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0 Motivation

Example (The Brechistochrome Problem). A particle slides on a wire, under influence of gravity
between two fixed points A, B. Which shape of the wire gives the shortest travel time, starting from
rest?

y

x
x2

y2

A

B

Johenn Bernoulli proposed the problem of finding the optimal shape, in 1696. Travel time:

T =

∫
dt =

∫ B

A

dl

v(x, y)

K.E.+ V = const. (energy conservation)

1

2
mv2 +mgy = mgy1 = 0 v =

√
2g
√
−y

Minimise

T [y] =
1√
2g

∫ x2

0

√
1 + (y′)2√
−y

dx

subject to y(0) = 0, y(x2) = y2.
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Example (Geodesic). Finding the shortest path γ between 2 points on a surface Σ (if one exists).
Take Σ = R2 (a plane, Pythagorean theorem holds).

y

x
x2

y2

A

B

x1

γ

R2

Distance along γ:

D[y] =

∫ B

A

dl =

∫ x2

x1

√
1 + (y′)2 dx

Seek to minimise D by varying γ.

Remark. Generally, we are trying to minimise (maximise)

F [y] =

∫ x2

x1

f(x, y(x), y′(x)) dx (0.1)

among all functions s.t. y(x1) = y1, y(x2) = y2.
(0.1) is a functional (a function on the space of functions)
Functions map numbers to numbers. Functionals map functions to numbers e.g.

•
y

x
x2x1

y(x)→area under the graph

f(x, y, y′) = y

• curve → length
f(x, y, y′) =

√
1 + (y′)2
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Calculus of variations is finding extrema (min/max/stable) of functions on spaces of functions.

Notation. C(R) is the space of continuous functions on R
Ck(R) is the space of continuous functions on R with continuous k-th derivatives
Ckα,β)(R) is the space of continuous functions on R with continuous k-th derivatives s.t. f(α) = f(β)

Warning. NEED to specify the function space beforehand (a branch of Functional Analysis – Part
III – analysis on the space of functions)

Variational Principles are principles in nature where the laws follow from extremising Functionals

Example (Fermat’s Principle). “Light between two points travels along paths which require least
time.”

Example (Principle of least action). T = kinetic energy (e.g. m|ẋ|2/2)
V = potential energy (e.g. V (x), x ∈ Rn)

S[γ] =

∫ t2

t1

(T − V ) dt

t2

t1

“Action is minimised along paths of motion”

Moral. Leibnitz’s take: We live in “the best of all possible worlds”.
Science → Theology.
Feynman’s take: “This is wrong. In quantum theory, the motion takes place along all possible paths
with different probabilities.” (see Part III QFT)

In this course
• We consider necessary conditions of extremum of (0.1). Euler-Lagrange equation.
• Lots of examples (geometry, physics, problems with constraints – e.g. maximise area given a
fixed length of perimeter)

• Second variation: some sufficient conditions for min/ max
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Books:
(i) Gelfend- Fomin ‘Calculus of Variations.’
(ii) DAMTP notes online (e.g. P. Townsend)

Note. Lectures have a different order but similar content to (ii).

1 Calculus for Functions of Rn

In this section, f ∈ C2(Rn), f : Rn → E, continuous 2nd partial derivatives.

Definition. The postition a ∈ Rn is stationary if

∇f(a) = (∂1f, . . . , ∂nf) |x=a= 0, where ∂if =
∂f

∂xi

Method. Expanding near x = a

f(x) = f(a) = (x− a) · ∂f |a︸ ︷︷ ︸
0, as stationary

+
1

2
(xi − ai)(xj − aj)∂2ijf | +a +O(|x− a|2)

using the summation convention. The Hessian matrix is

Hij = ∂i∂jf = Hji

We shift the origin to set a = 0, and diagonalise H(0) by an orthogonal transformation:

H ′ = RTH(0)R =

λ1 . . .
λn


f(x′)− f(0) =

1

2

∑
λi(x

′
i)

2 +O(|x′|2)

(i) If all λi > 0, f(x′) > f(0) in all directions so we have a local minimum
(ii) If all λi < 0, then we have a local maximum
(iii) If some λi > 0, and some λi < 0, then f increases in some directions and decreases in others.

We have a saddle point in this case.
(iv) If some λi = 0, then we need to consider higher order derivatives in Taylor’s expansion.

Method. Special case n = 2:

det(H) = λ1λ2, tr(H) = λ1 + λ2

• det > 0, tr > 0 gives local minimum
• det > 0, tr < 0 gives local maximum
• det < 0 gives saddle point
• det = 0 requires us to look at 3rd/ higher derivatives
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Remarks.
(i) For f : D → R (domain) we can have local minimum, local maximum or global minimum
(ii) For f harmonic, fxx + fyy = 0, D ⊆ R2 gives tr(H) = 0 so our turning point is a saddle point

and the min/ max is on the boundary

Example.
f(x, y) = x3 + y3 − 3xy

∇f = (3x2 − 3y, 3y2 − 3x) = (0, 0)

for critical points.

x2 − y = 0, y2 = 0 =⇒ y4 = y =⇒

{
y = 0, x = 0

y = 1, x = 1

Stationary points (0, 0) and (1, 1)

H =

[
6x −3
−3 6y

]
(0, 0) has detH = −9 < 0, saddle point f = 0.
(1, 1) has detH = 27 > 0, tr(H) = 12 > 0 so is local minimum with f = −1

y

x

For (0, 0), near f = 0, f ' −3xy which decreases on the line y = x but increases on y = −x.
This function has no global min/ max
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1.1 Constraints and Lagrange Multipliers

Example. Find the circle centered at (0, 0), with smallest radius, which intersects the parabola
y = x2 − 1

y

x
1−1

Two approaches:
(i) Direct method. Solve the constraintsL

f = x2 + y2 = x2 + (X2 − 1)2 = x4 − x2 + 1︸ ︷︷ ︸
f(x)

