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1 Complex Numbers

Proof (of composition property). Compute square of each side and compare.

Proof (of triangle inequality). LHS? = (21 + 22)(Z1 + 22) = |21|2 + 2122 + Z122 + |22]2
RHS? = |21|2 + |22|2 + 2|21||22|
Note:

2173 + Z122 < 2|21]|22]
= a1z + (22) < |xll=]

<~ Re(zlﬁ) < |212_2|
which is true. [

Proof. Induction.

Theorem (De Moivre’s Theorem). (cos@ + isinf)"™ = cosnf + i sinnf

o0
Definition. exp(z) =¢* = >
cos(z) = 4

2"

n!

n=0
(eiz +6—iz)
sin(z) = 5; (e — ™)

n

Proof. Multiply series on LHS and find terms of degree n
2 %zr (nir)!wn_r

— ol

L (2 +w)" by Binomial Theorem.

Equation of a line through zj, parallel to w: Wz — wz = Wzy — wZy
Equation of a circle center ¢, radius p: |2|?> — ¢z — ¢z = p* — |c|?




2 Vectors in 3D

Definition. span{a} = {\a: X € R}

Definition. a, b parallel (al|b) iff a = Ab or b = Aa for some A € R (A can be 0)

Definition. span{a,b} = {ea+ b: o, € R}

a-(bxc)=b-(cxa)=c-(axb)=-a-(cxb)=-b:-(axc)=—-c-(bxa)

ax(bxc)=(a-c)b—(b-c)a

r=a+Au, AeR
Has alternative form u x (r —a) =0




3 Vectors in general: R" C"

Definition. Inner product on R” defined by:
Xy =2 %% =T1Y1 + -+ TnYn

Properties:
(i) Symmetricx-y =y -x
(ii) Bilinear
(Ax +Nx) -y =A(x-y) + N (X' +y)
X (uy +py') = px-y) + 4/ (x-y)
(iii) Positive definite x-x =Y 22 >0

and x-x=0iff x =0.

Prop (Cauchy-Schwarz). |x-y| < |x||ly| with equality iff x and y are parallel

Proof. If y = 0, result is immediate.

If y # 0 then consider [x — \y|? = (x — \y) - (x — \y)

By bilinearity it’s [x|? — Ax -y + A\?|y|?

So, |x = Ay]2 = [x]2 = Mx-y+ \|y[>? >0

This is a real quadratic in A with at most 1 real root so discriminant < 0 which gives desired
inequality.

—_—

Note. Setting x -y = |x||y| cos 0 allows us to define the angle 6 between x and y in R™

Prop. Cauchy-Schwarz — triangle inequality

Proof.
x+yl* = [x|* + 2x -y + [y/*
< Ix[* + 20x|ly]lly/?
= (Ix| +Iy])*
Definition. {vi,vs,...,v,} € V (areal vector space) form a linearly independent set iff:
Avi+Aave+ -+ v, =0 (1)

i.e. only zero trivially.
If (1) holds with at least one \; # 0 then they form a linearly dependent set.

In R?, {a, b, c} is linearly independent iff a- (b x ¢) # 0




Definition. For a vector space V, a basis is a set B = {e1,...,e,} such that:

(i) Bspans V:veV = v=> vje;
i=1
(ii) B is linearly independent

Given (ii), the coefficients v; are unique since: Y v;e; = > vie; = > (v; —0vl)e; =0 = v; = v}
i i i

from (i).

Theorem. If {e1,...,e,} and {fi,...,f,} are bases for a vector space V then n =m

Proof. f, =) A,e; as e is a basis

But f,, f; are linearly independent and coefficients wrt a basis are unique, hence:
> AuiBip = 04 otherwise relation is nontrivial.

Szimilarly:

e; = Z (; BmAaj> e;

J
Hence, > BjgAq; = 0;j
a

Now:

ZAaiBia = Zéaa =m
:Z(SMZ’I’L

Som=nl

Note. Steps in proof of basis theorem within scope of course, but proof without prompts
non-examinable.

