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1 Complex Numbers

Prop. |z1z2| = |z1||z2| (composition property)
|z1 + z2| ≤ |z1|+ |z2| (triangle property)

Proof (of composition property). Compute square of each side and compare.

Proof (of triangle inequality). LHS2 = (z1 + z2)(z1 + z2) = |z1|2 + z1z2 + z1z2 + |z2|2
RHS2 = |z1|2 + |z2|2 + 2|z1||z2|
Note:

z1z2 + z1z2 ≤ 2|z1||z2|

⇐⇒ 1

2
(z1z2 + (z1z2)) ≤ |z1||z2|

⇐⇒ Re(z1z2) ≤ |z1z2|

which is true.

Alternative form of the ∆ inequality:
|z2 − z1| ≥ |z2| − |z1| by replacing z2 with z2 − z1 in original form and rearranging
or |z2 − z1| ≥ |z1| − |z2|
so |z2 − z1| ≥ ||z2| − |z1||

Theorem (De Moivre’s Theorem). (cos θ + i sin θ)n = cosnθ + i sinnθ

Proof. Induction.

Definition. exp(z) = ez =
∞∑
n=0

zn

n!

cos(z) = 1
2 (eiz + e−iz)

sin(z) = 1
2i (e

iz − e−iz)

Prop. ezew = ez+w

Proof. Multiply series on LHS and find terms of degree n
n∑
r=0

1
r!z

r 1
(n−r)!w

n−r = 1
n! (z + w)n by Binomial Theorem.

Equation of a line through z0, parallel to w: wz − wz = wz0 − wz0
Equation of a circle center c, radius ρ: |z|2 − cz − cz = ρ2 − |c|2
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2 Vectors in 3D

Definition. span{a} = {λa : λ ∈ R}

Definition. a, b parallel (a||b) iff a = λb or b = λa for some λ ∈ R (λ can be 0)

Definition. span{a,b} = {αa + βb : α, β ∈ R}

a · (b× c) = b · (c× a) = c · (a× b) = −a · (c× b) = −b · (a× c) = −c · (b× a)

a× (b× c) = (a · c)b− (b · c)a

r = a + λu, λ ∈ R
Has alternative form u× (r− a) = 0

3



3 Vectors in general: Rn, Cn

Definition. Inner product on Rn defined by:
x · y =

∑
i

xiyi = x1y1 + · · ·+ xnyn

Properties:
(i) Symmetric x · y = y · x
(ii) Bilinear

(λx + λ′x′) · y = λ(x · y) + λ′(x′ + y)

x · (µy + µ′y′) = µ(x · y) + µ′(x · y′)

(iii) Positive definite x · x =
∑
i

x2i ≥ 0

and x · x = 0 iff x = 0.

Prop (Cauchy-Schwarz). |x · y| ≤ |x||y| with equality iff x and y are parallel

Proof. If y = 0, result is immediate.
If y 6= 0 then consider |x− λy|2 = (x− λy) · (x− λy)
By bilinearity it’s |x|2 − λx · y + λ2|y|2
So, |x− λy|2 = |x|2 − λx · y + λ2|y|2 ≥ 0
This is a real quadratic in λ with at most 1 real root so discriminant ≤ 0 which gives desired
inequality.

Note. Setting x · y = |x||y| cos θ allows us to define the angle θ between x and y in Rn

Prop. Cauchy-Schwarz =⇒ triangle inequality

Proof.

|x + y|2 = |x|2 + 2x · y + |y|2

≤ |x|2 + 2|x||y|||y|2

= (|x|+ |y|)2

Definition. {v1,v2, . . . ,vr} ∈ V (a real vector space) form a linearly independent set iff:

λ1v1 + λ2v2 + · · ·+ λrvr = 0 (1)

=⇒ λi = 0∀i

i.e. only zero trivially.
If (1) holds with at least one λi 6= 0 then they form a linearly dependent set.

In R3, {a,b, c} is linearly independent iff a · (b× c) 6= 0
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Definition. For a vector space V , a basis is a set B = {e1, . . . , en} such that:

(i) B spans V : v ∈ V =⇒ v =
n∑
i=1

viei

(ii) B is linearly independent
Given (ii), the coefficients vi are unique since:

∑
i

viei =
∑
i

v′iei =⇒
∑
i

(vi − v′i)ei = 0 =⇒ vi = v′i

from (i).

