Variational Principles

Hasan Baig

Easter 2021

Contents

0	Motivation	2
1	Calculus for Functions of \mathbb{R}^n 1.1 Constraints and Lagrange Multipliers	5 7
2	Euler-Lagrange Equations 2.1 First Integrls of the E-L equation 2.2 Fermat's Principle	9 11 16
3	Extensions of the Euler-Lagrange Equations3.1Euler-Lagrange Equations with Constraints3.2Several dependent variables3.3Several Independent Variables3.4Higher Derivatives	 18 20 22 25
4	Least Action Principle and Noether's Theorem 4.1 Noether's Theorem	26 28
5	Convex Functions 5.1 Conditions for Convexity	29 31
6	Legendre Transform 6.1 Applications to Thermodynamics	32 34
7	Hamilton's Equations	34
8	The Second Variation 8.1 Associated Eigenvalue Problem 8.2 The Jacobi Condition	36 38 39

0 Motivation

Example (The Brechistochrome Problem). A particle slides on a wire, under influence of gravity between two fixed points A, B. Which shape of the wire gives the shortest travel time, starting from rest?

$$T = \int \mathrm{d}t = \int_A \frac{\mathrm{d}t}{v(x,y)}$$

K.E. + V = const. (energy conservation)

$$\frac{1}{2}mv^2 + mgy = mgy_1 = 0 \qquad \qquad v = \sqrt{2g}\sqrt{-y}$$

Minimise

$$T[y] = \frac{1}{\sqrt{2g}} \int_0^{x_2} \frac{\sqrt{1 + (y')^2}}{\sqrt{-y}} \, \mathrm{d}x$$

subject to y(0) = 0, $y(x_2) = y_2$.

Example (Geodesic). Finding the shortest path γ between 2 points on a surface Σ (if one exists). Take $\Sigma = \mathbb{R}^2$ (a plane, Pythagorean theorem holds).

Distance along γ :

$$D[y] = \int_{A}^{B} dl = \int_{x_{1}}^{x_{2}} \sqrt{1 + (y')^{2}} dx$$

Seek to minimise D by varying γ .

Remark. Generally, we are trying to minimise (maximise)

$$F[y] = \int_{x_1}^{x_2} f(x, y(x), y'(x)) \,\mathrm{d}x \tag{0.1}$$

among all functions s.t. $y(x_1) = y_1$, $y(x_2) = y_2$. (0.1) is a **functional** (a function on the space of functions)

Functions map numbers to numbers. Functionals map functions to numbers e.g.

Calculus of variations is finding extrema (min/max/stable) of functions on spaces of functions.

Notation. $C(\mathbb{R})$ is the space of continuous functions on \mathbb{R} $C^k(\mathbb{R})$ is the space of continuous functions on \mathbb{R} with continuous k-th derivatives $C^k_{\alpha,\beta}(\mathbb{R})$ is the space of continuous functions on \mathbb{R} with continuous k-th derivatives s.t. $f(\alpha) = f(\beta)$

Warning. NEED to specify the function space beforehand (a branch of Functional Analysis – Part III – analysis on the space of functions)

Variational Principles are principles in nature where the laws follow from extremising Functionals

Example (Fermat's Principle). "Light between two points travels along paths which require least time."

Moral. Leibnitz's take: We live in "the best of all possible worlds".

Science \rightarrow Theology. Feynman's take: "This is wrong. In quantum theory, the motion takes place along all possible paths with different probabilities." (see Part III QFT)

In this course

- We consider necessary conditions of extremum of (0.1). Euler-Lagrange equation.
- Lots of examples (geometry, physics, problems with constraints e.g. maximise area given a fixed length of perimeter)
- Second variation: some sufficient conditions for min/ max

Books:

- (i) Gelfend- Fomin 'Calculus of Variations.'
- (ii) DAMTP notes online (e.g. P. Townsend)

Note. Lectures have a different order but similar content to (ii).

1 Calculus for Functions of \mathbb{R}^n

In this section, $f \in C^2(\mathbb{R}^n)$, $f : \mathbb{R}^n \to \mathbb{E}$, continuous 2nd partial derivatives.

Definition. The postition $\mathbf{a} \in \mathbb{R}^n$ is **stationary** if

$$\nabla f(\mathbf{a}) = (\partial_1 f, \dots, \partial_n f) |_{\mathbf{x} = \mathbf{a}} = 0, \text{ where } \partial_i f = \frac{\partial f}{\partial x_i}$$

Method. Expanding near $\mathbf{x} = \mathbf{a}$

$$f(\mathbf{x}) = f(\mathbf{a}) = \underbrace{(\mathbf{x} - \mathbf{a}) \cdot \partial f}_{0, \text{ as stationary}} + \frac{1}{2}(x_i - a_i)(x_j - a_j)\partial_{ij}^2 f | + \mathbf{a} + O(|\mathbf{x} - \mathbf{a}|^2)$$

using the summation convention. The **Hessian** matrix is

$$H_{ij} = \partial_i \partial_j f = H_{ji}$$

We shift the origin to set $\mathbf{a} = \mathbf{0}$, and diagonalise $H(\mathbf{0})$ by an orthogonal transformation:

$$H' = R^T H(\mathbf{0})R = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$
$$f(\mathbf{x}') - f(\mathbf{0}) = \frac{1}{2} \sum \lambda_i (x'_i)^2 + O(|\mathbf{x}'|^2)$$

- (i) If all $\lambda_i > 0$, $f(\mathbf{x}') > f(\mathbf{0})$ in all directions so we have a local minimum
- (ii) If all $\lambda_i < 0$, then we have a local maximum
- (iii) If some $\lambda_i > 0$, and some $\lambda_i < 0$, then f increases in some directions and decreases in others. We have a **saddle point** in this case.
- (iv) If some $\lambda_i = 0$, then we need to consider higher order derivatives in Taylor's expansion.

Method. Special case n = 2:

$$det(H) = \lambda_1 \lambda_2, tr(H) = \lambda_1 + \lambda_2$$

- det > 0, tr > 0 gives local minimum
- det > 0, tr < 0 gives local maximum
- det < 0 gives saddle point
- det = 0 requires us to look at 3^{rd} / higher derivatives

Remarks.