Definition. The number of vectors is any basis is the dimension of the space. (Well-defined due to
above).




Proof.
(i) Y is lin. indep., then Y is a basis and m =n = dim V.

m

If Y is not lin. indep., then there is Y A\;w; = 0, \; # 0 for some i.
i=1

WLOG take A, # 0, then: '

1 m—1
Wy, = b Z:l )\iwi
1=

so span Y = span Y/ with Y/ = {wy,..., w1}
Repeat until a basis is obtained.
If X spans V then it is already a basis and k =n =dim V.

If not, then Juyy; € V' (not in span X)
k+1
Bu then since ugy; € span X, ift > p;u; = 0 then pgy1 = 0 (otherwise ug4; in span

i=1
X)
Then p; =0 for i =1,....k (X lin. indep.)
Hence X' = {uy,...,ug, ugs1} is lin. indep.
Furthermore, we can choose ugq from Y
(if Y C span X then span Y C span X = span X = V)
Repeat X — X’ until a basis is obtained. Process stops as Y is finite. [J

Note. Steps in proof of theorem within scope of course, but proof without prompts non-
examinable.

Definition. Inner product or scalar product on C" is defined by:

(Z,W): E Zjwj =Z1W1 + -+ ZpWn
J

Properties:
(i) Hermitian: (w,z) = (z, W)
(ii) Linear/ anti-linear
(z, \W + N'w') = Xz, w) + N (z, w')
Az + Nz, w) = XNz, w) + N (z/,w')
(iii) Positive definite

(z,2) = Z |Zj|2, real and >0
J
=0iffz=0




4 Matrices and Linear Maps

Definition (Linear Map). A linear map or linear transformation is a function 7' : V — W
between vector spaces V (dim n) and W (dim m) such that:

T(Ax + py) = T(Ax) + T (uy)
= AT(x) + pT(y)

forx,y e V, \,peRor C

Note. A linear map is completely determined by its action on a basis (exercise)

x' =T(x) € W is the image of x € V under linear map 7.
Im(T)={x' e W:x' =T(x) for x € V}
ker(T) = {x €V : T(x) = 0}

Lemma. ker(T) is a subspace of V' and Im(T") is a subspace of W

Proof. Exercise.

Definition. dimIm(7T) or rank(T) is the rank of T' (< m)
dim ker(7) or null(7’) is the nullity of T' (< n)

Theorem. For T': V — W a linear map as above,
rank(7)+ null(T) = n = dim V'

Proof. non-examinable.

Rotation angle 6 about axis n:

x — (cos@)x + (1 —cosf)(n-x)n+ (sind)n x x

Derive by writing x in parallel and perp. to n components

Projection to plane with unit normal n:

Xx—x—(x-nn

Reflection in plane with unit normal n:

Xx—x—2(x-n)n




Dilations along axes defined as one would expect.

Note. Can have different scale factors for different axes.

Let a, b be orthogonal unit vectors in R3, \ a real parameter.
Define a shear parallel to a scale factor A:

x—=x+Aa(x-b).

Claim. Matrix acting on vector acts as expected (T'(x)):

Proof. Write x = > z;e; and apply linearity. (Have e; — C;)
i

Claim. Image of matrix M is span of columns.

Proof. Write any x in components, apply linearity.

Note. x,, = My,x; = (Ry)ixi =R -x

ker(T) =ker(M) = {x: R, -x =0Va}

Kernel of M is the subspace L to all rows. (Can use cross product to quickly work out kernel
span)

Claim. (M + fN)x = aM(x) + SN (x)

Proof. Consider ith component of x.

Claim. (AB)T = BT AT

Proof. consider components.