We have
∂xf = 0 ⇐⇒ 4x3 − 2x = 0

Giving two solutions
• x = ±1/

√
2, y = −1/2, radius

√
3/2

• x = 0, y = −1, radius 1
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Example. (ii) Lagrange Multipliers. Define new function h(x, y, λ) = f(x, y) − λg(x, y) with
g(x, y) = 0 the constraint. λ = Lagrange multiplier.

h = x2 + y2 − λ(y − x2 + 1)

Extremising over 3 variables with no constraints:

∂h

∂x
= 2x+ 2λx = 0

∂h

∂y
= 2y − λ = 0

∂h

∂λ
= y − x2 + 1 = 0

The first two give:

2x+ 4xy = 0 =⇒ x = 0 or y = −1

2

Subbing these in the final equation gives solutions:

(x, y) = (0, 1) or (± 1√
2
,−1

2
)

(0, 1)→ f = 1 so (λ = 2)

(± 1√
2
,−1

2
)→ f =

3

4
, λ = −1

Moral. Why does it work (geometry):

y

x
1−1

∇g

∇f

g = 0

f = const.

f = x2 + y2

∇g ⊥ to g = 0

At the extrema, ∇f ‖ ∇g, so
∇f = λ∇g i.e. ∇(f − λg) = 0

Extremum of h = f − λg
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Method. For multiple constraints, extremise f : Rn → R, subject to gα(x) = 0

gα : Rn → R α = 1, . . . , k

h(x1, . . . , xn, λ1, . . . , λk) = f −
k∑

α=1

λαgα

We have n+ k variables, k Lagrange Multipliers

∂h

∂xi
= 0,

∂h

∂λα
= 0

Eliminate λα and solve for x
This method works also if constraints can’t be eliminated

2 Euler-Lagrange Equations

Method. Our task is to extremise functional (0.1)

F [y] =

∫ β

α

f(x, y, y′) dx

y

x
βα

y(x)

F depends on y with y(α), y(β) fixed

f given, depends on y with fixed ends.
Consider a small pertubation y → y + εη(x) in (2.1)
Compute F [y + εη], η(α) = η(β) = 0.
We will need the lemma below
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Lemma. If g : [α, β]→ R is continuous on [α, β], and∫ β

α

g(x)η(x) dx = 0 for all η continuous on [α, β], s.t. η(α) = η(β) = 0

Then g(x) ≡ 0, ∀x ∈ [α, β]

Proof. We show ∃x̄ ∈ (α, β) s.t. g(x̄) = 0. Suppose g(x̄) > 0. Then ∃ interval [x1, x2] ⊆ [α, β]
s.t. g(x) > c on [x1, x2] for some c > 0. Set

η(x) =

{
(x− x1)(x2 − x) x ∈ [x1, x2]

0 x 6∈ [x1, x2]
(2.2)

∫ β

α

g(x)η(x) > c

∫ x2

x1

(x− x1)(x2 − x) > 0

Remark. η given by (2.2) is a bump function. A Ck bump function:

η =

{
((x− x1)(x2 − x))k+1 x ∈ [x1, x2]

0 x 6∈ [x1, x2]

Method. Back to (2.1):

F [y + εη] =

∫ β

α

f(x, y + εη, y′ + eη′) dx

= F [y] + ε

∫ β

α

(
∂f

∂y
η +

∂f

∂y′
y′
)

dx+ O(ε2)︸ ︷︷ ︸
return in section 8

= F [y] +O(ε2) at extremum, i.e.
dF

dε

∣∣∣∣
ε=0

= 0

Integrating the ε-term by parts

0 =

∫ β

α

{
∂f

∂y
η − d

dx

(
∂f

∂y′

)
η

}
dx+

[
∂f

∂y′
, η

]β
α︸ ︷︷ ︸

0 as η(α)=η(β)=0

=

∫ β

α

(
∂f

∂y
− d

dx

(
∂f

∂y′

))
︸ ︷︷ ︸

=g

η dx

Applying the Lemma with g as above, we must have g ≡ 0.
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Equation. We have proved a nexessary condition for an extremum is:

d

dx

(
∂f

∂y′

)
− ∂f

∂y
= 0 (2.3)

This is called the Euler-Lagrange equation

Remarks.
• (2.3) is a 2nd order ODE for @y(x)@ with boundary conditions y(α) = y1, y(β) = y2
• Notation: the LHS of (2.3) denoted by ∂F

∂y(x) is called the functional derivatives
• Some books (e.g. Towsend’s notes) use δy = εη(x)

F [y + δy] = F [y] + δF [y]

where

δF =

∫ β

α

[
∂F (y)

∂y(x)
δy(x)] dx

• Other boundary conditions are possible e.g. ∂f
∂y′ |α,β = 0

• Be careful with derivatives, e.g. ∂f
∂y means (∂f∂y )x,y′ x, y, y

′ independent

dh

dx
=
∂h

∂x
+
∂h

∂y
y′ +

∂h

∂y′
y′′

d

dx
= δx + y′δy + y′′δy′

is the total derivative.

Example.
f(x, y, y′) = x · ((y′)2 − y2)

δxf = (y′)2 − y2 δyf = −2xy δy′f = 2xy′

df

dx
= (y′)2 − y2 − 2xyy′ + 2xy′y′′

2.1 First Integrls of the E-L equation

In some cases (2.3) (2nd order ODE) can be integrated once to a 1st order ODE “first integral”.
(i) f does not explicitly depend on y, df

dy = 0

∂f

∂y
= 0

(2.3)→ d

dx

(
∂f

∂y′

)
= 0 =⇒ ∂f

∂y′
= constant
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Examples. Geodesics on the Euclidean plane

y

x
βα

F [y] =

∫ β

α

√
dx2 + dy2 =

∫ β

α

√
1 + (y′)2︸ ︷︷ ︸
f(y′)

dx

∂f

∂y
= 0 =⇒ y′√

1 + (y′)2
= const.