- (i) For $f:D\to \mathbb{R}$ (domain) we can have local minimum, local maximum or global minimum
- (ii) For f harmonic, $f_{xx} + f_{yy} = 0$, $D \subseteq \mathbb{R}^2$ gives $\operatorname{tr}(H) = 0$ so our turning point is a saddle point and the min/ max is on the boundary

Example.

$$f(x, y) = x^3 + y^3 - 3xy$$
$$\nabla f = (3x^2 - 3y, 3y^2 - 3x) = (0, 0)$$

for critical points.

$$x^{2} - y = 0, y^{2} = 0 \implies y^{4} = y \implies \begin{cases} y = 0, x = 0\\ y = 1, x = 1 \end{cases}$$

Stationary points (0,0) and (1,1)

$$H = \begin{bmatrix} 6x & -3 \\ -3 & 6y \end{bmatrix}$$

(0,0) has det H = -9 < 0, saddle point f = 0. (1,1) has det H = 27 > 0, tr(H) = 12 > 0 so is local minimum with f = -1

1.1 Constraints and Lagrange Multipliers

Example. (ii) Lagrange Multipliers. Define new function $h(x, y, \lambda) = f(x, y) - \lambda g(x, y)$ with g(x, y) = 0 the constraint. $\lambda =$ Lagrange multiplier.

$$h = x^{2} + y^{2} - \lambda(y - x^{2} + 1)$$

Extremising over 3 variables with no constraints:

$$\frac{\partial h}{\partial x} = 2x + 2\lambda x = 0$$
$$\frac{\partial h}{\partial y} = 2y - \lambda = 0$$
$$\frac{\partial h}{\partial \lambda} = y - x^2 + 1 = 0$$

The first two give:

$$2x + 4xy = 0 \implies x = 0 \text{ or } y = -\frac{1}{2}$$

Subbing these in the final equation gives solutions:

$$(x,y) = (0,1) \text{ or } (\pm \frac{1}{\sqrt{2}}, -\frac{1}{2})$$

 $(0,1) \to f = 1 \text{ so } (\lambda = 2)$
 $(\pm \frac{1}{\sqrt{2}}, -\frac{1}{2}) \to f = \frac{3}{4}, \ \lambda = -1$

Method. For multiple constraints, extremise $f : \mathbb{R}^n \to \mathbb{R}$, subject to $g_{\alpha}(\mathbf{x}) = 0$

$$g_{\alpha} : \mathbb{R}^n \to \mathbb{R} \quad \alpha = 1, \dots, k$$

 $h(x_1, \dots, x_n, \lambda_1, \dots, \lambda_k) = f - \sum_{\alpha=1}^k \lambda_{\alpha} g_{\alpha}$

We have n + k variables, k Lagrange Multipliers

$$\frac{\partial h}{\partial x_i} = 0, \ \frac{\partial h}{\partial \lambda_\alpha} = 0$$

Eliminate λ_{α} and solve for **x** This method works also if constraints can't be eliminated

2 Euler-Lagrange Equations

Lemma. If $g : [\alpha, \beta] \to \mathbb{R}$ is continuous on $[\alpha, \beta]$, and

$$\int_{\alpha}^{\beta} g(x)\eta(x) \, \mathrm{d}x = 0 \text{ for all } \eta \text{ continuous on } [\alpha, \beta], \text{ s.t. } \eta(\alpha) = \eta(\beta) = 0$$

Then $g(x) \equiv 0, \ \forall x \in [\alpha, \beta]$

Proof. We show $\exists \bar{x} \in (\alpha, \beta)$ s.t. $g(\bar{x}) = 0$. Suppose $g(\bar{x}) > 0$. Then \exists interval $[x_1, x_2] \subseteq [\alpha, \beta]$ s.t. g(x) > c on $[x_1, x_2]$ for some c > 0. Set

$$\eta(x) = \begin{cases} (x - x_1)(x_2 - x) & x \in [x_1, x_2] \\ 0 & x \notin [x_1, x_2] \end{cases}$$
(2.2)
$$\int_{\alpha}^{\beta} g(x)\eta(x) > c \int_{x_1}^{x_2} (x - x_1)(x_2 - x) > 0$$

Remark. η given by (2.2) is a bump function. A C^k bump function:

$$\eta = \begin{cases} ((x - x_1)(x_2 - x))^{k+1} & x \in [x_1, x_2] \\ 0 & x \notin [x_1, x_2] \end{cases}$$

Method. Back to (2.1):

$$\begin{aligned} F[y + \varepsilon \eta] &= \int_{\alpha}^{\beta} f(x, y + \varepsilon \eta, y' + \varepsilon \eta') \, \mathrm{d}x \\ &= F[y] + \varepsilon \int_{\alpha}^{\beta} \left(\frac{\partial f}{\partial y} \eta + \frac{\partial f}{\partial y'} y' \right) \, \mathrm{d}x + \underbrace{O(\varepsilon^2)}_{\text{return in section 8}} \\ &= F[y] + O(\varepsilon^2) \text{ at extremum, i.e. } \left. \frac{\mathrm{d}F}{\mathrm{d}\varepsilon} \right|_{\varepsilon = 0} = 0 \end{aligned}$$

Integrating the ε -term by parts

$$0 = \int_{\alpha}^{\beta} \left\{ \frac{\partial f}{\partial y} \eta - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) \eta \right\} \, \mathrm{d}x + \underbrace{\left[\frac{\partial f}{\partial y'}, \eta \right]_{\alpha}^{\beta}}_{0 \text{ as } \eta(\alpha) = \eta(\beta) = 0}$$
$$= \underbrace{\int_{\alpha}^{\beta} \left(\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) \right)}_{=g} \eta \, \mathrm{d}x$$

Applying the Lemma with g as above, we must have $g \equiv 0$.

Equation. We have proved a nexessary condition for an extremum is:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\partial f}{\partial y'}\right) - \frac{\partial f}{\partial y} = 0 \tag{2.3}$$

This is called the Euler-Lagrange equation

Remarks.

- (2.3) is a 2nd order ODE for @y(x)@ with boundary conditions y(α) = y₁, y(β) = y₂
 Notation: the LHS of (2.3) denoted by ∂F/∂y(x) is called the functional derivatives
- Some books (e.g. Towsend's notes) use $\delta y = \varepsilon \eta(x)$

$$F[y + \delta y] = F[y] + \delta F[y]$$

where

$$\delta F = \int_{\alpha}^{\beta} \left[\frac{\partial F(y)}{\partial y(x)} \delta y(x)\right] \mathrm{d}x$$

- Other boundary conditions are possible e.g. ∂f/∂y'|α,β = 0
 Be careful with derivatives, e.g. ∂f/∂y means (∂f/∂y)x,y' x, y, y' independent

$$\frac{\mathrm{d}h}{\mathrm{d}x} = \frac{\partial h}{\partial x} + \frac{\partial h}{\partial y}y' + \frac{\partial h}{\partial y'}y''$$
$$\frac{\mathrm{d}}{\mathrm{d}x} = \delta_x + y'\delta_y + y''\delta_{y'}$$

is the total derivative.