Definition. M symmetric iff M7 = M
M anti-symmetric iff M7 = —M

ny M can be written M =S + A

I
SI= N
—
=

I

<

Dﬂ
~—




Note. If A is 3 x 3, antisymmetric, then A;; = g;51ax

0 as —ag
A= |—a3 O ay
a9 —ai 0

(Ax); = gijparz; = (X X a);

Definition. The Hermitian conjugate of a matrix M is: MT = (MT)

Definition. M is Hermitian if M = Mt
M is anti-Hermitian if M = —MT

Definition. tr(M) = M;;

tr(aM + BN) = atr(M) + Btr(N)
tr(MN) = tr(NM)

tr(M7) = tr(M)

tr(l) =0 =nif Iisnxn

We can split a matrix S into traceless and pure trace parts:
T=25-21tz(9)I

Definition. A real n x n matrix U is orthogonal iff:
UTU =U0UT =Tie. (UT =UY)

These conditions can be written Uy;Uy; = I;xUjr = 0;5. Equivalently: columns of U are orthonormal,
or rows of U are orthonormal.

Also equivalently: U is orthogonal iff it preserves the inner product on R™

ie. (Ux)-(Uy)=x-yVx,y € R"

Definition. A complex n X n matrix U is unitary iff
Ulu=U0U"=Tie (U'=U)

Equivalently: U is unitary iff it preserves complex inner product on C": (Uz,Uw) = (z,w)

Note. Orthogonal matrices from a group. Unitary matrices form a group.




5 Determinants and Inverses

T invertible

<= kerT = {0}

<= ImT = R" (equivalent by rank-nullity)

If the conditions hold, then T'(e1), T(e3),...,T(e,) must be a basis and we can define T~ as a linear
map by T~ 1(T(e;)) = e;

Definition. For any M, (n x n), we define a related matrix M (n x n) and a scalar det M such that
MM = (det M)I (x)

.. . . _ 1
If det M # 0 then M is invertible with M~ = - M.

Definition. The alternating symbol or € symbol in R™ or C" is an n-index object (tensor) defined
by:

+1 if4,5,...,0is an even perm of 1,2,...,n
€ij.0=19q—1 ifd,j,...,lis an odd perm of 1,2,...,n
0 else

Thus if o is any permulation,
Eo(1)o(2)...0(n) = £(0) (i.e. the sign of the permutation)

Definition. Given vq,...,v, € R", the alternating form combines them to give a scalar:

Vi, Ve, ..., Vp] =€ij 1(v1)i(va)j - - (V)i

= Z £(0)(V1)o)(V2)o(2) - - - (Vi) o(n)

o

(i) Multilinear:

[Vla <o-5 Vp—1,0U + ﬂw)vp—‘rl, ©oo avn]
=Vl .o, Vo1, W, Vi1, -, Vi + B[VE, o, Vo1, W, Vg, o, Vi
(ii) Totally antisymmetric:
[Vo(l)u Vo(2)--- 7Vcr(n)] = E(J)[vh Va2,... 7Vn]

(justify by checking for a transposition 7 = (p, q), o’ = o7)
(iii)
[e1,€e2,...,e,] = +1
These three properties fix alternating form completely and also imply
(iv) if v, = vg then [vi,...,Vp, ..., Vg, ..., V,] =0 (from (ii) by exchanging v,,v,)
(v) vy =324, Aiv; then
Vi, ..y Vp, oo, V] =0

since subbing v,, in and using multilinearity - use (iv
P

10



Proof. To show = use property (v)
To show <= use spanning and show multiple of [e1,es,. .., e,].

Definition. For an n x n matrix M with columns ¢, = Me,, the determinant det M or |M| € R
or C, is defined by:

det M = [c1, o, ..., Cp]
= [Mel,Meg,...,Men]
= &ij. 1 MuaMjs ... My,

= ZE(U)MU(1)1M6(2)2 o

Each of these expressions can be taken as the definition.

Proof. Show directly that the ) _ definitions agree by considering:

Ma(1)1M0(2)2 o Ma(n)n = Mlp(l)M2p(2) 000 an(n) for p = o1

But e(0) = (o) =¢(p) so >, is >, as required. O

Definition. Define minor M to be the (n—1) x (n—1) determinant of matrix obtained by deleting
row ¢ and column a from M

Adding multiple of one row to another does not affect the determinant by multilinearity.
Swapping rows changes sign of determinant by alternating property.