So
y′ = m

for some constant m, and so
y = mx+ c

straight line
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Example. Geodesics on a sphere S2 ⊂ R3

A

B

x

y

z

x = sin θ sinφ 0 ≤ θ ≤ π
y = sin θ cosφ 0 ≤ φ ≤ 2π

z = cos θ

ds2 = dx2 + dy2 + dz2 = dθ2 + sin2 dφ2

Parametrise as φ = φ(θ)

ds =

√
1 + sin2 θ(φ′)2 dθ

F [φ] =

∫ θ2=β

θ1=α

√
1 + sin2 θ · (φ′)2 dθ

∂f

∂φ
= 0 =⇒ ∂f

∂φ
= κ (constant)

first integral.
sin2 θ · φ′√

1 + sin2 θ · (φ′)2
= κ
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Example (continued). Squaring to solve for (φ′)2

(φ′)2 =
κ2

sin2 θ · (sin2−κ2)

φ = ±
∫

κdθ

sin θ ·
√

sin2 θ − κ2

Two solutions, each going one way around the sphere. Using substitution cot(θ) = u

±
√

1− κ2
κ

cos(φ− φ0) = cot θ

for φ0 = const. Great circle

(Geodesics are segments of great circles)

(ii) Consider, for general f(x, y, y′)

d

dx

(
f − y′ ∂f

∂y′

)
=
∂f

∂x
+ y′

∂f

∂y
+ y′′

∂f

∂y′
− y′′ ∂f

∂y′
− y′ d

dx

(
∂f

∂y′

)
= y′(

∂f

∂y
− d

dx

∂f

∂y′︸ ︷︷ ︸
=0

) +
∂f

∂x

If f does not explicitly depend on x, i.e. ∂f
∂x = 0 then

f − y′ ∂f
∂y′

= const. (2.5)
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Example (Brachistochrome).

y

x
β(0, 0)

Going back to section 0,

F [y] =
1√
2g

∫ β

0

√
1 + (y′)2√
−y︸ ︷︷ ︸

f(y,y′)

dx

∂f
∂x = 0 so use (2.5) √

1 + (y′)2√
−y

− y′ y′√
1 + (y′)2

√
−y

= K

1√
1 + (y′)2

= K
√
−y =⇒ y′ = ±

√
12Ky

2

K
√
−y

x = ±K
∫ √

−y√
1 +K2y2

dy

Set
y = − 1

K2
sin2 θ

2
dy = − 1

K2
sin

(
θ

2

)
cos

θ

2

x = ±K
∫

(−1)
1

K2

sin2( θ2 ) cos
(
θ
2

)√
1− sin2( θ2 )

dθ

= ∓ 1

2K2

∫
(1− cos θ)dθ = ∓ 1

2K2
(θ − sin θ) + C

Initial condition (0, 0)→ θ0 = 0→ C = 0, take positive root

x =
θ − sin θ

2K2

y = − 1

K2
sin2 θ

2
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Example (continued).

y

x

Brachistochrome=cycloid

Parametrised equation of a cycloid. Brachistochrome = cycloid.
The curve traced by a point on the rim of a wheel, as the wheel rolls along a straight line (Galileo)

2.2 Fermat’s Principle

Light/sound travels along paths between two points which requires least time. Rays are represented
by path y = y(x). Speed of light c(x, y)

F [y] =

∫
dl

c
=

∫ β

α

√
1 + (y′)2

c(x, y)
dx

assume c = c(x)→ ∂f
∂y = 0 so (2.4) gives

∂f

∂y′
= const.

y′√
1 + (y′)2c(x)

= const.
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L β

θ1

Ray launched at θ1, tan θ = y′

sin θ1
c(x1)

=
sin θ

c(x)
(2.6)

Snell’s law.

c increasing c decreasing

FAST SLOW

Least time in fast

Least time in slow

Least time

cF
cS
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3 Extensions of the Euler-Lagrange Equations

3.1 Euler-Lagrange Equations with Constraints

Extremise

F [y] =

∫ β

α

f(x, y, y′) dx

subject to

G[y] =

∫ β

α

g(x, y, y′) dx = K (constant)

Lagrange multiplier, extremise
Φ[y;λ] = F [y]− λG[y]

replace f in E-L by f − λg

d

dx

(
∂

∂y′
(f − λg)

)
− ∂

∂y
(f − λg) = 0 (3.1)
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Example. Dido problem (a.k.a. isoperemetric problem). What simple and closed plane curve of
fixed length L maximises the enclosed area?

Not simple Not convex →convex with the same perimeter

Assume convexity.

α β

y1

y2

dA = y(x) |x2
x1

dx

C

x monotonically increases from α → β and decreases from β → α. Given x, ∃(y1, y2) on the curve
with

y1(x) = y2(x), y2 > y1, dA = y(a)]x2
x1
· dx

A[y] =

∫ β

α

(y2(x)− y1(x)) dx =

∮
C

y(x) dy

Constraint
L[y] =

∮
C

dl =

∮
C

√
1 + (y′)2 dx = L

K = y0λ
√

1 + (y′)2

(Note: do not worry about the boundary trm in the derivation of the E-L, as C has no boundary)
∂h
∂x = 0 so we use (2.5)

K = const = h− y′ ∂h
∂y′

= y − λ
√

1 + (y′)2 + y′λ
y′√

1 + (y′)2

=⇒ K = y − λ√
1 + (y′)2

=⇒ (y′)2 =
λ2

(y − k)2
− 1

solution (x− x0)2 + (y − y0)2 = λ2 (circle of radius λ)