Example.

$$f(x, y, y') = x \cdot ((y')^2 - y^2)$$

$$\delta_x f = (y')^2 - y^2 \quad \delta_y f = -2xy \quad \delta_{y'} f = 2xy'$$

$$\frac{\mathrm{d}f}{\mathrm{d}x} = (y')^2 - y^2 - 2xyy' + 2xy'y''$$

2.1First Integrls of the E-L equation

In some cases (2.3) (2nd order ODE) can be integrated once to a 1st order ODE "first integral". (i) f does not explicitly depend on y, $\frac{df}{dy} = 0$

$$\frac{\partial f}{\partial y} = 0$$

$$(2.3) \to \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) = 0 \implies \frac{\partial f}{\partial y'} = \text{ constant}$$

Example (continued). Squaring to solve for $(\phi')^2$

$$(\phi')^2 = \frac{\kappa^2}{\sin^2\theta \cdot (\sin^2 - \kappa^2)}$$
$$\phi = \pm \int \frac{\kappa d\theta}{\sin\theta \cdot \sqrt{\sin^2\theta - \kappa^2}}$$

Two solutions, each going one way around the sphere. Using substitution $\cot(\theta) = u$

$$\pm \frac{\sqrt{1-\kappa^2}}{\kappa} \cos(\phi - \phi_0) = \cot \theta$$

for $\phi_0 = \text{const.}$ Great circle

(ii) Consider, for general
$$f(x, y, y')$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(f - y'\frac{\partial f}{\partial y'}\right) = \frac{\partial f}{\partial x} + y'\frac{\partial f}{\partial y} + y''\frac{\partial f}{\partial y'} - y''\frac{\partial f}{\partial y'} - y'\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\partial f}{\partial y'}\right)$$
$$= y'(\underbrace{\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x}\frac{\partial f}{\partial y'}}_{=0}) + \frac{\partial f}{\partial x}$$

If f does not explicitly depend on x, i.e. $\frac{\partial f}{\partial x} = 0$ then

$$f - y' \frac{\partial f}{\partial y'} = \text{ const.}$$
 (2.5)

$$x = \frac{\theta - \sin \theta}{2K^2}$$
$$y = -\frac{1}{K^2} \sin^2 \frac{\theta}{2}$$

2.2 Fermat's Principle

Light/sound travels along paths between two points which requires least time. Rays are represented by path y = y(x). Speed of light c(x, y)

$$F[y] = \int \frac{\mathrm{d}l}{c} = \int_{\alpha}^{\beta} \frac{\sqrt{1 + (y')^2}}{c(x, y)} \,\mathrm{d}x$$

assume $c = c(x) \rightarrow \frac{\partial f}{\partial y} = 0$ so (2.4) gives

$$\frac{\partial f}{\partial y'} = \text{ const.}$$

$$\frac{y'}{\sqrt{1+(y')^2}c(x)} = \text{ const.}$$

3 Extensions of the Euler-Lagrange Equations

3.1 Euler-Lagrange Equations with Constraints

Extremise

subject to

$$G[y] = \int_{\alpha}^{\beta} g(x, y, y') \, \mathrm{d}x = K \text{ (constant)}$$

 $F[y] = \int_{\alpha}^{\beta} f(x, y, y') \,\mathrm{d}x$

Lagrange multiplier, extremise

$$\Phi[y;\lambda] = F[y] - \lambda G[y]$$

replace f in E-L by $f - \lambda g$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\partial}{\partial y'}\left(f-\lambda g\right)\right) - \frac{\partial}{\partial y}\left(f-\lambda g\right) = 0 \tag{3.1}$$

Constraint

$$\begin{split} L[y] &= \oint_C \mathrm{d}l = \oint_C \sqrt{1 + (y')^2} \, \mathrm{d}x = I \\ K &= y 0 \lambda \sqrt{1 + (y')^2} \end{split}$$

(Note: do not worry about the boundary trm in the derivation of the E-L, as C has no boundary) $\frac{\partial h}{\partial x} = 0$ so we use (2.5)

$$K = \text{const} = h - y' \frac{\partial h}{\partial y'} = y - \lambda \sqrt{1 + (y')^2} + y' \lambda \frac{y'}{\sqrt{1 + (y')^2}}$$
$$\implies K = y - \frac{\lambda}{\sqrt{1 + (y')^2}} \implies (y')^2 = \frac{\lambda^2}{(y - k)^2} - 1$$

solution $(x - x_0)^2 + (y - y_0)^2 = \lambda^2$ (circle of radius λ)

$$2\pi\lambda = L \implies \lambda = \frac{L}{2\pi}$$

Example. The Sturn-Liouville problem. $\rho(x) > 0 \text{ for } x \in [\alpha, \beta], \ \sigma = \sigma(x)$

$$F[y] = \int_{\alpha}^{\beta} [\rho \cdot (y')^2 + \sigma y^2] \,\mathrm{d}x \quad G[y] = \int_{\alpha}^{\beta} y^2 \,\mathrm{d}x$$

Minimise f subject to G = 1 (fixed ends)

$$\Phi[y;\lambda] = F[y] - \lambda(G[y] - 1)$$

$$h = \rho \cdot (y')^2 + \sigma \cdot y^2 - \lambda(y^2 - \frac{1}{\beta - \alpha})$$

$$\frac{\partial h}{\partial y'} = 2\rho y' \quad \frac{\partial h}{\partial y} = 2\sigma y - 2\lambda y$$

$$\underbrace{-\frac{d}{dx} \left(\rho \cdot y'\right) + \sigma \cdot y}_{\mathcal{L}(y)} = \lambda y \qquad (3.2)$$

 \mathcal{L} is the Sturm-Liouville operator. (3.2) is an eigenvalue problem e.g. if $\rho = 1$, $\sigma(x) =$ 'potential' in time-independent Shrodinger equation (IB Quantum Mechanics). If $\sigma > 0$, then F[y] > 0. Positive minimum equal to the lowest eigenvalue

Proof. (3.2) $\times y$ and integrate \int_{β}^{α} by parts

$$F[y] - \underbrace{[y \cdot y'\rho]^{\alpha}_{\beta}}_{0} = \underbrace{G[y]}_{1} \cdot \lambda$$

Lowest eigenvalue is the minimum of F[y]/G[y]

$\mathbf{3.2}$ Several dependent variables

$$\mathbf{y}(x) = (y_1(x), y_2(x), \dots, y_n(x))$$
$$F[\mathbf{y}] = \int_{\alpha}^{\beta} f(x, y_1, \dots, y_n, y'_1, \dots, y'_n) \, \mathrm{d}x$$
$$y_i \to y_i(x) + \varepsilon \eta_i(x) \quad i = 1, \dots, n \quad \eta_i(\alpha) = \eta_i(\beta) = 0$$

Following the derivation of the E-L equation:

$$F[\mathbf{y} + \varepsilon \eta] - F[\mathbf{y}] = \int_{\alpha}^{\beta} \sum_{i=1}^{n} \eta_i \left(\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'_i}\right) - \frac{\partial f}{\partial y_i}\right) \mathrm{d}x + \text{ boundary term } + O(\varepsilon^2)$$

Use Lemma

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'_i} \right) = \frac{\partial f}{\partial y_i} \tag{3.3}$$

A system of n 2nd order ODEs.

- First integrals of 3.3 If $\frac{\partial f}{\partial y_j} = 0$ for some $1 \le j \le n$ then, by (3.3) $\frac{\partial f}{\partial y'_j} = \text{const.}$ If $\frac{\partial f}{\partial x} = 0$, then $f \sum_i y' \frac{\partial f}{\partial y_i} = \text{const.}$

Example. Geodesics on surfaces $\Sigma \subset \mathbb{R}^3$ (surface) given by

$$g(x, y, z) = 0$$

Geodesic = shortest path on the surface between $A, B \in \Sigma$ (if one exists). t = parameter on the curve

$$\begin{split} A &= \mathbf{x}(0) \\ B &= \mathbf{x}(1) \quad \mathbf{x} = (x, y, z) \\ \Phi[\mathbf{x}, \lambda] &= \int_0^1 \underbrace{\sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} - \lambda(t) \cdot g(x, y, z)}_{h(x, y, z, \dot{x}, \dot{y}, \dot{z}, \lambda)} \, \mathrm{d} t \end{split}$$

Note: The Lagrange multiplier λ is now a function of t as we want the entire curve to lie on Σ . E-L equations with h.