Theorem. If {e1, . . . , en} and {f1, . . . , fm} are bases for a vector space V then n = m

Proof. fa =
∑
i

Aaiei as e is a basis

and ei =
∑
a
Biafa for constants Aai, Bia ∈ R

i, j = 1, . . . , n
a, b = 1, . . . ,m

fa =
∑
i

Aai

(∑
b

Bibfb

)

=
∑
b

(∑
i

AaiBib

)
fb

But fa, fb are linearly independent and coefficients wrt a basis are unique, hence:∑
i

AaiBib = δab otherwise relation is nontrivial.

Similarly:

ei =
∑
j

(∑
a

BiaAaj

)
ej

Hence,
∑
a
BiaAaj = δij

Now: ∑
i,a

AaiBia =
∑
a

δaa = m

=
∑
i

δii = n

So m = n

Note. Steps in proof of basis theorem within scope of course, but proof without prompts
non-examinable.

Definition. The number of vectors is any basis is the dimension of the space. (Well-defined due to
above).
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Prop. Let V be a vector space with finite subsets:
Y = {w1, . . . ,wm} that spans V
X = {u1, . . . ,uk} that is linearly independent.
Then k ≤ n ≤ m where n = dimension of V . And:
(i) A basis can be found as a subset of Y by discarding vectors in Y if necessary
(ii) X can be extended to a basis by adding additional vectors from Y as necessary

Proof.
(i) If Y is lin. indep., then Y is a basis and m = n = dimV .

If Y is not lin. indep., then there is
m∑
i=1

λiwi = 0, λi 6= 0 for some i.

WLOG take λm 6= 0, then:

wm = − 1
λm

m−1∑
i=1

λiwi

so span Y = span Y ′ with Y ′ = {w1, . . . ,wm−1}.
Repeat until a basis is obtained.

(ii) If X spans V then it is already a basis and k = n = dimV .
If not, then ∃uk+1 ∈ V (not in span X)

Bu then since uk+1 6∈ span X, if:
k+1∑
i=1

µiui = 0 then µk+1 = 0 (otherwise uk+1 in span

X)
Then µi = 0 for i = 1, . . . .k (X lin. indep.)
Hence X ′ = {u1, . . . ,uk,uk+1} is lin. indep.
Furthermore, we can choose uk+1 from Y
(if Y ⊆ span X then span Y ⊆ span X =⇒ span X = V )
Repeat X → X ′ until a basis is obtained. Process stops as Y is finite.

Note. Steps in proof of theorem within scope of course, but proof without prompts non-
examinable.

Definition. Inner product or scalar product on Cn is defined by:

(z,w) =
∑
j

zjwj = z1w1 + · · ·+ znwn

Properties:
(i) Hermitian: (w, z) = (z,w)
(ii) Linear/ anti-linear

(z, λw + λ′w′) = λ(z,w) + λ′(z,w′)
(λz + λ′z′,w) = λ(z,w) + λ′(z′,w′)

(iii) Positive definite

(z, z) =
∑
j

|zj |2, real and ≥ 0

= 0 iff z = 0
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4 Matrices and Linear Maps

Definition (Linear Map). A linear map or linear transformation is a function T : V → W
between vector spaces V (dim n) and W (dim m) such that:

T (λx + µy) = T (λx) + T (µy)

= λT (x) + µT (y)

for x,y ∈ V, λ, µ ∈ R or C

Note. A linear map is completely determined by its action on a basis (exercise)

x′ = T (x) ∈W is the image of x ∈ V under linear map T .
Im(T ) = {x′ ∈W : x′ = T (x) for x ∈ V }
ker(T ) = {x ∈ V : T (x) = 0}

Lemma. ker(T ) is a subspace of V and Im(T ) is a subspace of W

Proof. Exercise.

Definition. dim Im(T ) or rank(T ) is the rank of T (≤ m)
dim ker(T ) or null(T ) is the nullity of T (≤ n)

Theorem. For T : V →W a linear map as above,
rank(T )+ null(T ) = n = dimV

Proof. non-examinable.