2πλ = L =⇒ λ =
L

2π
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Example. The Sturn-Liouville problem.
ρ(x) > 0 for x ∈ [α, β], σ = σ(x)

F [y] =

∫ β

α

[ρ · (y′)2 + σy2] dx G[y] =

∫ β

α

y2 dx

Minimise f subject to G = 1 (fixed ends)

Φ[y;λ] = F [y]− λ(G[y]− 1)

h = ρ · (y′)2 + σ · y2 − λ(y2 − 1

β − α
)

∂h

∂y′
= 2ρy′

∂h

∂y
= 2σy − 2λy

− d

dx
(ρ · y′) + σ · y︸ ︷︷ ︸
L(y)

= λy (3.2)

L is the Sturm-Liouville operator. (3.2) is an eigenvalue probleme.g. if ρ = 1, σ(x) = ‘potential’ in
time-independent Shrodinger equation (IB Quantum Mechanics).
If σ > 0, then F [y] > 0. Positive minimum equal to the lowest eigenvalue

Proof. (3.2)× y and integrate
∫ α
β

by parts

F [y]− [y · y′ρ]αβ︸ ︷︷ ︸
0

= G[y]︸︷︷︸
1

·λ

Lowest eigenvalue is the minimum of F [y]/G[y]

3.2 Several dependent variables

y(x) = (y1(x), y2(x), . . . , yn(x))

F [y] =

∫ β

α

f(x, y1, . . . , yn, y
′
1, . . . , y

′
n) dx

yi → yi(x) + εηi(x) i = 1, . . . , n ηi(α) = ηi(β) = 0

Following the derivation of the E-L equation:

F [y + εη]− F [y] =

∫ β

α

n∑
i=1

ηi(
d

dx

(
∂f

∂y′i

)
− ∂f

∂yi
)dx+ boundary term +O(ε2)

Use Lemma
d

dx

(
∂f

∂y′i

)
=
∂f

∂yi
(3.3)

A system of n 2nd order ODEs.
First integrals of 3.3

• If ∂f
∂yj

= 0 for some 1 ≤ j ≤ n then, by (3.3) ∂f
∂y′j

= const.

• If ∂f∂x = 0, then f −
∑
i y
′ ∂f
∂yi

= const.

20



Example. Geodesics on surfaces
Σ ⊂ R3 (surface) given by

g(x, y, z) = 0

Geodesic = shortest path on the surface between A,B ∈ Σ (if one exists). t = parameter on the
curve

A = x(0)

B = x(1) x = (x, y, z)

Φ[x, λ] =

∫ 1

0

√
ẋ2 + ẏ2 + ż2 − λ(t) · g(x, y, z)︸ ︷︷ ︸

h(x,y,z,ẋ,ẏ,ż,λ)

dt

Note: The Lagrange multiplier λ is now a function of t as we want the entire curve to lie on Σ. E-L
equations with h.

• Variation w.r.t. λ:
d

dt

(
∂h

∂ẋ

)
︸ ︷︷ ︸

0

−∂h
∂λ

= 0 =⇒ g(x, y, z) = 0 ∀t

• Variation w.r.t. xi = (x, y, z)

d

dt

(
ẋi√

ẋ2 + ẏ2 + ż2

)
+ λ

∂g

∂xi
= 0 i = 1, 2, 3

Alternatively, solve the constraint g = 0, as we did in example 2.2 (Σ = sphere)
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3.3 Several Independent Variables

In general Φ : Rn → Rm. In n > 1, E-L become PDEs. Assume that n = 3,m = 1

F [φ] =

∫∫∫
D

f(x, y, z︸ ︷︷ ︸
indep

, φ, φx, φy, φz), dxdy dz

notation φx = ∂φ
∂x etc. Volume integral over a domain D ⊂ R3. Assume φ extremum, consider

perturbations
φ→ φ(x, y, z) + εη(x, y, z) s.t. η = 0 on ∂D

F [φ+ εη]− F [φ] = ε

∫
D

(η
∂f

∂φ
+ ηx

∂f

∂φx
+ ηy

∂f

∂φy
+ ηz

∂f

∂φz
) dx dy dz +O(ε2)

= ε

∫
D

η
∂f

∂φ
+∇ · (η(

∂f

∂φx
,
∂f

∂φy
,
∂f

∂φz
))− η∇ · ( ∂f

∂φx
,
∂f

∂φy
,
∂f

∂φz
) dxdy dz +O(ε2)

Apply divergence theorem to first div term and use∫
∂D

η(
∂f

∂φx
,
∂f

∂φy
,
∂f

∂φz
) · ds = 0

as η = 0 on ∂D

F [φ+ εη]− F [φ] = ε

∫
η(
∂f

∂φ
−∇ · ( ∂f

∂φx
,
∂f

∂φy
,
∂f

∂φz
)) dx dy dz +O(ε2)

E-L equation: single 2nd order PDE for one function φ

∂f

∂φ
−

m∑
i=1

∂

∂xi

(
∂f

∂∂iφ

)
= 0 (3.4)

remains valid with 3→ n

Example. Extremise ‘potential energy’ n = 2

F [φ] =

∫∫
D

1

2
[φ2x + ψ2

y] dx dy

∂f

∂φ
= 0

∂f

∂φx
= φx

∂f

∂φy
= φy

(3.4)→ ∂φx
∂φx

+
∂φy
∂y

= 0

i.e.
φxx + φyy = 0

(Laplace equation)
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Example. Minimal surfaces. Minimise the area of Σ ⊂ R3 subject to boundary conditions

e.g. soap forms

Σ = {x ∈ R3 : gk(x, y, z) = 0}

Assume (can do it by implicit function theorem) that we solved k = 0 to give z = φ(x, y)

