

Theorem. Any $n \times N$ complex mtrix A is similar yo a matrix of the following form:

$$\begin{bmatrix} J_{n_1}(\lambda_1) \end{bmatrix}$$
$$\begin{bmatrix} J_{n_2}(\lambda_2) \end{bmatrix}$$
$$\vdots$$
$$\begin{bmatrix} J_{n_r}(\lambda_r) \end{bmatrix}$$
$$J_{n_i}(\lambda_i) = \begin{bmatrix} \lambda_i & 1 & & \\ & \lambda_i & 1 & \\ & & \ddots & 1 \\ & & & & \lambda_i \end{bmatrix}$$

Definition. A **quadric** in \mathbb{R}^n is a hypersurface defined by

$$Q(x) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c = 0$$

for some non-zero symmetric real matrix $A, \mathbf{b} \in \mathbb{R}^n, \, c \in R$

$$Q(x) = A_{ij}x_ix_j + c = 0$$

Note. A invertible iff it has no zero eigenvalues. In this case, we can complete the square in eqn by setting $\mathbf{y} = \mathbf{x} + \frac{1}{2}A^{-1}\mathbf{b}$ and considering $\mathbf{y}^T A \mathbf{y}$ Ellipsoid or hyperboloid.

Quadrics in \mathbb{R}^2 called conics. Possible solutions: Ellipse, point, no soln Hyperbola, pair of lines

Pola <u>r case sets</u>	one focus at center.			
Name	Cartesian Form	Cartesian info [foci]	Polar	Polar info
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	e < 1 $b^2 = a^2(1 - e^2)$ $[x = \pm ae]$	$r = \frac{l}{1 + e \cos\theta}$	$e < 1, l = a(1 - e^2)$
Parabola	$y^2 = 4ax$	e = 1 $[x = +a]$	$r = \frac{l}{1 + e \cos\theta}$	e = 1, l = 2a
Hyperbola	a $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	e > 1 $b^2 = a^2(e^2 - 1)$ $[x = \pm ae]$	$r = \frac{l}{1 + e \cos\theta}$	$e > 1, l = a(e^2 - 1)$

Equation for a cone in \mathbb{R}^3 : let **c** be apex, **n** axis, (unit vec), $\alpha(<\frac{\pi}{2})$ angle

 $(\mathbf{x} - \mathbf{c}) \cdot \mathbf{n} = |\mathbf{x} - \mathbf{c}| \cos \alpha$

Squaring gives double cone:

$$((\mathbf{x} - \mathbf{c}) \cdot \mathbf{n})^2 = |\mathbf{x} - \mathbf{c}|^2 \cos^2 \alpha$$

 $R \text{ is orthogonal } \iff R^T R = I \iff (R\mathbf{x}) \cdot (R\mathbf{y}) = \mathbf{x} \cdot \mathbf{y} \, \forall \mathbf{x}, \mathbf{y} \iff \text{ rows or cols of } R \text{ orthonormal}$

Consider a new "inner product" on
$$\mathbb{R}^2$$
 given by: $(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T J \mathbf{y}$ where $J = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = x_0 y_0 - x_1 y_1$
and label componenets in \mathbb{R}^2 by $\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$
This is not positive definite but still bilinear and symmetric.

Definition. New inner product called the **Minkowski metric** on \mathbb{R}^2 . \mathbb{R}^2 with this metric is called Minkowski space.

 $\begin{array}{l} M \text{ pereserves Minkowski metric iff:} \\ (M\mathbf{x}, M\mathbf{y}) = (\mathbf{x}, \mathbf{y}) \, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^2 \\ \Longleftrightarrow \ (M\mathbf{x})^T J(M\mathbf{y}) = \mathbf{x}^T M^T J M \mathbf{y} = \mathbf{x}^T J \mathbf{y} \\ \Leftrightarrow \ M^T J M = J \end{array}$

Definition. The set of such matrices form a group. (note again det $M = \pm 1$) Furthermore, $|M_{00}|^2 \ge 1$ so $M_{00} \ge 1$ or $M_{00} \le -1$ The subgroup with det M = +1 and $M_{00} \ge 1$ is the **Lorentz group**

General form for M: find this by using cols Me_0 , Me_1 are orthonormal in the same sense as e_0 and e_1 .

$$(M\mathbf{e}_0, M\mathbf{e}_0) = M_{00}^2 - M_{10}^2 = (\mathbf{e}_0, \mathbf{e}_0) = 1$$

So we can write $M\mathbf{e}_0 = \begin{bmatrix} \cosh\theta\\ \sinh\theta \end{bmatrix}$ for some real θ as $M_{00}^2 \ge 1$ Considering $(M\mathbf{e}_0, M\mathbf{e}_1)$ and $(M\mathbf{e}_1, M\mathbf{e}_1)$ we deduce $M\mathbf{e}_1 = \pm \begin{bmatrix} \sinh\theta\\ \cosh\theta \end{bmatrix}$ Imposing det M = +1, we have: $M = \begin{bmatrix} \cosh\theta & \sinh\theta\\ \circ \theta & \sin\theta \end{bmatrix}$

$$=\begin{vmatrix} \cos \theta & \sin \theta \\ \sinh \theta & \cosh \theta \end{vmatrix}$$

Note. Matrices found obey:

$$M(\theta_1)M(\theta_2) = M(\theta_1 + \theta_2)$$

using hyperbolic addition formulas.

Physical interpretation/ application: Set $M(\theta) = \gamma(v) \begin{bmatrix} 1 & v \\ v & 1 \end{bmatrix}$ where $v = \tanh \theta$, $\gamma(v) = (1 - v^2)^{-\frac{1}{2}}$, new parameter -1 < v < 1Rename $x_0 \to t$ time coordinate $x_1 \to x$ space coordinate Then $\mathbf{x}' = M\mathbf{x} \iff t' = \gamma(t + vx)$ and $x' = \gamma(x + vt)$ Lorentz transformation or boost relating time and coordinates for observers moving with relative velocity v in Special Relativity, in units with speed of light c = 1. γ factor in Lorentz transformation gives rise to time dilation and length contraction effects. Group property $M(\theta_3) = M(\theta_1)M(\theta_2)$ with $\theta_3 = \theta_1 + \theta_2$

 $\implies \text{related composition of velocities } v_i = \tanh \theta_i, \ i = 1, 2, 3$ $v_3 = \frac{v_1 + v_2}{1 + v_1 v_2} \text{ (addition formula for tanh) consistent with } |v_i| < 1$