Lemma.
Ei1i2...’inMi1a1 M’izaQ st Minan — (det M)Ealag...an
Proof. LHS and RHS each totally antisymmetric in ay, as, ..., a, and so must be related by
a constant factor. To fix this constant, consider a; = 1,a9 = 2,...,a, = n and check it works,
then result follows.

11




Theorem. For n X n matrices M, N:

det(MN) = det M det N

Proof.

det(MN) = &3, i (MN)i,1 ... (MN);
=eiyi Mgy o M Nt . Nion
= (det M)ek,.. .k, Nkg1 - - - N, by lemma
= (det M)(det N)OI

Proof. consider a column of matrix M (n X n) and write it:
Cq = Zz M;qe;

= det M = [c1,€2,...,Cqay--.,Cp]

= [01,02,...,Ca_1, E Miaei,ca_,_l,...,cn]
i

= E MiaA’ia where Aia = [Cl,CQ7 e e3Cq—1,€,Cq41,y - - - ,Cn]

7

Now consider what A;, matrix looks like and use row ops to reach desired result.
Can work similarly considering rows.

Definition. A is the matrix of cofactors( entries A;,).

Definition. The adjugate of M:
M = adj M = AT

12



Claim. MM = (det M)I

Proof. Consider ¢, =), Myve;
Then

det M ifa=0
[Clw-~7Ca—17cbaca+17~-~ycn] = Zi:MibAia = {0 ifab = (detM)éab

Similarly, expanding a row:
D MjaAiq = (det M)d;

Remaining steps trivial.

. -1 _ _1
Hence, if det M # 0 then M ™" = = M

For linear equations, just methods.
Image is span of columns.
Kernel is perpendicular to all rows (cross product).

Eigenvalues and Eigenvectors

Definition. For a linear map 7' : V' — V| a vector v with v # 0 is an eigenvector of 7' with
eigenvalue )\ if T(v) = Av.
If V=R" or C" and T is given by an n X n matrix A then:

Av=Xv < (A-A[)v=0

So given A, this holds for some v # 0 iff det(A — \[) =0

Definition. For an eigenvalue \ of a matrix A, define the eigenspace:
Ey ={v:Av = \v} =ker(4A — \I)

The set of all non-zero v € E) are the eignevectors.

Definition. The geometric multiplicity is m) = dim E = no. of linearly indep. evecs with eval
A
my = null (4 — \I)

Definition. The algebraic multiplicity is M), multiplicity of A as a root of xa(t) i.e. xa(t) =
(t— N> £ () with [(A) £0

13




Proof. Later

T
Proof. Note that w = )~ a,v; =
j=1

(A=ADw =3 a; (N = v,

Jj=1
Way 1. Suppose evecs linearly dependent. So 3 a linear combination w = 0 with no. of non-zero

coefficients p > 2.

Pick such a w for which p is least. WLOG oy # 0.
j>1
Then (A—A)w = > a;(Xj—A1)v; = 0, alinear relation with p— 1 nonzero coefficients.
% =
Given a linear relation w =0 = [[ (A— X\ 1)w = ai([[ (Ax —A;))vi = 0 for k fixed.
Jj#k j#k
Eigenvalues distinct so ay = 0.
Le. eigenvectors are linearly independent. []

Corollary. With conditions as in prop, let By, be a basis for the eigenspace \;i =1,2,...,7
Then By, U By, U---U B,, is linearly independent.

Proof. Consider general linear combination of all these vecs:

has form w = w; + wy + - - - + W, where w; € E},.

Apply same argument as in prop to deduce if w = 0 then w; = 0 for each i.
Each w; is trivial linear combination of elements of B), and the result follows. [

Proof. Note that for any matrix P, AP has columns Ac;(P) and PD has columns
Then (i) and (ii) are related by choosing v; = ¢;(P) :

P 'AP =B < AP =PD < Av; = \v;0

i.e. given an eigenvector basis as in (i), this relation defines P; conversel, given a matrix
P as in (ii), its columns are a basis of eigenvectors.

14



Proof. Use prop and corr above.

(i) If n distinct evals, then n lin indep evecs so they form a basis.