ds2 = dx2 + dy2 + dz2 dz = φxdx+ φydy

ds2 = (1 + φ2x)dx2 + (1 + φ2y)dy2 + 2φxφydx ddy

(IB geometry, this is called the 1st fundamental form or Riemannian metric)

ds2 =

2∑
i,j=1

gij(x, y)dx1dxj x1 = x, x2 = y

g =

[
1 + φ2x φxφy
φxφy 1 + φ2y

]
Area element

√
det gdxdy. Area functional

A[φ] =

∫
D

√
1 + φ2x + φ2y dxdy

Apply E-L (3.4) to h
∂h

∂φx
=

φx√
1 + φ2x + φ2y

∂h

∂φy
=

φy√
1 + φ2x + φ2y

∂x(
φx√

1 + φ2x + φ2y

∂h

∂φy
) + ∂y(

φy√
1 + φ2x + φ2y

) = 0

Expand derivatives (exercise)

(1 + φ2y)φxx + (1 + φ2x)φyy − 2φxφyφxy = 0 (3.5)

The minimal surface equation. Assume circular symmetry

z = φ(r) r =
√
x2 + y2

φx =
dz

dr

∂r

∂x
= z′

x

r
φy = z′

y

r

by calculating 2nd derviatives, we get from (3.5) the ODE

rz′′ + z′ + (z′)3 = 0

Set z′ = w to get
1

2
r

dw2

dr
+ w2 + w4 = 0

Solution
r = r0 cosh

(
z − z0
r0

)
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Example (continued). Catenoid: minimal surface of revolution (Euler 1744)

x

y

z

R
L

R
−L

r0

r(L) = r(−L). If L 6= 0 then z0 = 0. Set r = R, and divide by L

R

L
=
r0
L

cosh

(
L

r0

)
Set L = 1. Algebraic relation

R = r0 cosh(1/r0)

R

r0

µ ∼ 0.833

∼ 1.5
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Example (continued). If R >∼ 1.5, ∃ 2 minimal surfaces

unstable stable

3.4 Higher Derivatives

Equation.

F [y] =

∫ β

α

f(x, y, y′, . . . , y(n)) dx

Proceed as in section 2. Assume y exists, y → t+ εη where

η = η′ = · · · = η(n−1) = 0 at α, β

F [y + εη]− F [y] = ε

∫ β

α

(
∂f

∂y
η +

∂f

∂y′
η′ + · · ·+ ∂f

∂y(n)
y(n)) dx+O(ε2)

Apply Lemma
∂f

∂y
− d

dx

(
∂f

∂y′

)
+

d2

dx2

(
∂f

∂y′′

)
+ · · ·+ (−1)n

dn

dxn

(
∂f

∂y(n)

)
(3.6)

Euler-Lagrange equation

Example. If n = 2 and if ∂f∂y = 0

(3.6)→ d

dx

(
∂f

∂y′
− d

dx

∂f

∂y′′

)
= 0

so
∂f

∂y′
− d

dx

∂f

∂y′′
= const.

25



Example. Extremise F [y] =
∫ 1

0
(y′′)2 dx where y(0) = y′(0) = 0 and y(1) = 0, y′(1) = 1

d

dx
(2y′′) = const. =⇒ y′′′ = k const

Impose boundary conditions to get y = x3 − x2

Note. This is an absolute minimum. Y0 = x3 − x2

η(0) = η′(0) = η(1) = η′(1) = 0

(do not assume η small)

F [y0 + η]− F [y0] =

∫ 1

0

(η′′)2 dx+ 2 ·
∫ 1

0

(y′′0η
′′) dx > 4

∫ 1

0

(3x− 1)η′′

= 4([−η]10 +

∫ 1

0

d

dx
(3xη′)− η)dx

= 4([3xη′]10 − 3η]10) = 0

y0 absolute minimiser of F

4 Least Action Principle and Noether’s Theorem

Particle R3, T = kinetic energy, V = potential energy.

L(x, ẋ, t) = T − V (4.1)

is the Langranian. t is the independent variable, x = (x, y, z) are dependent variables. Action

S[x] =

∫ t2

t1

Ldt (4.2)

Hamilton’s principle (Least action principle, or principle of stationary action). The motion is such
that S[x] is stationary, i.e. L satisfies the E-L equations

Example.

T =
1

2
m|ẋ|2 V = V (x)

Euler-Lagrange equations give
d

dt

(
∂L

∂ẋi

)
=
∂L

∂ẋi

mẍi = − ∂V
∂xi

or mẍ = −∇V

Newton’s 2nd Law
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Example. Central force in 2 dimensions:

L =
1

2
m(ṙ2 + r2θ̇2)− V (r)

E-L
d

dt

(
∂l

∂ṙ

)
− ∂L

∂r
= 0

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ︸︷︷︸
0

= 0

=⇒ ∂L

∂θ̇
= mr2θ̇ = const.

∂L
∂t = 0, use (2.5)

ṙ
∂L

∂ṙ
+ θ̇

∂L

∂θ̇
− L = const

ṙmṙ + θ̇mr2θ̇ − 1

2
mṙ2 − 1

2
mr2θ̇2 + V (r) =

1

2
mṙ2 +

1

2
mr2θ̇2︸ ︷︷ ︸

T

+V (r) = E

which is constant. Conservation of total energy

Example (Configuration space, and general coordinates).

x

y

z

→

N particles in R3

N = 3

R3N

t→ {qi(t), q̇i(t), t}

qi =generalised coordinates, i = 1, . . . , 3N

Langrangian L = L(qi, q̇i, t)

(Part II Classical Dynamics)
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4.1 Noether’s Theorem

F [y] =

∫ β

α

f(yi, y
′
i, x) dx i = 1, . . . , n

Suppose ∃ a 1-parameter family of transformations yi(x) → Yi(x, s) s.t. Yi(x, 0) = yi(x). This is a
continuous symmetry of a Lagrangian f , if

d

ds
(f(Yi(x, s), Y

′
i (x, s), x)) = 0

Theorem (Noether’s Theorem). Given a continuous symmetry Yi(x, s) of f , the quantity∑
i

∂f

∂yi

∂Yi
∂s
|s=0 (4.3)

is a first integral of the E-L equation with Yi(x, 0) = yi(x) ∀i

Proof.