• Variation w.r.t. λ :

$$\underbrace{\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial h}{\partial \dot{x}}\right)}_{0} - \frac{\partial h}{\partial \lambda} = 0 \implies g(x, y, z) = 0 \quad \forall t$$

• Variation w.r.t. $x_i = (x, y, z)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\dot{x}_i}{\sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}} \right) + \lambda \frac{\partial g}{\partial x_i} = 0 \quad i = 1, 2, 3$$

Alternatively, solve the constraint g = 0, as we did in example 2.2 ($\Sigma =$ sphere)

3.3 Several Independent Variables

In general $\Phi : \mathbb{R}^n \to \mathbb{R}^m$. In n > 1, E-L become PDEs. Assume that n = 3, m = 1

$$F[\phi] = \iiint_D f(\underbrace{x, y, z}_{\text{indep}}, \phi, \phi_x, \phi_y, \phi_z), \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

notation $\phi_x = \frac{\partial \phi}{\partial x}$ etc. Volume integral over a domain $D \subset \mathbb{R}^3$. Assume ϕ extremum, consider perturbations

$$\phi \to \phi(x, y, z) + \varepsilon \eta(x, y, z)$$
 s.t. $\eta = 0$ on ∂D

$$F[\phi + \varepsilon\eta] - F[\phi] = \varepsilon \int_{D} (\eta \frac{\partial f}{\partial \phi} + \eta_x \frac{\partial f}{\partial \phi_x} + \eta_y \frac{\partial f}{\partial \phi_y} + \eta_z \frac{\partial f}{\partial \phi_z}) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z + O(\varepsilon^2)$$
$$= \varepsilon \int_{D} \eta \frac{\partial f}{\partial \phi} + \nabla \cdot (\eta (\frac{\partial f}{\partial \phi_x}, \frac{\partial f}{\partial \phi_y}, \frac{\partial f}{\partial \phi_z})) - \eta \nabla \cdot (\frac{\partial f}{\partial \phi_x}, \frac{\partial f}{\partial \phi_y}, \frac{\partial f}{\partial \phi_z}) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z + O(\varepsilon^2)$$

Apply divergence theorem to first div term and use

$$\int_{\partial D} \eta(\frac{\partial f}{\partial \phi_x}, \frac{\partial f}{\partial \phi_y}, \frac{\partial f}{\partial \phi_z}) \cdot \mathrm{d}\mathbf{s} = 0$$

as $\eta = 0$ on ∂D

$$F[\phi + \varepsilon \eta] - F[\phi] = \varepsilon \int \eta(\frac{\partial f}{\partial \phi} - \nabla \cdot (\frac{\partial f}{\partial \phi_x}, \frac{\partial f}{\partial \phi_y}, \frac{\partial f}{\partial \phi_z})) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z + O(\varepsilon^2)$$

E-L equation: single 2nd order PDE for one function ϕ

$$\frac{\partial f}{\partial \phi} - \sum_{i=1}^{m} \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial \partial_i \phi} \right) = 0 \tag{3.4}$$

remains valid with $3 \rightarrow n$

Example. Extremise 'potential energy' n = 2

$$F[\phi] = \iint_D \frac{1}{2} [\phi_x^2 + \psi_y^2] \, \mathrm{d}x \, \mathrm{d}y$$
$$\frac{\partial f}{\partial \phi} = 0 \quad \frac{\partial f}{\partial \phi_x} = \phi_x \quad \frac{\partial f}{\partial \phi_y} = \phi_y$$
$$(3.4) \to \frac{\partial \phi_x}{\partial \phi_x} + \frac{\partial \phi_y}{\partial y} = 0$$

i.e.

$$\phi_{xx} + \phi_{yy} = 0$$

(Laplace equation)

$$A[\phi] = \int_D \sqrt{1 + \phi_x^2 + \phi_y^2} \,\mathrm{d}x \,\mathrm{d}y$$

Apply E-L (3.4) to h

$$\frac{\partial h}{\partial \phi_x} = \frac{\phi_x}{\sqrt{1 + \phi_x^2 + \phi_y^2}} \quad \frac{\partial h}{\partial \phi_y} = \frac{\phi_y}{\sqrt{1 + \phi_x^2 + \phi_y^2}}$$
$$\partial_x \left(\frac{\phi_x}{\sqrt{1 + \phi_x^2 + \phi_y^2}} \quad \frac{\partial h}{\partial \phi_y}\right) + \partial_y \left(\frac{\phi_y}{\sqrt{1 + \phi_x^2 + \phi_y^2}}\right) = 0$$

Expand derivatives (exercise)

$$(1 + \phi_y^2)\phi_{xx} + (1 + \phi_x^2)\phi_{yy} - 2\phi_x\phi_y\phi_{xy} = 0$$
(3.5)

The minimal surface equation. Assume circular symmetry

$$z = \phi(r) \quad r = \sqrt{x^2 + y^2}$$
$$\phi_x = \frac{\mathrm{d}z}{\mathrm{d}r} \frac{\partial r}{\partial x} = z' \frac{x}{r} \quad \phi_y = z' \frac{x}{r}$$

by calculating 2nd derviatives, we get from (3.5) the ODE

$$rz'' + z' + (z')^3 = 0$$

Set z' = w to get

$$\frac{1}{2}r\frac{\mathrm{d}w^2}{\mathrm{d}r} + w^2 + w^4 = 0$$

Solution

$$r = r_0 \cosh\left(\frac{z - z_0}{r_0}\right)$$

3.4 Higher Derivatives

Equation.

$$F[y] = \int_{\alpha}^{\beta} f(x, y, y', \dots, y^{(n)}) \,\mathrm{d}x$$

Proceed as in section 2. Assume y exists, $y \to t + \varepsilon \eta$ where

$$\eta = \eta' = \dots = \eta^{(n-1)} = 0$$
 at α, β

$$F[y+\varepsilon\eta] - F[y] = \varepsilon \int_{\alpha}^{\beta} \left(\frac{\partial f}{\partial y}\eta + \frac{\partial f}{\partial y'}\eta' + \dots + \frac{\partial f}{\partial y^{(n)}}y^{(n)}\right) \mathrm{d}x + O(\varepsilon^2)$$

Apply Lemma

$$\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) + \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(\frac{\partial f}{\partial y''} \right) + \dots + (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(\frac{\partial f}{\partial y^{(n)}} \right)$$
(3.6)

Euler-Lagrange equation

Example. If
$$n = 2$$
 and if $\frac{\partial f}{\partial y} = 0$

$$(3.6) \rightarrow \frac{d}{dx} \left(\frac{\partial f}{\partial y'} - \frac{d}{dx} \frac{\partial f}{\partial y''} \right) = 0$$
so
$$\frac{\partial f}{\partial y'} - \frac{d}{dx} \frac{\partial f}{\partial y''} = \text{const.}$$