Rotation angle θ about axis n:

x 7→ (cos θ)x + (1− cos θ)(n · x)n + (sin θ)n× x

Derive by writing x in parallel and perp. to n components

Projection to plane with unit normal n:

x 7→ x− (x · n)n

Reflection in plane with unit normal n:

x 7→ x− 2(x · n)n
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Dilations along axes defined as one would expect.

Note. Can have different scale factors for different axes.

Let a,b be orthogonal unit vectors in R3, λ a real parameter.
Define a shear parallel to a scale factor λ:

x 7→ x + λa(x · b).

Claim. Matrix acting on vector acts as expected (T (x)):

Proof. Write x =
∑
i

xiei and apply linearity. (Have ei 7→ Ci)

Claim. Image of matrix M is span of columns.

Proof. Write any x in components, apply linearity.

Note. x′a = Maixi = (Ra)ixi = R · x
ker(T ) = ker(M) = {x : Ra · x = 0∀a}
Kernel of M is the subspace ⊥ to all rows. (Can use cross product to quickly work out kernel
span)

Claim. (αM + βN)x = αM(x) + βN(x)

Proof. Consider ith component of x.

Claim. (AB)T = BTAT

Proof. consider components.

Definition. M symmetric iff MT = M
M anti-symmetric iff MT = −M

Any M can be written M = S +A
S = 1

2 (M +MT )
A = 1

2 (M −MT )
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Note. If A is 3× 3, antisymmetric, then Aij = εijkak

A =

 0 a3 −a2
−a3 0 a1
a2 −a1 0


(Ax)i = εijkakxj = (x× a)i

Definition. The Hermitian conjugate of a matrix M is: M† = (MT )

Definition. M is Hermitian if M = M†

M is anti-Hermitian if M = −M†

Definition. tr(M) = Mii

tr(αM + βN) = αtr(M) + βtr(N)
tr(MN) = tr(NM)
tr(MT ) = tr(M)
tr(I) = δii = n if I is n× n

We can split a matrix S into traceless and pure trace parts:
T = S − 1

n tr(S)I

Definition. A real n× n matrix U is orthogonal iff:

UTU = UUT = I i.e. (UT = U−1)

These conditions can be written UkiUkj = IikUjk = δij. Equivalently: columns of U are orthonormal,
or rows of U are orthonormal.
Also equivalently: U is orthogonal iff it preserves the inner product on Rn
i.e. (Ux) · (Uy) = x · y ∀x,y ∈ Rn

Definition. A complex n× n matrix U is unitary iff

U†U = UU† = I i.e. (U† = U−1)

Equivalently: U is unitary iff it preserves complex inner product on Cn: (Uz, Uw) = (z,w)

Note. Orthogonal matrices from a group. Unitary matrices form a group.
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5 Determinants and Inverses

T invertible
⇐⇒ kerT = {0}
⇐⇒ ImT = Rn (equivalent by rank-nullity)
If the conditions hold, then T (e1), T (e2), . . . , T (en) must be a basis and we can define T−1 as a linear
map by T−1(T (ei)) = ei

Definition. For any M, (n× n), we define a related matrix M̃ (n× n) and a scalar detM such that
M̃M = (detM)I (∗)
If detM 6= 0 then M is invertible with M−1 = 1

detM M̃ .

Definition. The alternating symbol or ε symbol in Rn or Cn is an n-index object (tensor) defined
by:

εij...l =


+1 if i, j, . . . , l is an even perm of 1, 2, . . . , n

−1 if i, j, . . . , l is an odd perm of 1, 2, . . . , n

0 else

Thus if σ is any permulation,
εσ(1)σ(2)...σ(n) = ε(σ) (i.e. the sign of the permutation)

Definition. Given v1, . . . ,vn ∈ Rn, the alternating form combines them to give a scalar:

[v1,v2, . . . ,vn] = εij...l(v1)i(v2)j . . . (vn)l

=
∑
σ

ε(σ)(v1)σ(1)(v2)σ(2) . . . (vn)σ(n)

(i) Multilinear:
[v1, . . . ,vp−1, αu + βw,vp+1, . . . ,vn]

= α[v1, . . . ,vp−1,u,vp+1, . . . ,vn] + β[v1, . . . ,vp−1,w,vp+1, . . . ,vn]

(ii) Totally antisymmetric:

[vσ(1),vσ(2), . . . ,vσ(n)] = ε(σ)[v1,v2, . . . ,vn]