0 =
d

ds
(f |s=0) =

∂f

∂yi

dfi
ds
|s=0 +

∂f

∂yi

∂Y ′i
∂s
|s=0

= [
d

dx

(
∂f

∂y′i

)
dYi
ds

+
∂f

∂y′i

d

dx

(
dYi
ds

)
]|s=0

=
d

dx

[
∂f

∂y′i

∂Yi
∂s

]
|s=0 = 0

Example.

f =
1

2
(y′)2 +

1

2
(z′)2 − V (y − z), y = (y, z)

Lagrangian of a particle moving on a plane in a potential.

Y = y + s Z = z + s Y ′ = y′ Z ′ = z′ V (Y − Z) = V (y − z)

so
df

ds
= 0

(4.3)→ (
∂f

∂y′
dY

ds
+
∂f

∂z′
dZ

dy
) = y′ + z′

(conserved momentum in y + z direction)

Example. Back to example 4.2, Θ = θ + s,R = r

dL

ds
= 0

(4.3)→ (
∂L

∂θ̇

∂θ

∂s
+
∂L

∂ṙ

∂R

∂s︸︷︷︸
0

)|s=0 = mr2θ̇

(conserved angular momentum). Isotropy of space gives rotational invariance of L
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5 Convex Functions

Going back to calculus on Rn, a class of functions for which it is easy to classify stationary points

Definition. A set S ⊂ Rn is convex if ∀x,y ∈ S

(1− t)x + ty ∈ S 0 ≤ t ≤ 1

x

y

x

y

convex non-convex

Definition. A graph of a function f : Rn → R is a surface

{z − f(x) = 0} in Rn+1

x

y

z

RN

f =
√

1− |x|2

A chord of f is a line segment in Rn+1 joining two points on the graph
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Definition. A function f : Rn → R is convex if
(i) The domain of f is a convex set
(ii)

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y) 0 < t < 1 (5.1)

convex non-convex
f is convex if the graph of f lies below or on its chords

Remarks.
(i) f is concave if we replace ≤ by ≥ in (5.1)
(ii) f convex ⇐⇒ −f concave
(iii) f strictly convex if we replace ≤ by < in (5.1)

Example. f : R→ R, f(x) = x2 domain R (convex)

f((1− t)x+ ty)− (1− t)f(x)− tf(y) = [(1− t)x+ ty]2 − (1− t)x2 − ty2

= x2(1− t) · (−t) + ty2(1− t) + 2(1− t)txy
= (1− t)t(x− y)2 < 0 ∀0 < t < 1

strictly convex

Example. f(x) = 1/x, domain R\{0}, not a convex set. On restricted domain R > 0, f is convex
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5.1 Conditions for Convexity

3 tests for f to be convex
(i) If f is once differentiable, then f is convex iff

f(y) ≥ f(x) + (y − x) · ∇f(x) (5.2)

Proof. Assume (5.2) holds, and apply it twice

f(x) ≥ f(z) + (x− z) · ∇f(z) (i)

f(y) ≥ f(z) + (y − z) · ∇f(z) (ii)

Take z = (1− t)x + ty ∈ S (the domain of f), 0 < t < 1

(1− t) · (i) + t · (ii)→ ∇f(z) cancel. get (5.1)

Converse: assume convexity (5.1) and set

h(t) = (1− t)f(x) + t(f(y))− f((1− t)x + ty) ≥ 0

h′(0) = −f(x) + f(y)− (y − x) · ∇f(x)

So (5.2) is equivalent to h′(0) ≥ 0. Note h(0) = 0, so

h(t)− h(0)

t
≥ 0 0 < t < 1

Now take the limit t→ 0

Corollary. If f is convex and have a stationary point, then it is a global minimum

Proof. Given ∇f(x0) = 0, we get from (5.2) that f(y) ≥ f(x0) ∀y

(ii) If
(∇f(y)−∇f(x)) · (y − x) ≥ 0 (5.3)

then f is convex (f ′ monotonically increasing if n = 1)

Proof. exercise

(iii) (Second order conditions): Assume f twice differentiable, then f convex iff the Hessian ∂2f
∂xi∂xj

has all eigenvalues non-negative. If all eigenvalues positive, then f is strictly convex

Proof. Assume convex and apply (5.3) by taking y = x + h

h · (∇f(x + h)−∇f(y)) ≥ 0

for small h:
∂if(x + h) = ∂if(x) +

∑
j

hjHij(x) +O(|h|2)

So (by dotting with h) ∑
j,i

hihjHij(x) +O(|h|2) ≥ 0
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Example.

f(x, y) =
1

xy
x, y > 0

H =
1

xy

[ 2
x2

1
xy

1
xy

2
y2

]
det(H) =

3

x3y3
> 0 tr(H) > 0

so f is strictly convex

6 Legendre Transform

Definition. The Legendre transform of f : Rn → R is

f∗(p) = sup
x

(p · x− f(x)) (6.1)

The domain of f∗ consists of all vectors p ∈ Rn s.t. the sup is finite

Example. n = 1

x

z
z = px

z = f(x)

f∗(p)