Example. Extremise $F[y] = \int_0^1 (y'')^2 dx$ where y(0) = y'(0) = 0 and y(1) = 0, y'(1) = 1

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(2y^{\prime\prime}\right) = \text{ const.} \implies y^{\prime\prime\prime} = k \text{ const}$$

Impose boundary conditions to get $y = x^3 - x^2$

Note. This is an absolute minimum. $Y_0 = x^3 - x^2$

$$\eta(0) = \eta'(0) = \eta(1) = \eta'(1) = 0$$

(do not assume η small)

$$F[y_0 + \eta] - F[y_0] = \int_0^1 (\eta'')^2 \, dx + 2 \cdot \int_0^1 (y_0''\eta'') \, dx > 4 \int_0^1 (3x - 1)\eta''$$
$$= 4([-\eta]_0^1 + \int_0^1 \frac{d}{dx} (3x\eta') - \eta) dx$$
$$= 4([3x\eta']_0^1 - 3\eta]_0^1) = 0$$

 y_0 absolute minimiser of F

4 Least Action Principle and Noether's Theorem

Particle \mathbb{R}^3 , T = kinetic energy, V = potential energy.

$$L(\mathbf{x}, \dot{\mathbf{x}}, t) = T - V \tag{4.1}$$

is the Langranian. t is the independent variable, $\mathbf{x} = (x, y, z)$ are dependent variables. Action

$$S[\mathbf{x}] = \int_{t_1}^{t_2} L \,\mathrm{d}t \tag{4.2}$$

Hamilton's principle (Least action principle, or principle of stationary action). The motion is such that $S[\mathbf{x}]$ is stationary, i.e. L satisfies the E-L equations

Example.

$$T = \frac{1}{2}m|\dot{\mathbf{x}}|^2 \quad V = V(\mathbf{x})$$
$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{x}_i}\right) = \frac{\partial L}{\partial \dot{x}_i}$$

$$m\ddot{x}_i = -\frac{\partial V}{\partial x_i}$$
 or $m\ddot{\mathbf{x}} = -\nabla V$

Newton's 2nd Law

Euler-Lagrange equations give

Example. Central force in 2 dimensions:

F

$$L = \frac{1}{2}m(\dot{r}^{2} + r^{2}\dot{\theta}^{2}) - V(r)$$

$$\frac{d}{dt}\left(\frac{\partial l}{\partial \dot{r}}\right) - \frac{\partial L}{\partial r} = 0$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\frac{\partial \theta}{0}} = 0$$

$$\implies \frac{\partial L}{\partial \dot{\theta}} = mr^{2}\dot{\theta} = \text{const.}$$

$$\dot{r}\dot{m}\dot{r} + \dot{\theta}mr^{2}\dot{\theta} - \frac{1}{2}m\dot{r}^{2} - \frac{1}{2}mr^{2}\dot{\theta}^{2} + V(r) = \underbrace{\frac{1}{2}m\dot{r}^{2} + \frac{1}{2}mr^{2}\dot{\theta}^{2}}_{T} + V(r) = E$$

which is constant. Conservation of total energy

4.1 Noether's Theorem

$$F[\mathbf{y}] = \int_{\alpha}^{\beta} f(y_i, y'_i, x) \,\mathrm{d}x \quad i = 1, \dots, n$$

Suppose \exists a 1-parameter family of transformations $y_i(x) \to Y_i(x,s)$ s.t. $Y_i(x,0) = y_i(x)$. This is a continuous symmetry of a Lagrangian f, if

$$\frac{\mathrm{d}}{\mathrm{d}s}\left(f(Y_i(x,s),Y_i'(x,s),x)\right) = 0$$

Theorem (Noether's Theorem). Given a continuous symmetry $Y_i(x,s)$ of f, the quantity

$$\sum_{i} \frac{\partial f}{\partial y_i} \frac{\partial Y_i}{\partial s} |_{s=0}$$
(4.3)

is a first integral of the E-L equation with $Y_i(x,0) = y_i(x) \ \forall i$

 $\mathbf{0}$

Proof.

$$0 = \frac{\mathrm{d}}{\mathrm{d}s} \left(f|_{s=0} \right) = \frac{\partial f}{\partial y_i} \frac{\mathrm{d}f_i}{\mathrm{d}s}|_{s=0} + \frac{\partial f}{\partial y_i} \frac{\partial Y'_i}{\partial s}|_{s=0}$$
$$= \left[\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'_i} \right) \frac{\mathrm{d}Y_i}{\mathrm{d}s} + \frac{\partial f}{\partial y'_i} \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}Y_i}{\mathrm{d}s} \right) \right]|_{s=0}$$
$$= \frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{\partial f}{\partial y'_i} \frac{\partial Y_i}{\partial s} \right]|_{s=0} = 0$$

Example.

$$f = \frac{1}{2}(y')^2 + \frac{1}{2}(z')^2 - V(y-z), \quad \mathbf{y} = (y,z)$$

Lagrangian of a particle moving on a plane in a potential.

$$Y = y + s$$
 $Z = z + s$ $Y' = y'$ $Z' = z'$ $V(Y - Z) = V(y - z)$

 \mathbf{so}

$$\frac{\mathrm{d}f}{\mathrm{d}s} = 0$$

$$(4.3) \to \left(\frac{\partial f}{\partial y'}\frac{\mathrm{d}Y}{\mathrm{d}s} + \frac{\partial f}{\partial z'}\frac{\mathrm{d}Z}{\mathrm{d}y}\right) = y' + z'$$

(conserved momentum in y + z direction)

Example. Back to example 4.2, $\Theta = \theta + s$, R = r

$$\frac{\mathrm{d}L}{\mathrm{d}s} = 0$$

$$(4.3) \to \left(\frac{\partial L}{\partial \dot{\theta}}\frac{\partial \theta}{\partial s} + \frac{\partial L}{\partial \dot{r}}\frac{\partial R}{\partial s}\right)|_{s=0} = mr^2\dot{\theta}$$

(conserved angular momentum). Isotropy of space gives rotational invariance of L

5 Convex Functions

Going back to calculus on \mathbb{R}^n , a class of functions for which it is easy to classify stationary points

Remarks.