(if) If X; with ¢ =1,2,...,r are all the distinct evals then By, U---UB) _ is lin indep but no.
of elements is ), my, (dim of each Ey,) = >, Mx; = n (degree of char. poly) where
B, is a basis for Ey,. So we have a basis. [J

Definition. Matrices A and B (n x n) are similar if B = P~1AP for some invertible P (n x n), an
equivalence relation.

Proof. (i) trivial using cyclic property
(ii) trivial using multiplicative properrt of det
(iii) consider det(B — tI) = det(P~'AP — tP~'P) and factor

Obervation: if A is hermitian, then (Av)'w = vi(Aw) for all v,w € C" since (viA)w = viAtw =
viAw = vi(Aw)

Theorem. For a matrix A that is hermitian (n X n)
(i) Every eigenvalue \ is real
(ii) Eigenvectors v,w with distinct eigenvalues A # p are orthogonal. (viw = 0)
(iii) If A is real and symmetric, then for each A in (i), we can choose a real eigenvector v and (ii)
becomes

viw=v-w=0

Proof. (i) vi(Av) = (Av)Tv
= vi(wv) = v)fv
v #0soviv#0,s0v=N\soreal

(i) vi(Aw) = (Av)Tw

= vi(uw) = O\Wv)'w
= pviw=iw
\# p, s0 viw =0

(i) Given Av = Av with v € C” but A and A real,
Let v =u + iu’ with u,u’ € R”
then Au = Au, Au’ = Au’ (Re and Im parts)
but v # 0 = one of u,u’ # 0, so 3 > 1 real eigenvector. [J

15




Note. Shows sets of evecs with distinct evals lin indep, but for Hermitian matrices, we have they are
orthogonal = linear independence.

Furthermore, previously considered bases B) for each eigenspace Fy, now natural to choose bases B)
to be orthonormal

Theorem. Any n X n hermitian matrix is diagonalisable if:
(i) 3 a basis of eigenvectors uy, ..., u, € C" with Au; = Au;. Equivalently,
A1

(i) In x n invertible matrix P with P71AP =D =
An

Definition. A quadric form is a function R? — R given by F(z) = xT Ax = z;A;jz; where A is a
real symmetric n X n matrix. (anti anti-symmetric part of A would not contribute).

A can be diagonalised. The principal axes of F' are the evecs of A.

Definition. exp(4) =1+ A+ 1A%+ ...+ L A"+ ... (always converges)

Theorem (Cayley-Hamilton).
Xa(A)=cl+cA+--+c, A" =0

‘a matrix satisfies its own characteristic equation.’
General case not examinable.

Proof. (i) General 2 x 2: trivial by substitution.
(ii) Diagonalisable n x n matrix: write xa(A4) = xa(PDP~') = Pxa(D)P~! = 0.

Note.
—col = Alen I+ -+ cp An1

If cg = det A # 0 then A invertible and:

1
Al = —C—(clA 4. F A
0

16




7 Changing Bases, Canonical Forms and Symmetries

Change of basis from {e;} to {e/} and {f,} to {f,}is given by:

€; = E :eJPJZ
J

f, = > Qb
b

Entries in column ¢ of P are components of a new basis vector e} wrt old basis vectors e;, similar for

Q.

T(e;) =T Zeiji
J
= " T(e;)Pii
J

= Z faAaj Rﬂ

j,a

But also
T(ef) =Y fAj;
b

= Z faQabA;n'
a,b

Equating coefficients of f, gives:

Z AyiPj; = Z QabAp;
j,a a,b

Hence AP = QA’ or A’ = Q' AP as required. [

17



Consider changes in vector components

x=§ mieizg a:;-eg-zg E Pz | e;
i J

i J
— T; = Pij.’l?j
(using ¥ convention).
1 a7
Write X for | |, X’ for | :
Ty, a2

Then X = PX' or X' = P71X
Similarly, Y = QY or Y/ = Q'Y

Matrices representing the same linear map wrt to different basis are similar (and conversely holds).
For hermitian matrices, change of basis matrix to diagonalise is unitary.