Maximum vertical distance between graphs of z = f(x) and z = px
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Example. n = 1, f(x) = ax2 a > 0

f∗(p) = sup
x

(px− ax2)
∂

∂x

(
px− ax2

)
= 0 =⇒ p = 2xa

So x = p/2a and substitute

f∗(p) = p
p

2a
− a(

p

2a
)2 =

p2

4a

Compute (f∗)∗(s) = supp(sp−
p2

4a ) =⇒ p = 2as

f∗∗(s) = as2

so f∗∗ = f (always true if f convex)
If a < 0, supx(px− ax2) =∞ ∀p so f∗ has empty domain

Prop. Domain of f∗ is a convex set, find f∗ convex

Proof.

f∗((1− t)p+ tq) = sup
x

[(1− t)p ·x+ tq ·x− f(x)] = sup
x

[(1− t)[p ·x− f(x)] + t(q ·x− f(x))]

Use sup(A+B) ≤ sup(A) + sup(B) to get

LHS ≤ (1− t)f∗(p) + tf∗(q)

(i)
(1− t)p + tq ∈ D(f∗)

(ii) f∗ satisfies convextiy definition (5.1)

Note. In practice, if f convex and diffrentiable,

f∗(p) = global minimum over x

∇(p · x− f(x)) = 0 =⇒ p = ∇f

(substitute to definition of f∗(p))
If f is strictly convex, then ∃ unique inversion x = x(p) so that

f∗(p) = p · x(p)− f(x(p)) (6.2)
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6.1 Applications to Thermodynamics

Many particles (gas ∼ 1023 particles) so we use a few macroscopic variables: p (pressure), V (volume),
T (temperature), S (entropy). (Part II Statistical Physics)
Internal energy U(S, V ). Hermholtz free is defined

F (T, V ) = min
S

(U(S, V )− TS) = max
S

(TS − U(S, V )) = −U∗(T, V )

Legendre transform of U w.r.t. S, with V held fixed as a parameter

∂

∂S
(TS − U(S, V )) |T,V = 0→ R =

∂U

∂S
|V

Other quantities as Legendre transform e.g. Entropy

H(S, p) = min
V

(U(S, V ) + pV ) = −U∗(−p, S)

at min
p = −

(
∂U

∂V

)
|S

Entropy is a fixed parameter. The Legendre transform is a way to swap from (S, V ) dependence to
dependence of other variables

U(S, V ) F (T, V )

H(S, P )

7 Hamilton’s Equations

Remark. Recall (section 4.1) Lagranian L = T − V = L(q, q̇, t) function on the configuration space

Definition. The Hamiltonian is the Legendre transform of h w.r.t. q̇ = v

H(q,p, t) = sup
v

(p · v − h) = p · v − L(q,v, t)

where v = v(p) is the solution to

pi =
∂

∂Lq̇i

(assume convexity of L in v). p is the generalised momentum
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Example.

T =
1

2
m|q̇|2 V = V (q)

p =
∂L

∂q̇
= mq̇→ q̇ =

p

m

H(q,p, t) = p · p
m
− (

1

2
m
|p|2

m2
− V (q))

=
1

2m
|p|2 + V (q) (the total energy)

What happened to the Euler-Lagrange equations?

H = H(q,p, t) = piq̇
i = L(qi, q̇i, t)

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
dt

= pidq̇
i + q̇idpi −

∂h

∂qi
dqi − ∂L

∂q̇i
dq̇i − ∂L

∂t
dt

= q̇idpi − ṗidqi −
∂L

∂t

by E-L. Compare differentials

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
∂H

∂t
= −∂L

∂t
(7.2)

Warning.
∂

∂t

∣∣
p,q
6= ∂

∂t

∣∣
q,q̇

Assume no explicit t-dependence in L. Then (7.2) is a system of 2n 1st order ODEs. Need to specify
qi(0), pi(0), i = 1, . . . , n. Solution curves to (7.2) are trajectories in 2n-dimensional phase space
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Remark. Hailton’s equations also arise from extremizing a functional in phase space

S[q,p] =

∫ t2

t1

(q̇ipi −H(q,p, t))︸ ︷︷ ︸
f(q,p,q̇,ṗ,t)

dt

E-L for S
• Variation w.r.t. pi

∂f

∂pi
− d

dt

(
∂f

∂ṗi

)
︸ ︷︷ ︸

0

= 0 =⇒ q̇i =
∂H

∂ṗi

• Variation w.r.t. qi
∂f

∂qi
− d

dt

(
∂f

∂q̇i

)
= 0 =⇒ q̇i = −∂H

∂q̇i
− dpi

dt
= 0

ṗi = −∂H
∂qi

Recovered (7.2), Newton’s equation, Lagrange’s equation, Hamiltons equation so far (7.2) is
just another formulation

8 The Second Variation

E-L equation gives us necessary conditon so we could get a minimum, maximum or a saddle point.
And so we look at the nature of stationary points of

F [y] =

∫ β

α

f(x, y, y′) dx

Expand F [y + εy] to 2nd order in ε around a solution to E-L equation

F [y + εη]− F [y] =

∫ β

α

[f(x, y + εη, y′ + ε′η′)− f ] dx

= 0 + ε

∫ β

α

η (
∂f

∂y
− d

dx

(
∂f

∂y′

)
)︸ ︷︷ ︸

0

dx+
ε2

2

∫ β

α

[η2
∂2f

∂y2
+ (η′)2

∂f

∂(y′)2
+ 2

∂2f

∂y∂y′
ηη′] dx

+O(ε3)

2nd variation is

δ2F [y] ≡ 1

2

∫ β

α

[η2
∂2f

∂y2
+ (η′)2

∂f

∂(y′)2
+

d

dx

(
η2
) ∂2f

∂y′∂y
] dx

=
1

2

∫ β

α

Qη2 + P (η′)2 dx

where

P =
∂f

∂(y′)2
Q =

∂2f

∂y2
− d

dx

(
∂2f

∂y′∂y

)
(8.1)

we have proved
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Prop. If y(x) is a soltuion to the E-L equation (2.3) and Qη2 +P (η′)2 > 0 ∀η vanishing at α, β then
y(x) is a local minimizer of F [y]