- (i) f is concave if we replace \leq by \geq in (5.1)
- (ii) f convex $\iff -f$ concave
- (iii) f strictly convex if we replace \leq by < in (5.1)

Example. $f : \mathbb{R} \to \mathbb{R}, f(x) = x^2 \text{ domain } \mathbb{R} \text{ (convex)}$ $f((1 - t)x + tx) = (1 - t)f(x) - f(x) = [(1 - t)x + tx]^2 - (1 - t)x^2 - tx^2$

$$\begin{aligned} ((1-t)x+ty) - (1-t)f(x) - tf(y) &= [(1-t)x+ty]^2 - (1-t)x^2 - ty^2 \\ &= x^2(1-t) \cdot (-t) + ty^2(1-t) + 2(1-t)txy \\ &= (1-t)t(x-y)^2 < 0 \quad \forall 0 < t < 1 \end{aligned}$$

strictly convex

Example. f(x) = 1/x, domain $\mathbb{R} \setminus \{0\}$, not a convex set. On restricted domain $\mathbb{R} > 0$, f is convex

Conditions for Convexity 5.1

3 tests for f to be convex

(i) If f is once differentiable, then f is convex iff

$$f(\mathbf{y}) \ge f(\mathbf{x}) + (\mathbf{y} - \mathbf{x}) \cdot \nabla f(\mathbf{x})$$
(5.2)

Proof. Assume (5.2) holds, and apply it twice

$$f(\mathbf{x}) \ge f(\mathbf{z}) + (\mathbf{x} - \mathbf{z}) \cdot \nabla f(\mathbf{z})$$
(i)

$$f(\mathbf{y}) \ge f(\mathbf{z}) + (\mathbf{y} - \mathbf{z}) \cdot \nabla f(\mathbf{z})$$
(ii)

Take $\mathbf{z} = (1 - t)\mathbf{x} + t\mathbf{y} \in S$ (the domain of f), 0 < t < 1

$$(1-t) \cdot (i) + t \cdot (ii) \rightarrow \nabla f(\mathbf{z})$$
 cancel. get (5.1)

Converse: assume convexity (5.1) and set

$$h(t) = (1-t)f(\mathbf{x}) + t(f(\mathbf{y})) - f((1-t)\mathbf{x} + t\mathbf{y}) \ge 0$$
$$h'(0) = -f(\mathbf{x}) + f(\mathbf{y}) - (\mathbf{y} - \mathbf{x}) \cdot \nabla f(\mathbf{x})$$

$$h'(0) = -f(\mathbf{x}) + f(\mathbf{y}) - (\mathbf{y} - \mathbf{x}) \cdot \nabla f(\mathbf{x})$$

So (5.2) is equivalent to $h'(0) \ge 0$. Note h(0) = 0, so

$$\frac{h(t) - h(0)}{t} \ge 0 \quad 0 < t < 1$$

Now take the limit $t \to 0$

Corollary. If f is convex and have a stationary point, then it is a global minimum

Proof. Given $\nabla f(\mathbf{x}_0) = 0$, we get from (5.2) that $f(\mathbf{y}) \ge f(\mathbf{x}_0) \ \forall \mathbf{y}$

(ii) If

$$\left(\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\right) \cdot \left(\mathbf{y} - \mathbf{x}\right) \ge 0 \tag{5.3}$$

then f is convex (f' monotonically increasing if n = 1)

Proof. exercise

(iii) (Second order conditions): Assume f twice differentiable, then f convex iff the Hessian $\frac{\partial^2 f}{\partial x^i \partial x^j}$ has all eigenvalues non-negative. If all eigenvalues positive, then f is strictly convex

Proof. Assume convex and apply (5.3) by taking $\mathbf{y} = \mathbf{x} + \mathbf{h}$

$$\mathbf{h} \cdot (\nabla f(\mathbf{x} + \mathbf{h}) - \nabla f(\mathbf{y})) \ge 0$$

for small **h**:

$$\partial_i f(\mathbf{x} + \mathbf{h}) = \partial_i f(\mathbf{x}) + \sum_j h_j H_{ij}(\mathbf{x}) + O(|\mathbf{h}|^2)$$

So (by dotting with \mathbf{h})

$$\sum_{j,i} h_i h_j H_{ij}(\mathbf{x}) + O(|\mathbf{h}|^2) \ge 0$$

Example.

$$f(x,y) = \frac{1}{xy} \quad x,y > 0$$
$$H = \frac{1}{xy} \begin{bmatrix} \frac{2}{x^2} & \frac{1}{xy} \\ \frac{1}{xy} & \frac{2}{y^2} \end{bmatrix} \quad \det(H) = \frac{3}{x^3y^3} > 0 \quad \operatorname{tr}(H) > 0$$

so f is strictly convex

6 Legendre Transform

Definition. The Legendre transform of $f : \mathbb{R}^n \to \mathbb{R}$ is

$$f^*(\mathbf{p}) = \sup_{\mathbf{x}} (\mathbf{p} \cdot \mathbf{x} - f(\mathbf{x})) \tag{6.1}$$

The domain of f^* consists of all vectors $\mathbf{p} \in \mathbb{R}^n$ s.t. the sup is finite

Example. $n = 1, f(x) = ax^2 \ a > 0$

$$f^*(p) = \sup_x (px - ax^2) \quad \frac{\partial}{\partial x} (px - ax^2) = 0 \implies p = 2xa$$

So x = p/2a and substitute

$$f^*(p) = p\frac{p}{2a} - a(\frac{p}{2a})^2 = \frac{p^2}{4a}$$

Compute $(f^*)^*(s) = \sup_p (sp - \frac{p^2}{4a}) \implies p = 2as$

 $f^{**}(s) = as^2$

so $f^{**}=f$ (always true if f convex) If $a<0,\,\sup_x(px-ax^2)=\infty\;\forall p$ so f^* has empty domain

Prop. Domain of f^* is a convex set, find f^* convex

Proof.

$$f^*((1-t)\mathbf{p}+t\mathbf{q}) = \sup_{\mathbf{x}}[(1-t)\mathbf{p}\cdot\mathbf{x}+t\mathbf{q}\cdot\mathbf{x}-f(\mathbf{x})] = \sup_{\mathbf{x}}[(1-t)[\mathbf{p}\cdot\mathbf{x}-f(\mathbf{x})]+t(\mathbf{q}\cdot\mathbf{x}-f(\mathbf{x}))]$$

Use $\sup(A+B) \leq \sup(A) + \sup(B)$ to get

$$LHS \le (1-t)f^*(\mathbf{p}) + tf^*(\mathbf{q})$$

(i)

$$(1-t)\mathbf{p} + t\mathbf{q} \in D(f^*)$$

(ii) f^* satisfies convextiy definition (5.1)

Note. In practice, if f convex and diffrentiable,

 $f^*(\mathbf{p}) = \text{global minimum over } \mathbf{x}$ $\nabla(\mathbf{p} \cdot \mathbf{x} - f(\mathbf{x})) = 0 \implies \mathbf{p} = \nabla f$

(substitute to definition of $f^*(p)$) If f is strictly convex, then \exists unique inversion $\mathbf{x} = \mathbf{x}(\mathbf{p})$ so that

$$f^*(\mathbf{p}) = \mathbf{p} \cdot \mathbf{x}(\mathbf{p}) - f(\mathbf{x}(\mathbf{p})) \tag{6.2}$$

6.1 Applications to Thermodynamics

Many particles (gas ~ 10^{23} particles) so we use a few macroscopic variables: p (pressure), V (volume), T (temperature), S (entropy). (Part II Statistical Physics) Internal energy U(S, V). Hermholtz free is defined

$$F(T,V) = \min_{S} (U(S,V) - TS) = \max_{S} (TS - U(S,V)) = -U^{*}(T,V)$$

Legendre transform of U w.r.t. S, with V held fixed as a parameter

$$\frac{\partial}{\partial S} \left(TS - U(S, V) \right) |_{T, V} = 0 \rightarrow R = \frac{\partial U}{\partial S} |_{V}$$