(justify by checking for a transposition τ = (p, q), σ′ = στ)
(iii)

[e1, e2, . . . , en] = +1

These three properties fix alternating form completely and also imply
(iv) if vp = vq then [v1, . . . ,vp, . . . ,vq, . . . ,vn] = 0 (from (ii) by exchanging vp,vq)
(v) If vp =

∑
i 6=p λivi then

[v1, . . . ,vp, . . . ,vn] = 0

(since subbing vp in and using multilinearity - use (iv))
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Prop.
[v1,v2, . . . ,vn] 6= 0 ⇐⇒ v1,v2, . . . ,vn are linearly independent

Proof. To show =⇒ use property (v)
To show ⇐= use spanning and show multiple of [e1, e2, . . . , en].

Definition. For an n× n matrix M with columns ca = Mea, the determinant detM or |M | ∈ R
or C, is defined by:

detM = [c1, c2, . . . , cn]

= [Me1,Me2, . . . ,Men]

= εij...lMi1Mj2 . . .Mln

=
∑
σ

ε(σ)Mσ(1)1Mσ(2)2 . . .Mσ(n)n

Each of these expressions can be taken as the definition.

Prop. If Ra are rows of M , then:

detM = [R1,R2, . . . ,Rn]

= εij...lM1iM2j . . .Mnl

=
∑
σ

ε(σ)M1σ(1)M2σ(2) . . .Mnσ(n)

i.e. detM = detMT

Proof. Show directly that the
∑
σ definitions agree by considering:

Mσ(1)1Mσ(2)2 . . .Mσ(n)n = M1ρ(1)M2ρ(2) . . .Mnρ(n) for ρ = σ−1

But ε(σ) = ε(σ−1) = ε(ρ) so
∑
σ is

∑
ρ as required.

Definition. Define minorM ia to be the (n−1)×(n−1) determinant of matrix obtained by deleting
row i and column a from M

Adding multiple of one row to another does not affect the determinant by multilinearity.
Swapping rows changes sign of determinant by alternating property.

Lemma.
εi1i2...inMi1a1Mi2a2 . . .Minan = (detM)εa1a2...an

Proof. LHS and RHS each totally antisymmetric in a1, a2, . . . , an and so must be related by
a constant factor. To fix this constant, consider a1 = 1, a2 = 2, . . . , an = n and check it works,
then result follows.
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Theorem. For n× n matrices M,N :

det(MN) = detM detN

Proof.

det(MN) = εi1...in(MN)i11 . . . (MN)inn

= εi1...inMi1k1 . . .MinknNk11 . . . Nknn

= (detM)εk1...knNk11 . . . Nknn by lemma
= (detM)(detN)

Prop.

detM =
∑
i

(−1)i+aMiaM
ia (a fixed)

=
∑
a

(−1)i+aMiaM
ia (i fixed))

Proof. consider a column of matrix M (n× n) and write it:
ca =

∑
iMiaei

=⇒ detM = [c1, c2, . . . , ca, . . . , cn]

= [c1, c2, . . . , ca−1,
∑
i

Miaei, ca+1, . . . , cn]

=
∑
i

Mia∆ia where ∆ia = [c1, c2, . . . , ca−1, ei, ca+1, . . . , cn]

Now consider what ∆ia matrix looks like and use row ops to reach desired result.
Can work similarly considering rows.

Definition. ∆ is the matrix of cofactors( entries ∆ia).

Definition. The adjugate of M :
M̃ = adj M = ∆T
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Claim. MM̃ = (detM)I

Proof. Consider cb =
∑
iMibei

Then

[c1, . . . , ca−1, cb, ca+1, . . . , cn] =
∑
i

Mib∆ia =

{
detM if a = b

0 if a 6= b
= (detM)δab

Similarly, expanding a row: ∑
a

Mja∆ia = (detM)δij

Remaining steps trivial.

Hence, if detM 6= 0 then M−1 = 1
detM M̃

For linear equations, just methods.
Image is span of columns.
Kernel is perpendicular to all rows (cross product).

6 Eigenvalues and Eigenvectors

Definition. For a linear map T : V → V , a vector v with v 6= 0 is an eigenvector of T with
eigenvalue λ if T (v) = λv.
If V = Rn or Cn and T is given by an n× n matrix A then:

Av = λv ⇐⇒ (A− λI)v = 0

So given λ, this holds for some v 6= 0 iff det(A− λI) = 0

Definition. For an eigenvalue λ of a matrix A, define the eigenspace:

Eλ = {v : Av = λv} = ker(A− λI)

The set of all non-zero v ∈ Eλ are the eignevectors.