Proof. x4(t) has 2 roots over C
(i) For distinct roots/ evals, (A1, A2) we have My, = my, = 1 so matrix of evecs is change
of basis matrix
(ii) Repeated root: if my = 2 then same root applies
(iii) Repeated root: if my = 1 then let v be evec and w any other lin indep vector (note w
component in Aw is Aw as repeated)

Theorem. Any n x N complex mtrix A is similar yo a matrix of the following form:
[Jnl ()‘1)]
[J'fl2 ()‘2)]
[Jnr ()\T )]
A1
() v
Jn,(Ni) =
1
i

18



Definition. A quadric in R” is a hypersurface defined by
Qz) =xTAx+ b x +¢c=0
for some non-zero symmetric real matrix A.b € R, c € R

Q(ZIT) = Aij:z:ixj +c=0

Note. A invertible iff it has no zero eigenvalues. In this case, we can complete the square in eqn by
setting y = x + £ A~'b and considering y* Ay
Ellipsoid or hyperboloid.

Quadrics in R? called conics.
Possible solutions: Ellipse, point, no soln
Hyperbola, pair of lines

Polar case sets one focus at center.

Name Cartesian Form | Cartesian info [foci] Polar Polar info
e<l1
. z2 2
Ellipse H+E=1 b2[:a2(i—162) r:m e<1l,l=a(l—¢e?)
x = tae
e=1 1
Parabola y? = dax o = +d] = e=1,1=2a
) ) e>1
Hyperbola S —H=1 bQ[:a2(le]1) r:m e>1,1=a(e? 1)
T = *ae

Equation for a cone in R3: let ¢ be apex, n axis, (unit vec), a(< 7) angle
(x—c)-n=|x—c|lcosa

Squaring gives double cone:

(x—c)-n)* = |x —c|?cos® a

R is orthogonal <= RTR=1 <= (Rx)-(Ry)=x-yVx,y <= rows or cols of R orthonormal

. . . 1
Consider a new “inner product” on R? given by: (x,y) = x?Jy where J = {O _01 = ToYo — T1Y1

and label componenets in R? by x = [if] , Yy = [zf]

This is not positive definite but still bilinear and symmetric.

Definition. New inner product called the Minkowski metric on R2. R? with this metric is called
Minkowski space.

19




M pereserves Minkowski metric iff:

(Mx, My) = (x,y) Vx,y € R?

— (Mx)TJ(My)=xT"MTJMy =x"TJy
— MTJM=J

Definition. The set of such matrices form a group. (note again det M = +1)
Furthermore, |M00|2 > 1 so MOO Z 1 or MOO < —1
The subgroup with det M = +1 and Myy > 1 is the Lorentz group

General form for M: find this by using cols Meg, Me; are orthonormal in the same sense as ey and e;.

(Meo,Meo) = MgO — M120 = (eo,eo) =1

cosh 6

2
sinh 0} for some real 6 as Mg, > 1

So we can write Mey = [

Considering (Meo, Me;) and (Me;, Me;) we deduce Me; = =+ [smh 9]

cosh 6
Imposing det M = +1, we have:

_ |cosh@ sinh@

" |sinhf cosh®

Note. Matrices found obey:
M(61)M(02) = M(61 + 62)

using hyperbolic addition formulas.

Physical interpretation/ application:

1 v
Set M(0) = v(v) [v 1
Rename xy — t time coordinate
r1 — x space coordinate
Then x' = Mx <= t' =~(t +vz) and 2’ = y(x + vt)
Lorentz transformation or boost relating time and coordinates for observers moving with relative
velocity v in Special Relativity, in units with speed of light ¢ = 1.
~ factor in Lorentz transformation gives rise to time dilation and length contraction effects.

where v = tanh 6, v(v) = (1 — v2)~2, new parameter —1 < v < 1

Group property M (03) = M (01)M (02) with 05 = 01 + 6
= related composition of velocities v; = tanh 6;, i = 1,2, 3

vy = 1’131””22 (addition formula for tanh) consistent with |v;| < 1

20
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