Other quantities as Legendre transform e.g. Entropy

$$H(S,p) = \min_{V}(U(S,V) + pV) = -U^{*}(-p,S)$$

at min

$$p = -\left(\frac{\partial U}{\partial V}\right)|_S$$

Entropy is a fixed parameter. The Legendre transform is a way to swap from (S, V) dependence to dependence of other variables

7 Hamilton's Equations

Remark. Recall (section 4.1) Lagranian $L = T - V = L(\mathbf{q}, \dot{\mathbf{q}}, t)$ function on the configuration space

Definition. The Hamiltonian is the Legendre transform of h w.r.t. $\dot{\mathbf{q}} = \mathbf{v}$

$$H(\mathbf{q}, \mathbf{p}, t) = \sup(\mathbf{p} \cdot \mathbf{v} - h) = \mathbf{p} \cdot \mathbf{v} - L(\mathbf{q}, \mathbf{v}, t)$$

where $\mathbf{v} = \mathbf{v}(\mathbf{p})$ is the solution to

$$p_i = \frac{\partial}{\partial L \dot{q}_i}$$

(assume convexity of L in \mathbf{v}). p is the generalised momentum

Example.

$$T = \frac{1}{2}m|\dot{\mathbf{q}}|^2 \quad V = V(\mathbf{q})$$
$$\mathbf{p} = \frac{\partial L}{\partial \dot{\mathbf{q}}} = m\dot{\mathbf{q}} \rightarrow \dot{\mathbf{q}} = \frac{\mathbf{p}}{m}$$
$$(\mathbf{q}, \mathbf{p}, t) = \mathbf{p} \cdot \frac{\mathbf{p}}{m} - (\frac{1}{2}m\frac{|\mathbf{p}|^2}{m^2} - V(\mathbf{q}))$$
$$= \frac{1}{2m}|\mathbf{p}|^2 + V(\mathbf{q}) \text{ (the total energy)}$$

What happened to the Euler-Lagrange equations?

H

$$H = H(\mathbf{q}, \mathbf{p}, t) = p_i \dot{q}^i = L(q^i, \dot{q}^i, t)$$

$$dH = \frac{\partial H}{\partial q^{i}} dq^{i} + \frac{\partial H}{\partial p_{i}} dp_{i} + \frac{\partial H}{\partial t} dt$$

$$= p_{i} d\dot{q}^{i} + \dot{q}^{i} dp_{i} - \frac{\partial h}{\partial q^{i}} dq^{i} - \frac{\partial L}{\partial \dot{q}^{i}} d\dot{q}^{i} - \frac{\partial L}{\partial t} dt$$

$$= \dot{q}^{i} dp_{i} - \dot{p}_{i} dq^{i} - \frac{\partial L}{\partial t}$$

by E-L. Compare differentials

$$\dot{q}^{i} = \frac{\partial H}{\partial p_{i}} \quad \dot{p}_{i} = -\frac{\partial H}{\partial q^{i}} \quad \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$$
(7.2)

Warning.

$$\frac{\partial}{\partial t}\big|_{p,q} \neq \frac{\partial}{\partial t}\big|_{q,\dot{q}}$$

Assume no explicit t-dependence in L. Then (7.2) is a system of 2n 1st order ODEs. Need to specify $q^i(0), p_i(0), i = 1, ..., n$. Solution curves to (7.2) are trajectories in 2n-dimensional phase space

Remark. Hailton's equations also arise from extremizing a functional in phase space

$$S[\mathbf{q}, \mathbf{p}] = \int_{t_1}^{t_2} \underbrace{(\dot{q}^i p_i - H(\mathbf{q}, \mathbf{p}, t))}_{f(\mathbf{q}, \mathbf{p}, \dot{\mathbf{q}}, \dot{\mathbf{p}}, t)} \, \mathrm{d}t$$

E-L for S

• Variation w.r.t.
$$p_i$$

$$\frac{\partial f}{\partial p_i} - \underbrace{\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{p}_i} \right)}_{\mathbf{0}} = 0 \implies \dot{q}^i = \frac{\partial H}{\partial \dot{p}_i}$$

• Variation w.r.t. q^i

$$\frac{\partial f}{\partial q^i} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{q}^i} \right) = 0 \implies \dot{q}^i = -\frac{\partial H}{\partial \dot{q}^i} - \frac{\mathrm{d}p_i}{\mathrm{d}t} = 0$$
$$\dot{p}_i = -\frac{\partial H}{\partial q^i}$$

Recovered (7.2), Newton's equation, Lagrange's equation, Hamiltons equation so far (7.2) is just another formulation

8 The Second Variation

E-L equation gives us necessary conditon so we could get a minimum, maximum or a saddle point. And so we look at the nature of stationary points of

$$F[y] = \int_{\alpha}^{\beta} f(x, y, y') \,\mathrm{d}x$$

Expand $F[y + \varepsilon y]$ to 2nd order in ε around a solution to E-L equation

$$F[y+\varepsilon\eta] - F[y] = \int_{\alpha}^{\beta} [f(x,y+\varepsilon\eta,y'+\varepsilon'\eta') - f] \, \mathrm{d}x$$

= 0 + \varepsilon \begin{subarray}{c} &\beta & \\ & & & \\ & & &

2nd variation is

$$\begin{split} \delta^2 F[y] &\equiv \frac{1}{2} \int_{\alpha}^{\beta} [\eta^2 \frac{\partial^2 f}{\partial y^2} + (\eta')^2 \frac{\partial f}{\partial (y')^2} + \frac{\mathrm{d}}{\mathrm{d}x} \left(\eta^2\right) \frac{\partial^2 f}{\partial y' \partial y}] \,\mathrm{d}x \\ &= \frac{1}{2} \int_{\alpha}^{\beta} Q \eta^2 + P(\eta')^2 \,\mathrm{d}x \end{split}$$

where

$$P = \frac{\partial f}{\partial (y')^2} \quad Q = \frac{\partial^2 f}{\partial y^2} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial^2 f}{\partial y' \partial y} \right)$$
(8.1)

we have proved

Prop. If y(x) is a solution to the E-L equation (2.3) and $Q\eta^2 + P(\eta')^2 > 0 \ \forall \eta$ vanishing at α, β then y(x) is a local minimizer of F[y]

Example. Geodesics on a plane (in section 2)

$$f = \sqrt{1 + (y')^2} : \begin{cases} P &= \frac{\partial}{\partial y'} \left(\frac{y'}{\sqrt{1 + (y')^2}} \right) \to \frac{1}{(1 + (y')^2)^{3/2}} > 0\\ Q &= 0 \end{cases}$$

If $\eta' = 0$, then $\eta = 0$, so $\eta' \neq 0$ and $P(\eta')^2 > 0 \ \forall \eta$ so straight lines are local length minimizers on \mathbb{R}^2

Prop. If $y_0(x)$ is a local minimum, then

$$P = \frac{\partial^2 f}{\partial (y')^2}\Big|_{y_0} \ge 0 \tag{8.2}$$

so the Legendre condition is necessary for local min. "P is more important than Q in (8.1)"