Example. Geodesics on a plane (in section 2)

f =
√

1 + (y′)2 :

P = ∂
∂y′

(
y′√

1+(y′)2

)
→ 1

(1+(y′)2)3/2
> 0

Q = 0

If η′ = 0, then η = 0, so η′ 6= 0 and P (η′)2 > 0 ∀η so straight lines are local length minimizers on R2

Prop. If y0(x) is a local minimum, then

P =
∂2f

∂(y′)2
∣∣
y0
≥ 0 (8.2)

so the Legendre condition is necessary for local min.
“P is more important than Q in (8.1)”

Proof. See Gelfend-Fomin for details. Idea: if η′ small, then η can �be too lare. Converse not
true: η can be small, η′ large. Assume ∃x0 s.t. P (x0, y0, y

′
0) < 0

Note. (8.2) not sufficient for local minimum see section 8.1 but P > 0, Q ≥ 0 is sufficient as
if η 6= 0 on (α, β) then ∃x0 ∈ (α, β) s.t. η′(x0) 6= 0

Example. Go back to Brachistochrome

f =

√
1 + (y′)2

−y

Is cycloid a minimizer?
∂f

∂y
= − 1

2y
f

∂f

∂y′
=

y′√
1 + (y′)2

√
−y

P =
1

(1 + (y′))3/2
√
−y

> 0

Q = · · · = 1

2
√

1 + (y2)2y2
√
−y
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8.1 Associated Eigenvalue Problem

Go back to (8.1)

Qη2 + P (η′)2 = Qη2 +
d

dx
(Pηη′)− η(Pη′)′

integrate, drop the boundary term as η = 0 at α, β

δ2F [y0] =
1

2

∫ β

α

η[−(Pη′)′ +Qη]︸ ︷︷ ︸
L(η)

dx (8.3)

Sturn-Liouville operator. If ∃η s.t. {
L(η) = −ωη (ω real)
η(α) = η(β) = 0

(8.4)

Then y0 is not a minimizer as

δ2F [y0] = −1

2
ω2

∫ β

α

η2 dx < 0

(8.4) can have solutions even if P > 0, so the Legendre condition (8.2) is not sufficient for y0 to be a
minimizer

Example.

F [y] =

∫ β

0

[(y′)2 − y2] dx

with y(0) = y(β = 0 and β 6= Nπ N ∈ N)

(2.3)→ y′′ + y = 0 =⇒ y = y0 = 0

is the stationary point of F [y]. 2nd variation:

δ2F [0] =
1

2

∫ β

0

[(η′)2 − η2] dx P = 1 > 0

but Q < 0. Examine (8.4):
−η′′ − η = −ω2η η(0) = η(β) = 0

Take

η = A · sin
(
πx

β

)
→
(
π

β

)2

= 1− ω2

Possible if β > π. So, if P > 0 a problem mat arise if the interval is “too large’.

38



8.2 The Jacobi Condtion

Legendre tried to prove that P > 0 is sufficient for y = y0 to be a local minimum. This couldn’t have
worked (last example), but the idea was good.
Let φ = φ(x) be a any differentiable function of x on [α, β]

0 =

∫ β

α

(φη2)′ dx =

∫ β

α

φ′η2 + 2ηη′φdx

(as η(α) = η(β) = 0). Adding to (8.1), we can rewrite

δ2F [y] =
1

2

∫ β

α

(P (η′)2 + 2ηη′φ+ (Q+ φ′)η2) dx

Assume P |y > 0 and complete the square

δ2F [y] =
1

2

∫ β

α

[P (η′ +
φ

P
η)2 + (Q+ φ− φ

p
)η2︸ ︷︷ ︸

=0 if (8.3) holds

] dx

which is positive if we can choose φ s.t.

φ2 = P (Q+ φ′) (8.3)

If (8.3) holds, then δ2F > 0 unless

η′ +
φ

P
η = 0 (**)

on [α, β]. But η = 0 at α, so η′(α) = 0 if (**) holds but then η ≡ 0 on [α, β] (uniqueness of solution
to 1st order ODEs), so (∗∗) 6= 0.

Method. Does a solution to (8.3) exist on [α, β]2

Transform (8.3) into a linear 2nd order ODE by setting φ = −Pu′/u where u 6= 0 on [α, β]

P (
u′

u
)2 = Q− (

(Pu′)

u
)′ = Q− (Pu′)′

u
+ P (

u′

u
)2

or
−(Pu′)′ +Qu− 0 (8.4)

This is the Jacobi accessory condition.
Need a solution to (8.4) (which is L(u) = 0) s.t. u 6= 0 on [α, β]. This may not exist on a large
enough interval
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Example.

F [y] =
1

2

∫ β

α

[(y′)2 − (y2)] dx

y → y + εη δ2F [y] =
1

2

∫ β

α

[(η′)2 − η2] dx P = 1, Q = −1

(8.4) is u′′ + u = 0, general solution u = A sinx+B cosx. Want u to be non-zero on [α, β], i.e.

tan(x) 6= B

A

possible to avoid B/A on interval smaller than π

|β − α| < π → positive nd variation

Example. Back to geodesics on the sphere

f =

√
dθ2 + sin2 θdφ2 =

√
(θ′)2 sin2 θdθ θ = θ(φ)

Found earlier that critical points are segments of great circles
θ = const, θ0 = π/2 (any great circle is this after a rotation)

∂2f

∂(θ′)2
|θ0 = 1 = P Q = · · · = −1

δ2F [θ0 =
π

2
lη] =

1

2

∫ φ2

φ1

[(η′)2 − η2] dφ

positive if φ2 − φ1 < π
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