Definition. The geometric multiplicity is mλ = dimEλ = no. of linearly indep. evecs with eval
λ.
mλ = null (A− λI)

Definition. The algebraic multiplicity is Mλ, multiplicity of λ as a root of χA(t) i.e. χA(t) =
(t− λ)Mλf(t) with f(λ) 6= 0

13



Prop. Mλ ≥ mλ (and mλ ≥ 1 as λ a root of χA(t))

Proof. Later

Prop. Let v1,v2, . . . ,vn be eigenvectors of a matrix A (n × n) with eigenvalues λ1, λ2, . . . , λr. If
eigenvalues are distinct, then vi are linearly independent.

Proof. Note that w =
r∑
j=1

αjvj =⇒

(A− λI)w =
r∑
j=1

αj(λj − λ)vj

Way 1. Suppose evecs linearly dependent. So ∃ a linear combination w = 0 with no. of non-zero
coefficients p ≥ 2.
Pick such a w for which p is least. WLOG α1 6= 0.

Then (A−λI)w =
j>1∑
i=1

αj(λj−λ1)vj = 0, a linear relation with p−1 nonzero coefficients.

Way 2. Given a linear relation w = 0 =⇒
∏
j 6=k

(A−λjI)w = αk(
∏
j 6=k

(λk−λj))vk = 0 for k fixed.

Eigenvalues distinct so αk = 0.
I.e. eigenvectors are linearly independent.

Corollary. With conditions as in prop, let Bλi be a basis for the eigenspace λi i = 1, 2, . . . , r
Then Bλ1

∪Bλ2
∪ · · · ∪Bλr is linearly independent.

Proof. Consider general linear combination of all these vecs:
has form w = w1 + w2 + · · ·+ wr, where wi ∈ Eλi .
Apply same argument as in prop to deduce if w = 0 then wi = 0 for each i.
Each wi is trivial linear combination of elements of Bλi and the result follows.

Prop. For an n× n matrix A, acting on V = Rn or Cn, the following condition are equivalent:
(i) There exists a basis of eigenvectors for V , v1,v2, . . . ,vn with Avi = λivi (not summation)

(ii) There exists an n× n invertible matrix P with P−1AP = D =

λ1 . . .
λn


Proof. Note that for any matrix P , AP has columns Aci(P ) and PD has columns
λici(P )
Then (i) and (ii) are related by choosing vi = ci(P ) :

P−1AP = B ⇐⇒ AP = PD ⇐⇒ Avi = λivi

i.e. given an eigenvector basis as in (i), this relation defines P ; conversel, given a matrix
P as in (ii), its columns are a basis of eigenvectors.
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Prop. Consider n× n matrix A.
(i) A is diagonalisable if it has n distinct eigenvalues (sufficient)
(ii) A is diagonalisable iff for every eigenvalue A, the multiplicity coincides: Mλ = mλ (necessary

and sufficient)

Proof. Use prop and corr above.
(i) If n distinct evals, then n lin indep evecs so they form a basis.
(ii) If λi with i = 1, 2, . . . , r are all the distinct evals then Bλ1

∪· · ·∪Bλr is lin indep but no.
of elements is

∑
imλi (dim of each Eλi) =

∑
iMλI = n (degree of char. poly) where

Bλi is a basis for Eλi . So we have a basis.

Definition. Matrices A and B (n× n) are similar if B = P−1AP for some invertible P (n× n), an
equivalence relation.

Prop. If A and B are similar, then
(i) tr B = tr A
(ii) detB = detA
(iii) χB(t) = χA(t)

Proof. (i) trivial using cyclic property
(ii) trivial using multiplicative properrt of det
(iii) consider det(B − tI) = det

(
P−1AP − tP−1P

)
and factor

Obervation: if A is hermitian, then (Av)†w = v†(Aw) for all v,w ∈ Cn since (v†A†)w = v†A†w =
v†Aw = v†(Aw)

Theorem. For a matrix A that is hermitian (n× n)
(i) Every eigenvalue λ is real
(ii) Eigenvectors v,w with distinct eigenvalues λ 6= µ are orthogonal. (v†w = 0)
(iii) If A is real and symmetric, then for each λ in (i), we can choose a real eigenvector v and (ii)

becomes
vTw = v ·w = 0

Proof. (i) v†(Av) = (Av)†v
=⇒ v†(λv) = (λv)†v
v 6= 0 so v†v 6= 0, so v = λ so real.