Proof. See Gelfend-Fomin for details. Idea: if η' small, then η canbe too lare. Converse not true: η can be small, η' large. Assume $\exists x_0 \text{ s.t. } P(x_0, y_0, y'_0) < 0$

Note. (8.2) not sufficient for local minimum see section 8.1 but $P > 0, Q \ge 0$ is sufficient as if $\eta \ne 0$ on (α, β) then $\exists x_0 \in (\alpha, \beta)$ s.t. $\eta'(x_0) \ne 0$

Example. Go back to Brachistochrome

$$f=\sqrt{\frac{1+(y')^2}{-y}}$$

Is cycloid a minimizer?

$$\frac{\partial f}{\partial y} = -\frac{1}{2y}f \quad \frac{\partial f}{\partial y'} = \frac{y'}{\sqrt{1+(y')^2}\sqrt{-y}}$$
$$P = \frac{1}{(1+(y'))^{3/2}\sqrt{-y}} > 0$$
$$Q = \dots = \frac{1}{2\sqrt{1+(y^2)^2}y^2\sqrt{-y}}$$

8.1 Associated Eigenvalue Problem

Go back to (8.1)

$$Q\eta^{2} + P(\eta')^{2} = Q\eta^{2} + \frac{\mathrm{d}}{\mathrm{d}x} \left(P\eta\eta'\right) - \eta(P\eta')'$$

integrate, drop the boundary term as $\eta = 0$ at α, β

$$\delta^2 F[y_0] = \frac{1}{2} \int_{\alpha}^{\beta} \eta[\underbrace{-(P\eta')' + Q\eta}_{\mathcal{L}(\eta)}] \,\mathrm{d}x$$
(8.3)

Sturn-Liouville operator. If $\exists \eta$ s.t.

$$\begin{cases} \mathcal{L}(\eta) = -\omega\eta \; (\omega \text{ real}) \\ \eta(\alpha) = \eta(\beta) = 0 \end{cases}$$
(8.4)

Then y_0 is not a minimizer as

$$\delta^2 F[y_0] = -\frac{1}{2}\omega^2 \int_{\alpha}^{\beta} \eta^2 \,\mathrm{d}x < 0$$

(8.4) can have solutions even if P > 0, so the Legendre condition (8.2) is not sufficient for y_0 to be a minimizer

Example.

$$F[y] = \int_0^\beta [(y')^2 - y^2] \,\mathrm{d}x$$

with $y(0) = y(\beta = 0 \text{ and } \beta \neq N\pi \ N \in \mathbb{N})$

 $(2.3) \rightarrow y'' + y = 0 \implies y = y_0 = 0$

is the stationary point of F[y]. 2nd variation:

$$\delta^2 F[0] = \frac{1}{2} \int_0^\beta [(\eta')^2 - \eta^2] \,\mathrm{d}x \quad P = 1 > 0$$

but Q < 0. Examine (8.4):

$$-\eta'' - \eta = -\omega^2 \eta \quad \eta(0) = \eta(\beta) = 0$$

Take

$$\eta = A \cdot \sin\left(\frac{\pi x}{\beta}\right) \to \left(\frac{\pi}{\beta}\right)^2 = 1 - \omega^2$$

Possible if $\beta > \pi$. So, if P > 0 a problem mat arise if the interval is "too large".

8.2 The Jacobi Condtion

Legendre tried to prove that P > 0 is sufficient for $y = y_0$ to be a local minimum. This couldn't have worked (last example), but the idea was good.

Let $\phi = \phi(x)$ be a any differentiable function of x on $[\alpha, \beta]$

$$0 = \int_{\alpha}^{\beta} (\phi \eta^2)' \, \mathrm{d}x = \int_{\alpha}^{\beta} \phi' \eta^2 + 2\eta \eta' \phi \, \mathrm{d}x$$

(as $\eta(\alpha) = \eta(\beta) = 0$). Adding to (8.1), we can rewrite

$$\delta^2 F[y] = \frac{1}{2} \int_{\alpha}^{\beta} (P(\eta')^2 + 2\eta \eta' \phi + (Q + \phi')\eta^2) \,\mathrm{d}x$$

Assume $P|_y > 0$ and complete the square

$$\delta^{2} F[y] = \frac{1}{2} \int_{\alpha}^{\beta} \left[P(\eta' + \frac{\phi}{P}\eta)^{2} + \underbrace{(Q + \phi - \frac{\phi}{P})\eta^{2}}_{=0 \text{ if } (8.3) \text{ holds}} \right] \mathrm{d}x$$

which is positive if we can choose ϕ s.t.

$$\phi^2 = P(Q + \phi') \tag{8.3}$$

If (8.3) holds, then $\delta^2 F > 0$ unless

$$\eta' + \frac{\phi}{P}\eta = 0 \tag{(**)}$$

on $[\alpha, \beta]$. But $\eta = 0$ at α , so $\eta'(\alpha) = 0$ if (**) holds but then $\eta \equiv 0$ on $[\alpha, \beta]$ (uniqueness of solution to 1st order ODEs), so (**) $\neq 0$.

Method. Does a solution to (8.3) exist on $[\alpha, \beta]^2$ Transform (8.3) into a linear 2nd order ODE by setting $\phi = -Pu'/u$ where $u \neq 0$ on $[\alpha, \beta]$

$$P(\frac{u'}{u})^2 = Q - (\frac{(Pu')}{u})' = Q - \frac{(Pu')'}{u} + P(\frac{u'}{u})^2 - (Pu')' + Qu - 0$$
(8.4)

or

This is the Jacobi accessory condition.

Need a solution to (8.4) (which is $\mathcal{L}(u) = 0$) s.t. $u \neq 0$ on $[\alpha, \beta]$. This may not exist on a large enough interval

Example.

$$F[y] = \frac{1}{2} \int_{\alpha}^{\beta} [(y')^2 - (y^2)] dx$$
$$\rightarrow y + \varepsilon \eta \quad \delta^2 F[y] = \frac{1}{2} \int_{\alpha}^{\beta} [(\eta')^2 - \eta^2] dx \quad P = 1, Q = -1$$

(8.4) is u'' + u = 0, general solution $u = A \sin x + B \cos x$. Want u to be non-zero on $[\alpha, \beta]$, i.e.

$$\tan(x) \neq \frac{B}{A}$$

possible to avoid B/A on interval smaller than π

 $|\beta - \alpha| < \pi \rightarrow \text{ positive nd variation}$

Example. Back to geodesics on the sphere

y

$$f = \sqrt{\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2} = \sqrt{(\theta')^2 \sin^2\theta} \mathrm{d}\theta \quad \theta = \theta(\phi)$$

Found earlier that critical points are segments of great circles $\theta = \text{const}, \theta_0 = \pi/2$ (any great circle is this after a rotation)

$$\frac{\partial^2 f}{\partial (\theta')^2} \Big|_{\theta_0} = 1 = P \quad Q = \dots = -1$$
$$\delta^2 F[\theta_0 = \frac{\pi}{2} l\eta] = \frac{1}{2} \int_{\phi_1}^{\phi_2} [(\eta')^2 - \eta^2] \,\mathrm{d}\phi$$

positive if $\phi_2 - \phi_1 < \pi$