(ii) v†(Aw) = (Av)†w
=⇒ v†(µw) = (λv)†w
=⇒ µv†w = λv†w
λ 6= µ, so v†w = 0

(iii) Given Av = λv with v ∈ Cn but A and λ real,
Let v = u + iu′ with u,u′ ∈ Rn
then Au = λu, Au′ = λu′ (Re and Im parts)
but v 6= 0 =⇒ one of u,u′ 6= 0, so ∃ ≥ 1 real eigenvector.
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Note. Shows sets of evecs with distinct evals lin indep, but for Hermitian matrices, we have they are
orthogonal =⇒ linear independence.
Furthermore, previously considered bases Bλ for each eigenspace Eλ, now natural to choose bases Bλ
to be orthonormal

Theorem. Any n× n hermitian matrix is diagonalisable if:
(i) ∃ a basis of eigenvectors u1, . . . ,un ∈ Cn with Aui = λui. Equivalently,

(ii) ∃n× n invertible matrix P with P−1AP = D =

λ1 . . .
λn



Definition. A quadric form is a function R2 → R given by F (x) = xTAx = xiAijxj where A is a
real symmetric n× n matrix. (anti anti-symmetric part of A would not contribute).

A can be diagonalised. The principal axes of F are the evecs of A.

Definition. exp(A) = I +A+ 1
2A

2 + · · ·+ 1
r!A

r + . . . (always converges)

Theorem (Cayley-Hamilton).

χA(A) = c0I + c1A+ · · ·+ cnA
n = 0

‘a matrix satisfies its own characteristic equation.’
General case not examinable.

Proof. (i) General 2× 2: trivial by substitution.
(ii) Diagonalisable n× n matrix: write χA(A) = χA(PDP−1) = PχA(D)P−1 = 0.

Note.
−c0I = A(c1I + · · ·+ cnA

n−1

If c0 = detA 6= 0 then A invertible and:

A−1 = − 1

c0
(c1A+ · · ·+ cnA

n−1)
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7 Changing Bases, Canonical Forms and Symmetries

Change of basis from {ei} to {e′i} and {fa} to {f
′
a}is given by:

e′i =
∑
j

ejPji

f′a =
∑
b

fbQba

Entries in column i of P are components of a new basis vector e′i wrt old basis vectors ej , similar for
Q.

Prop. With definitions above: A′ = Q−1AP , change of basis formula for a linear map

Proof.

T (e′i) = T

∑
j

ejPji


=
∑
j

T (ej)Pji

=
∑
j,a

faAajPji

But also

T (e′i) =
∑
b

f′bA
′
bi

=
∑
a,b

faQabA′bi

Equating coefficients of fa gives: ∑
j,a

AajPji =
∑
a,b

QabA
′
bi

Hence AP = QA′ or A′ = Q−1AP as required.
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Consider changes in vector components

x =
∑
i

xiei =
∑
j

x′je
′
j =

∑
i

∑
j

Pijx
′
j

 ei

=⇒ xi = Pijxj

(using Σ convention).

Write X for

x1...
xn

, X ′ for
x
′
1
...
x′n


Then X = PX ′ or X ′ = P−1X
Similarly, Y = QY ′ or Y ′ = Q−1Y

Matrices representing the same linear map wrt to different basis are similar (and conversely holds).
For hermitian matrices, change of basis matrix to diagonalise is unitary.

Prop. Any 2× 2 complex matrix A is similar to one of:

(i) A′ =

[
λ1 0
0 λ2

]
(ii) A′ =

[
λ 0
0 λ

]
(iii) A′ =

[
λ 0
1 λ

]
Proof. χA(t) has 2 roots over C
(i) For distinct roots/ evals, (λ1, λ2) we have Mλi = mλi = 1 so matrix of evecs is change

of basis matrix
(ii) Repeated root: if mλ = 2 then same root applies
(iii) Repeated root: if mλ = 1 then let v be evec and w any other lin indep vector (note w

component in Aw is λw as repeated)

Theorem. Any n×N complex mtrix A is similar yo a matrix of the following form:
[
Jn1(λ1)

] [
Jn2

(λ2)
]

. . . [
Jnr (λr)

]


Jni(λi) =


λi 1

λi 1
. . . 1

λi
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Definition. A quadric in Rn is a hypersurface defined by

Q(x) = xTAx + bTx + c = 0

for some non-zero symmetric real matrix A.b ∈ Rn, c ∈ R

Q(x) = Aijxixj + c = 0

Note. A invertible iff it has no zero eigenvalues. In this case, we can complete the square in eqn by
setting y = x + 1

2A
−1b and considering yTAy

Ellipsoid or hyperboloid.

Quadrics in R2 called conics.
Possible solutions: Ellipse, point, no soln
Hyperbola, pair of lines

Polar case sets one focus at center.
Name Cartesian Form Cartesian info [foci] Polar Polar info

Ellipse x2

a2 + y2

b2 = 1
e < 1

b2 = a2(1− e2)
[x = ±ae]

r = l
1+ecosθ e < 1, l = a(1− e2)

Parabola y2 = 4ax
e = 1

[x = +a] r = l
1+ecosθ e = 1, l = 2a

Hyperbola x2

a2 −
y2

b2 = 1
e > 1

b2 = a2(e2 − 1)
[x = ±ae]

r = l
1+ecosθ e > 1, l = a(e2 − 1)

Equation for a cone in R3: let c be apex, n axis, (unit vec), α(< π
2 ) angle

(x− c) · n = |x− c| cosα

Squaring gives double cone:
((x− c) · n)2 = |x− c|2 cos2 α

R is orthogonal ⇐⇒ RTR = I ⇐⇒ (Rx) · (Ry) = x · y ∀x,y ⇐⇒ rows or cols of R orthonormal

Consider a new “inner product” on R2 given by: (x,y) = xTJy where J =

[
1 0
0 −1

]
= x0y0 − x1y1

and label componenets in R2 by x =

[
x0
x1

]
, y =

[
y0
y1

]
This is not positive definite but still bilinear and symmetric.

Definition. New inner product called the Minkowski metric on R2. R2 with this metric is called
Minkowski space.
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M pereserves Minkowski metric iff:
(Mx,My) = (x,y)∀x,y ∈ R2

⇐⇒ (Mx)TJ(My) = xTMTJMy = xTJy
⇐⇒ MTJM = J

Definition. The set of such matrices form a group. (note again detM = ±1)
Furthermore, |M00|2 ≥ 1 so M00 ≥ 1 or M00 ≤ −1
The subgroup with detM = +1 and M00 ≥ 1 is the Lorentz group

General form forM : find this by using colsMe0,Me1 are orthonormal in the same sense as e0 and e1.

(Me0,Me0) = M2
00 −M2

10 = (e0, e0) = 1

So we can write Me0 =

[
cosh θ
sinh θ

]
for some real θ as M2

00 ≥ 1

Considering (Me0,Me1) and (Me1,Me1) we deduce Me1 = ±
[

sinh θ
cosh θ

]
Imposing detM = +1, we have:

M =

[
cosh θ sinh θ
sinh θ cosh θ

]

Note. Matrices found obey:
M(θ1)M(θ2) = M(θ1 + θ2)

using hyperbolic addition formulas.

Physical interpretation/ application:

Set M(θ) = γ(v)

[
1 v
v 1

]
where v = tanh θ, γ(v) = (1− v2)−

1
2 , new parameter −1 < v < 1

Rename x0 → t time coordinate
x1 → x space coordinate
Then x′ = Mx ⇐⇒ t′ = γ(t+ vx) and x′ = γ(x+ vt)
Lorentz transformation or boost relating time and coordinates for observers moving with relative
velocity v in Special Relativity, in units with speed of light c = 1.
γ factor in Lorentz transformation gives rise to time dilation and length contraction effects.

Group property M(θ3) = M(θ1)M(θ2) with θ3 = θ1 + θ2
=⇒ related composition of velocities vi = tanh θi, i = 1, 2, 3
v3 = v1+v2

1+v1v2
(addition formula for tanh) consistent with |vi| < 1
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